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Cycle slip detection and repair play important roles in the processing of data from dual-frequency GPS receivers onboard low-Earth
orbit (LEO) satellites. To detect and repair cycle slips more comprehensively, an enhanced error method (EEM) is proposed. EEM
combines single-frequency and narrow-lane carrier phase observations to construct special observations and observation equation
groups. These special observations differ across time and satellite (ATS). ATS observations are constructed by three steps. The first
step is differencing single-frequency and narrow-lane observations through a time difference (TD). The second step is to select a
satellite as a reference satellite and other satellites as nonreference satellites. The third step is to difference the single-frequency
TD observations from the reference satellite and the narrow-lane TD observations from the nonreference satellites by a satellite
difference. If cycle slips occur at the reference satellite, the correction values for these ATS observations can be significantly
enlarged. To process all satellites, the EEM selects each satellite as a reference satellite and builds the corresponding equation
group. The EEM solves these observation equation groups according to the weighted least-squares adjustment (LSA) criterion
and obtains the correction values; these correction values are then used to construct the χ2 values corresponding to different
equation groups, and the EEM subsequently carries out a chi-square distribution test for these χ2. The satellite corresponding to
the maximum χ2 will be marked. Then, the EEM iteratively processes the other satellites. Cycle slips can be estimated by
rounding the float solutions of changes in the ambiguities of cycle slip satellites to the nearest integer. The simulation test results
show that the EEM can be used to detect special cycle slip pairs such as (1, 1) and (9, 7). The EEM needs only observation data
in two adjacent epochs and is still applicable to observation epochs with continuous cycle slips.

1. Introduction

Since low-Earth orbit (LEO) satellites are equipped with GPS
receivers, they have become the main means for supporting
LEO satellite missions. In the precise orbit determination of
LEO satellites, the quality of the carrier phase observation
data plays an important role. However, LEO satellites are in
a state of high-speed movement, and both the altitude angle
and the satellite attitude can change at any time; hence, the
satellite signal can easily suffer from a loss of lock, which
results in a discontinuous whole cycle count of carrier phase
observations, a phenomenon known as cycle slip. The cycle
slip of GPS carrier phase observations is an important factor
that affects data quality. Carrier phase observation data with
cycle slip issues will seriously affect the orbit determination

accuracy. Therefore, to improve the orbit determination
accuracy, it is necessary to detect and repair cycle slips. At
present, there are many methods for cycle slip detection.
Existing cycle slip detection methods are divided into two
categories.

The first kind of cycle slip detection method, such as the
polynomial fitting method, high-order difference method,
Doppler integration method [1], TurboEdit method [2],
and ionospheric residual method [3, 4], does not involve
observation equations. However, due to the high-speed
movement of LEO satellites, these methods cannot be fully
applied to cycle slip detection. In the polynomial fitting
method, carrier phase observations are regarded as time-
dependent variables, and the cycle slip is determined by com-
paring the polynomial-fitted values with the actual
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observations. This method is more suitable for static or low-
speed GPS receivers and is insensitive to small and continu-
ous cycle slips. Similar to the polynomial fitting method,
the high-order difference method is not suitable for detecting
small cycle slips. De Lacy et al. [5] combined Bayes’ theorem
with the polynomial fitting method to realize cycle slip detec-
tion, but this method is not very appropriate for LEO satel-
lites in a high-speed moving state. The Doppler integration
method requires Doppler observations, so it is not suitable
for receivers with only GPS observations; furthermore,
affected by the accuracy of Doppler observations, the Dopp-
ler integration method is also insensitive to small cycle slips.
Blewitt [2] proposed the TurboEdit method to detect and
repair cycle slips together with Melbourne–Wübbena (M-
W) and geometry-free (GF) combinations. The TurboEdit
method needs only data from one observation epoch, so it
is widely used in GPS cycle slip detection and repair. How-
ever, due to the influence of pseudorange measurement
errors, it is difficult to detect single-frequency cycle slips
below 2 cycles and special cycle slip pairs such as (5, 5). Join-
ing the variation characteristics of the ionosphere with the
M-W wide-lane combination, Liu [3] proposed a cycle slip
detection method based on ionospheric residuals. In the
detection of small cycle slips, this ionospheric residual
method improves the cycle slip detection sensitivity by com-
paring the difference between the residual due to ionospheric
delay (IOD) and the prior tolerance. The ionospheric resid-
ual method can detect a single cycle slip; thus, when the ion-
osphere changes slowly, this method is more suitable than
other existing approaches [3]. More recently, a method was
proposed that integrates the forward and backward moving
window averaging (FBMWA) algorithm with the second-
order, time-difference phase ionospheric residual (STPIR)
algorithm [4]. The combined FBMWA and STPIR method
can detect cycle slips very well; however, when some cycle
slips occur in the near field, pseudorange noise will still affect
the cycle slip repair accuracy. More recently, a single-
frequency cycle slip detection and repair technique based
on the generalized likelihood ratio (GLR) test was presented
[6]; however, this method may also be influenced by contin-
uous cycle slips.

The second kind of cycle slip detection involves observa-
tion equations. Bastos and Landau [7], Gao and Li [8],
Colombo et al. [9], and Lee et al. [10] investigated cycle slip
detection algorithms based on observation equations. How-
ever, cycle slip detection methods based on observation equa-
tions have limitations. Among the studies mentioned above,
Colombo et al. [9] combined GPS and INS (internal naviga-
tion system) parameters to realize cycle slip detection, and
Lee et al. [10] further studied a GPS/INS cycle slip detection
approach based on the cumulative sum (CUSUM) method.
However, the GPS/INS cycle slip detection method must
use an INS system and thus is not suitable for cycle slip detec-
tion with LEO satellites. A method combining geometry-free
(GF) and ionospheric-free (IF) double-difference observa-
tions can realize cycle slip detection better than the above
mentioned techniques [11], but is suitable only for static
CORS stations. To realize cycle slip detection for dynamic
GPS receivers, a method combining the LAMBDA carrier

phase ambiguity resolution approach with carrier phase
observations was used for dynamic PPP (precise point posi-
tioning) cycle slip detection and repair [12]. More recently,
a new dynamic PPP cycle slip detection method was pro-
posed by combining the ambiguity characteristics of the
single-difference observation equation with the least square
method [13]. However, these dynamic PPP cycle slip detec-
tion methods are aimed at mainly ground observation sta-
tions. For cycle slip in onboard GPS receivers, a cycle slip
detection method based on STP (second-order time-
difference of the LEO satellite’s position) and STG (second-
order time-difference geometry-free) was proposed [14].
This method does not need pseudorange observations and
can reach a high detection success rate when the elevation
angle of the satellite is low (less than 2.1°). However, for this
method to be successful, the prior acceleration must be
known, so this technique can be used as a supplement.

This research makes several contributions. First, a special
time-difference and satellite-difference observation value is
established. If cycle slips occur in the reference satellite, the
reference satellite cycle slip error will be enhanced for all of
the special observations. Second, to process the cycle slips
of GPS receivers onboard LEO satellites, the enhanced error
method (EEM) is proposed, which is not affected by pseudor-
ange observations. The EEM is applicable for detecting and
repairing continuous cycle slips. Third, the ability of the
EEM at detecting cycle slip is verified by evaluating simulated
cycle slips. We will introduce in detail the EEM cycle slip
detection algorithm in the next section. Then, the method
proposed will be tested in the following section and summa-
rized in the last section.

2. Observational Model and Methodology

The EEM establishes a special observation value based on
single-frequency (SF) and narrow-lane carrier phase obser-
vations. Narrow-lane carrier phase observations are built by
dual-frequency carrier phase observations. This special
observation differs across time and satellite (ATS) data.
The EEM carries out independent time differences for
single-frequency and narrow-lane carrier phase observa-
tions and establishes single-frequency time-difference
(SFTD) and narrow-lane time-difference (NLTD) observa-
tion values. We select a satellite as the reference satellite
and other satellites as nonreference satellites. Then, ATS
observations are obtained by satellite differences, namely,
the differences between the SFTD observations of the refer-
ence satellite and the NLTD observations of each nonrefer-
ence satellite. If a cycle slip or an outlier occurs in the
reference satellite, the ATS observations corresponding to
the reference satellite will be corrupted, and thus, the cor-
rection values of the ATS observations will be significantly
enlarged. To detect cycle slips in all satellites, the EEM
selects each satellite as the reference satellite and builds
the corresponding equation group. The EEM solves these
observation equation groups according to the weighted
least-squares adjustment (LSA) criterion and obtains the
correction values of the ATS observations. The EEM uses
these correction values to construct χ2 corresponding to

2 Journal of Sensors



different equation groups and carries out a chi-square dis-
tribution test for these values of χ2. If cycle slips occur in
several satellites, the χ2 values that do not obey the chi-
square distribution exceed one. Therefore, the satellite cor-
responding to the maximum χ2 will be marked provision-
ally as a cycle slip satellite. Then, the EEM iteratively
processes the other satellites. Based on the LSA criterion,
cycle slips and outliers can be estimated by the float solu-
tion of changes in the ambiguities of cycle slip satellites.

In this section, NLTD and ATS observations will be
introduced first, and then, the principle of the EEM, namely,
the enhancement of cycle slip errors and the cycle slip detec-
tion strategy, will be explained.

2.1. Time-Difference Observation Equation. Narrow-lane car-
rier phase observations can be expressed as Ln = ð f1L1 + f2
L2Þ/ð f1 + f2Þ, where L1 and L2 are GPS single-frequency car-
rier phase observations and f1 and f2 are the frequencies cor-
responding to carrier phase observations L1 and L2,
respectively. The time-difference equation of Ln can be given
as [1, 15]

Lkn i,i+1ð Þ = Lkn i+1ð Þ − Lkn ið Þ = ρki+1 − ρki + Cδr i+1ð Þ − Cδr ið Þ

− Cδks i+1ð Þ + Cδks ið Þ + ΔNk
n i,i+1ð Þ + Ikn i,i+1ð Þ + εk,

ð1Þ

where Lknði,i+1Þ represents the NLTD observation of satellite k
and is constructed by the difference in Ln between epochs i + 1
and i; Lknði+1Þ is the narrow-lane observation of satellite k in epoch
i + 1; LknðiÞ is the narrow-lane observation in epoch i; ρki+1 is the
geometric distance from the receiver to satellite k in epoch i +
1; ρki is the geometric distance from the receiver to satellite k in
epoch i; δrði+1Þ is the receiver clock error in epoch i + 1; δrðiÞ is
the receiver clock error in epoch i; δksði+1Þ is the satellite clock

error in epoch i + 1; δksðiÞ is the satellite clock error in epoch i;

C is the speed of light; ΔNk
nði,i+1Þ is the noise difference between

the ambiguities of Lknði+1Þ and L
k
nðiÞ; I

k
nði,i+1Þ is the variation in the

IOD between epochs i + 1 and i; and εk represents the noise in
the observation data. The time-difference equation can eliminate
the ambiguity parameter. If there is no cycle slip or outlier, the
value of ΔNk

nði,i+1Þ is 0. ρ
k
i+1 is calculated as follows:

where ΔXði+1,iÞ, ΔY ði+1,iÞ, and ΔZði+1,iÞ are the differences in
the corresponding coordinates of the LEO satellite between
adjacent epochs; Xi, Yi, and Zi are the LEO satellite coordi-
nates in epoch i; Xk

Sði+1Þ, Y
k
Sði+1Þ, and Zk

Sði+1Þ are the GPS sat-
ellite coordinates in epoch i + 1; and ρki is similar to ρki+1.

2.2. ATS Observation Equation. Using L1 and Ln as examples,
according to formula (1), the SFTD and NLTD observations
are given as Lbc1ði,i+1Þ and Lknði,i+1Þ, respectively. The superscript
bc represents the reference satellite. The ATS observation
equation is given as

L k,bcð Þ
n1 i,i+1ð Þ = Lkn i,i+1ð Þ − Lbc1 i,i+1ð Þ = ρki,i+1ð Þ − ρbci,i+1ð Þ − Cδks i,i+1ð Þ

+ Cδbcs i,i+1ð Þ + ΔN k,bcð Þ
n1 i,i+1ð Þ + I k,bcð Þ

n1 i,i+1ð Þ + ε k,bcð Þ,
ð3Þ

where Lðk,bcÞn1ði,i+1Þ represents the ATS observation; ρkði,i+1Þ is the

difference between ρki+1 and ρ
k
i (ρ

k
i+1 − ρki ) in nonreference sat-

ellite k; ρbcði,i+1Þ is the difference between ρbci+1 and ρbci
(ρbci+1 − ρbci ) in reference satellite bc; δksði,i+1Þ is the difference

between δksði+1Þ and δksðiÞ (δ
k
sði+1Þ − δksðiÞ); δ

bc
sði,i+1Þ is the differ-

ence between δbcsði+1Þ and δbcsðiÞ (δbcsði+1Þ − δbcsðiÞ); ΔN
ðk,bcÞ
n1ði,i+1Þ is

the difference between ΔNk
nði,i+1Þ and ΔNbc

1ði,i+1Þ

(ΔNk
nði,i+1Þ − ΔNbc

1ði,i+1Þ); and Iðk,bcÞn1ði,i+1Þ is the difference between

Iknði,i+1Þ and Ibc1ði,i+1Þ (I
k
nði,i+1Þ − Ibc1ði,i+1Þ).

Supposing that there are N satellites in an epoch, the sat-
ellite corresponding to Lbc1ði,i+1Þ is called the reference satellite,

and the satellite corresponding to Lknði,i+1Þð0 < k ≤N , k ≠ bcÞ
is called the nonreference satellite. N − 1 ATS observations
can be constructed by combining the reference and nonrefer-
ence satellites. The observation equation group for N − 1
ATS observations is established as follows [1]:

V =AdΔX − l, ð4Þ

where A is the ðN − 1Þ × 3 coefficient matrix; l is the ðN − 1
Þ × 1 constant matrix; V is the correction vector of ATS
observations to be solved; and dΔX =
½dΔXði+1,iÞ dΔY ði+1,iÞ dΔZði+1,iÞ�T is the parameter vector to
be solved. The expression A is

A =

Xi + ΔX i+1,ið Þ − X1
S i+1ð Þ

ρ1i+1

Yi + ΔY i+1,ið Þ − Y1
S i+1ð Þ

ρ1i+1

Zi + ΔZ i+1,ið Þ − Z1
S i+1ð Þ

ρ1i+1

⋮ ⋮ ⋮

Xi + ΔX i+1,ið Þ − XN−1
S i+1ð Þ

ρN−1
i+1

Yi + ΔY i+1,ið Þ − YN−1
S i+1ð Þ

ρN−1
i+1

Zi + ΔZ i+1,ið Þ − ZN−1
S i+1ð Þ

ρN−1
i+1

2
6666664

3
7777775
:

ð5Þ

ρki+1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi + ΔX i+1,ið Þ − Xk

S i+1ð Þ
� �2

+ Yi + ΔY i+1,ið Þ − Yk
S i+1ð Þ

� �2
+ Zi + ΔZ i+1,ið Þ − Zk

S i+1ð Þ
� �2

r
, ð2Þ
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The expression l is

l =
ρ1i,i+1ð Þ − ρbci,i+1ð Þ − Cδ1s i,i+1ð Þ + Cδbcs i,i+1ð Þ − L 1,bcð Þ

n1 i,i+1ð Þ
⋮

ρN−1
i,i+1ð Þ − ρbci,i+1ð Þ − CδN−1

s i,i+1ð Þ + Cδbcs i,i+1ð Þ − L N−1,bcð Þ
n1 i,i+1ð Þ

2
6664

3
7775:

ð6Þ

Supposing P is the weight matrix of the ATS observa-
tions, then, according to the LSA criterion [16], dΔX can be
expressed as

dΔX = ATPA
� �−1ATPl: ð7Þ

The initial values of Xi, Yi, and Zi and of ΔXði+1,iÞ, Δ
Y ði+1,iÞ, and ΔZði+1,iÞ can be obtained by single-point posi-
tioning (SPP) using ionosphere-free pseudorange observa-
tions. Xk

Sði+1Þ, Y
k
Sði+1Þ, and Zk

Sði+1Þ are obtained by the precise
ephemeris provided by the Center for Orbit Determination
in Europe (CODE) through Lagrange interpolation. The sat-
ellite clock delays δksði,i+1Þ and δbcsði,i+1Þ are obtained by the pre-
cise clock error provided by the CODE through Lagrange
interpolation [17, 18]. If there is no cycle slip, the theoretical

value of ΔNðk,bcÞ
n1ði,i+1Þ is 0. I

ðk,bcÞ
n1ði,i+1Þ, which is the variation in the

IOD, is very smooth in LEO satellites when the elevation
angle is larger than zero [19, 20]; however, when the sample
interval is 1 s or higher, the variation in the IOD is distributed
mainly in the range of ±0:05 cycles at low elevation angles.
Hence, the variation in the IOD can be ignored (details are
presented in Section 3.3).

2.3. Theory of Enhanced Cycle Slip Error. For convenience of
discussion, it is assumed that the components of the observa-
tion correction vector V are independent from each other. If
no cycle slip occurs, V conforms to the multivariate normal
distribution [1, 21], and the expectation of V is EðVÞ = 0. If
only the L1 observations of the reference satellites have cycle
slips or outliers, V will obey a multivariate skewed distribu-
tion, and the expectation of V is

E Vð Þ = ΔN 1,bcð Þ
n1 i,i+1ð Þ ⋯ ΔN N−1,bcð Þ

n1 i,i+1ð Þ
h iT

: ð8Þ

If cycle slips or outliers occur in nonreference satellite k,
the expectation of V is

E Vð Þ = 0 ⋯ 0 N k,bcð Þ
n1 i,i+1ð Þ 0 ⋯ 0

h iT
: ð9Þ

According to formula (8), the EEM expands the cycle
slips and outlier errors of the reference satellites to affect all
the observations so that no ATS observations obey a normal
distribution. In this case, the occurrence of cycle slips in the

epoch can be effectively detected by using V to construct χ2

and conducting a chi-square distribution test. According to
formula (9), if the selected reference satellite is not a cycle slip
satellite, the corresponding χ2 may not obey a chi-square dis-
tribution, but its value is less than the χ2 value corresponding
to the cycle slip satellite as the reference satellite. The χ2 sta-
tistics are constructed as follows:

χ2
k n − 3ð Þ = VTPV

σ20
: ð10Þ

The original hypothesis and the alternative hypothesis are

H0 : χ
2
k n − 3ð Þ ≤ χ2

α,
H1 : χ

2
k n − 3ð Þ > χ2

α,

(
ð11Þ

where σ0 is the prior standard deviation (STD) of V; α is the
significance level; and H0 and H1 are the original hypothesis
and the alternative hypothesis, respectively. When χ2

kðn − 3Þ
meets the condition ofH0, no cycle slip is found in this epoch.
Otherwise, the alternative hypothesisH1 is accepted; i.e., cycle
slip occurs in this epoch.

Formula (10) shows that the selection of the prior σ20
value is the key to establishing χ2. We find that σ0 is affected
by the sampling interval [22–24]. The value of σ0 is closely
related to the data sampling interval and fluctuates greatly,
so it should not be set as a fixed prior value. Therefore, an
automatic method to select σ0 is given here: supposing the
current epoch is i, the mean prior STD from the initial epoch

to epoch i − 1 is σi−10 , and the variance of σi−10 is σ2
σi−10

. The for-

mula for choosing reasonable values of σi
0 and σ2

σi0
for epoch

i + 1 is as follows:

σi0 = σi−1
0 + 1

i
σi0 − σi−10

� �
, ð12Þ

σ2
σi0
= σ2

σi−10
+ 1

i
σi0 − σi−10

� �2
− σ2

σi−10

� �
: ð13Þ

From σi−10 and σ2
σi−10

of epoch i − 1, combined with the

PauTa criterion, the σi0 of epoch i can be detected:

σi0 − σi−10

			 			 < 3σ2
σi−10

: ð14Þ

If (13) is true, epoch i + 1 can use σi0 as the prior STD;

otherwise, epoch i + 1 still uses σi−1
0 as the prior STD.

2.4. Novel Method for Cycle Slip Detection and Repair. To
determine cycle slips for satellites in epoch i + 1, the specific
flowchart of the novel cycle slip detection method is given
in Figure 1. The corresponding procedures are as follows:
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(1) Supposing that there are N satellites in adjacent
epochs, equation (4) is used to construct N observa-
tion equation groups. Each group has N − 1 observa-
tion equations and corresponds to a reference
satellite skð0 < k ≤NÞ

(2) According to equation (7), N observation equation
groups are solved to obtain N observation correction
vectors. According to equation (10), these N vectors
are used to construct N chi-square values χ2

kðk = 1,

⋯,NÞ. The subscript k represents the chi-square
value corresponding to reference satellite sk
(a) If only a single χ2

k value does not obey a chi-
square distribution, provisionally mark sk as a
cycle slip satellite. Move to step (4)

(b) If more than one χ2
k value fails to obey a chi-

square distribution, provisionally mark the satel-
lite that corresponds to the maximum χ2

k value as

Select sk as the reference

Obeys a chi-square
distribution?

array by size

Yes

No

Yes

No

and the corresponding cycle 

slip 

Yes

The satellite 

corresponding to the 

marked as a cycle 

slip satellite and is no 

longer involved in 

the cycle slip
detection

No

End

Establish the observation 

k = k+1

k≤N

N = N-1

k = 1

maximum χ2 is

Store the satellite 

corresponding to χ2 into list 

List is empty?

Calculate the phase ambiguity

equation V = AdX‑l

Calculate V and perform a

chi-square distribution test

satellite (0<k≤N)

Figure 1: Cycle slip detection algorithm.
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the cycle slip satellite and eliminate the satellite.
Set N =N − 1. Move to step (1)

(c) If N = 4, move to step (3)

(3) If all cycle slip satellites have not been exactly
marked, the normal satellites will be eliminated until
4 satellites remain. Considering this extreme condi-
tion, a more robust detection strategy is given

(a) Initialize k = 1; then, satellite Skð0 < k ≤NÞ can be
temporarily eliminated. According to equations
(4) and (10), other satellites can be used to estab-
lish new values of χ2

k. Renew kðk = 2,⋯,NÞ, and
then, obtain the corresponding χ2

k

(b) Select the satellite corresponding to the mini-
mum χ2 as a cycle slip satellite. SetN =N − 1.
Move to step (a) until all cycle slips have been
marked

(4) These cycle slips are marked as unknown parameters.
These parameters can be calculated according to the
float solution of changes in the ambiguities of cycle
slip satellites [25, 26]. Supposing that cycle slip occurs
only in satellite k , the new equation groups can be
expressed as

V =AdΔX +CkΔXΔN − l, ð15Þ

where Ck = 0 ⋯ 1 ⋯ 0½ �T is the ðN − 1Þ × 1 coeffi-

cient matrix and ΔXΔN is an unknown parameter of Δ

Nðk,bcÞ
ði,i+1Þ. ΔN

ðk,bcÞ
ði,i+1Þ can be directly used to calculate ΔN1 or Δ

N2. All of the unknown parameters can be given as

dX
ΔXΔN

" #
=

ATPA ATPC
CTPA CTPC

" #−1 ATPl
CTPl

" #
: ð16Þ

ΔXΔN can be solved as

ΔXΔN =QΔNΔNu, ð17Þ

Q−1
ΔNΔN = CTPC − CTPA ATPA

� �−1ATPC, ð18Þ

u =CTPl − CTPA ATPA
� �−1ATPl: ð19Þ

Table 3: Results of detecting and repairing continuous cycle slips in
G01.

Epoch Simulated cycle slip pairs (L1, L2) New method

300 (1, 1) (1.103, 1.096)

301 (1, 1) (1.096, 1.019)

302 (1, 1) (0.901, 1.000)

303 (9, 7) (8.996, 6.892)

304 (9, 7) (8.808, 6.993)

Table 1: Data source details.

Type of data Releasing agency Site of download Data description

Swarm-A satellite-borne GPS observations ESA https://swarm-diss.eo.esa.int RINEX 3.0, sampling interval (1 s)

GPS satellite precise ephemeris CODE http://ftp.aiub.unibe.ch/CODE/2018/ Sampling interval (15min)

GPS satellite precision clock error CODE http://ftp.aiub.unibe.ch/CODE/2018/ Sampling interval (30 s)

Table 2: Results of cycle slip detection and repair by two methods for G01.

Epoch Slip (L1, L2) FBMWA and TurboEdit EEM
Cycle slip detectable Cycle slip repairable
TurboEdit EEM TurboEdit EEM

60 (9, 7) (8.991, 6.991) (8.986, 6.991) Yes Yes Yes Yes

120 (6, 6) (5.999, 5.999) (6.006, 6.014) Yes Yes Yes Yes

180 (5, 5) (5.048, 5.048) (5.004, 5.014) Yes Yes Yes Yes

240 (3, 4) (3.027, 4.027) (3.018, 4.030) Yes Yes Yes Yes

300 (4, 3) (3.988, 2.988) (3.997, 2.996) Yes Yes Yes Yes

360 (1, 0) (1.010, 0.010) (0.998, 0.007) Yes Yes Yes Yes

410 (1, 1) (-3.548, 2.548) (1.010, 1.021) Yes Yes No Yes

420 (1, 1) (0.988, 0.988) (1.006, 0.987) Yes Yes Yes Yes

480 (77, 60) (77.042, 60.042) (76.986, 59.984) Yes Yes Yes Yes

520 (4, 3) (8.580, 6.580) (4.019, 3.033) Yes Yes No Yes

660 (3, 4) (2.971, 3.971) (3.014, 4.006) Yes Yes Yes Yes

670 (5, 5) (9.454, 8.454) (5.035, 5.015) Yes Yes No Yes
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The cofactor matrix of unknown parameters can be given
as

QXX =
ATPA ATPC
CTPA CTPC

" #−1

: ð20Þ

QXX is used to divide cycle slips and outliers.
While the float solution of a cycle slip is estimated, fixing

the cycle slip as an integer is important. The LAMBDA
method is generally adopted to round cycle slips to the near-
est integer [12, 27]. However, as shown in (17), the accuracy
of ΔXΔN is not affected by pseudorange observations. There-
fore, the cycle slip can be accurately rounded to the nearest
integer. We use the STD values of the float solutions to dis-

tinguish outliers and cycle slips. The detection formula is
written as

ΔXΔN − round ΔXΔNð Þj j < 3σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QΔNΔN

p
, ð21Þ

where QΔNΔN is the cofactor of ΔXΔN in QXX . On the one
hand, while (21) is true, round (ΔXΔN) can be viewed as a
cycle slip. On the other hand, if (21) is false, the satellite cor-
responding to ΔXΔN will be marked as an outlier satellite.

(5) There is a correlation between the ATS observation
values, and the corresponding prior weight matrix P
is no longer a diagonal matrix. Therefore, P cannot
be simply defined as a unit matrix [28]. The strategy
for processing P is given below:
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Figure 2: Elevation angles and variations in the IOD for (a) G01, (b) G08, (c) G15, and (d) G17 on DOY 145 of 2018.
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(a) P is a unit matrix in the initial epoch P = I
(b) The prior cofactor matrix can be given asQ = P−1

(c) According to the formula Qvv =Q −AðATPAÞ−1
AT , calculate the cofactor matrix of V

(d) According to the formula P =Qvv
−1, calculate the

posterior weight matrix and use it as the prior
weight matrix of the next epoch

(e) Use equations (12), (13), and (14) to renew the
prior STD

It should be mentioned that the validity of the EEM
depends on the quality of observations in the present epoch.
If the number of satellites without cycle slips is less than 5, the

EEM is not valid. Therefore, to detect and repair cycle slips
more robustly, the EEM can be combined with other
methods to address cycle slips.

3. Simulated Case Study

The case data are taken from the onboard GPS receiver of the
Swarm-A satellite provided by the European Space Agency
(ESA). The precise GPS ephemeris with a 15min sampling
interval and the precise satellite clock error file with a 30 s
sampling interval are provided by the CODE. The date on
which the Swarm-A satellite data were acquired is DOY 145
of 2018 (GPS time 2018:05:25), and the sampling interval is
1 s. Table 1 lists the detailed web addresses of the data
sources.
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Figure 3: Elevation angles, ΔN1, and ΔN2 for (a, b) G01, (c, d) G08, (e, f) G15, and (g, h) G17 on DOY 145 of 2018.
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The certain times at which the observation data of a sat-
ellite are acquired are regarded as observation satellite
epochs. A complete observation satellite epoch includes car-
rier phase observations (L1 and L2) and pseudorange obser-
vations (P1 and P2). Incomplete observation satellite epochs
are eliminated. On DOY 145 of 2018, Swarm-A had 684087
observation satellite epochs. Complete observation satellite
epochs account for 97.6% of the total. This means that the
observation results of Swarm-A on DOY 145 are relatively
complete and can be used as test data.

3.1. Special Cycle Slip Pair Detection and Repair. To test the
validity of the new method, from epoch 60 (GPS time
2018:05:25:00:01:00) to epoch 670 (GPS time
2018:05:25:00:11:10), some special simulated cycle slip pairs
are inserted into satellite G01. Table 2 shows the distribution
of the simulated cycle slips and the detection and repair
results. The detection results indicate that these special cycle
slip pairs can be detected by the EEM and by the FBMWA
and TurboEdit methods. On the one hand, for these cycle slip
pairs inserted every 30 epochs, the noise in the pseudorange
observations is effectively smoothed by the FBMWA algo-
rithm. However, several repair errors occur in epochs 410,
520, and 670. The size of the moving window is 25 seconds
[4]. It may be that the short size of the moving window is
not enough to reduce the noise level in the pseudorange
observations. On the other hand, the EEM is sensitive to spe-
cial cycle slip pairs such as (1, 1), (3, 4), and (9, 7). According
to equation (17), these simulated cycle slip pairs can be
repaired well. These estimated cycle slip values are quite close
to the simulated cycle slips. This is because equation (17)
does not use pseudorange observations to repair cycle slips.
As a result, these cycle slips can be accurately rounded to
the nearest integer. Therefore, combining the EEM with the

FBMWA and TurboEdit algorithms is more robust at pro-
cessing cycle slips than using any of these methods alone.

To verify the ability of the EEM to detect and repair con-
tinuous cycle slips from epoch 300 (GPS time
2018:05:25:00:05:00) to epoch 304, continuous cycle slips
are inserted into G01. Table 3 lists the detection and repair
results. The results show that the EEM algorithm can detect
and repair cycle slips that occur in continuous epochs.

3.2. Variation in the Ionospheric Delay. The ionospheric
delay (IOD) commonly varies quickly in LEO satellites, as
shown in previous studies [4, 14]. However, rapid variation
in the IOD is not always observed when the elevation angle
is larger than zero [19, 20]. Generally, onboard GPS receivers
can provide a high sampling interval, such as 1 s [29–31].
Therefore, a significant question is raised as to whether the
variation in the IOD can be neglected in the processing of
cycle slips for LEO satellites with a high sampling interval
(1 s) and a low elevation angle. To solve this question, we
use a geometry-free linear combination to assess the varia-
tion in the IOD [20] and use equation (17) to estimate ΔN1
and ΔN2. Figures 2(a)–2(d) show the variations in the IOD
(sampling interval: 1 s). Figures 3(a)–3(h) show the varia-
tions in ΔN1 and ΔN2. As these figures show, we can reach
several conclusions. First, the ambiguity and IOD vary slowly
when the elevation angle is larger than 10°. These variations
are distributed mainly in the range of ±0:05 cycles. Second,
the maximum variation is lower than 0.1 cycles when the ele-
vation angle approaches zero. This finding confirms that the
IOD variation is stable. Finally, the variations in ΔN1 and Δ
N2 are significantly small because the estimates of ΔN1 and
ΔN2 are not affected by pseudorange noise, IOD variations,
or other errors, even at low elevation angles. These phenom-
ena suggest that (1) the variations in the ambiguity and IOD
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Figure 4: Distribution of simulated cycle slip pairs at an interval of every 30 epochs.
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obey a normal distribution and that (2) the variation in the
IOD does not obviously corrupt time-difference carrier phase
observations. Hence, the variation in the IOD of time-
difference carrier phase observations in equations (3) and
(17) can be ignored for the proposed cycle slip detection
and repair method.

To investigate the performance of the proposed method
at low elevation angles, we select G01 and G17 as examples
(sampling interval: 1 s). From epoch 360 (GPS time
2018:05:25:00:01:00) to epoch 930 (GPS time
2018:05:25:00:15:30), 20 pairs of the simulated cycle slip pair
(9, 7) are added to G01. The elevation angles in the period
from epoch 600 to epoch 930 are all lower than 15°. From
epoch 360 to epoch 570 (GPS time 2018:05:25:00:9:30), 8
pairs of the simulated cycle slip pair (1, 1) are added to
G17. The elevation angles in the period from epoch 360 to
epoch 570 are all lower than 15°. These cycle slip pairs are
described in Figures 4(a) and 4(b).

The cycle slip repair results for G01 and G17 are shown in
Figures 5(a)–5(f). In each plot, the values of ΔN and the var-
iation in the elevation angle are given. To visualize the results
better, values of ΔN larger than 1.2 cycles were set as 1.2
cycles. These cycle slip epochs are indicated by vertical lines.

All simulated cycle slip pairs (9, 7) and (1, 1) in G01 and G17
were detected and repaired. As shown in Figures 5(e) and 5(f),
in the simulated cycle slip epochs, the values of ΔN1 and ΔN2
are close to the simulated cycle slip pair (1, 1). This result ver-
ifies that these ΔN can be easily rounded to their nearest
integers.

3.3. Standard Deviation of the Observation Correction Vector.
Constructing χ2 requires the prior STD of the observation
correction vector (V). To study the distribution of the STD,
the STD values corresponding to each epoch and reference
satellite are calculated for the Swarm-A observation data on
DOY 145 according to sampling intervals of 1 s, 5 s, 10 s,
15 s, 30 s, and 60 s. According to the formula σ0 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VTPV/ðn − 3Þ
p

, the mean posterior STD values corre-
sponding to different reference satellites in each epoch are
calculated [1]. The statistical results related to the posterior
STD are listed in Tables 4 and 5, which show that the poste-
rior STD of the observation correction vector under different
reference satellites is closely related to the data sampling
interval, and the value of the posterior STD increases with a
decrease in the sampling interval. At the same sampling
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Figure 5: Elevation angle, ΔN1, and ΔN2 for G01 and G17.
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interval, the mean difference in the posterior STD of the ATS
observations constructed by different reference satellites is
small. The mean difference in the posterior STD between
the sampling intervals of 1 s and 60 s reaches an order of
magnitude. The accuracy of V is better than 5 cm when the
sampling interval of the observation data is higher than or

equal to 15 s, whereas the accuracy of V is less than 5 cm
when the sampling interval of the observation data is less
than or equal to 30 s. This may be because with a decrease
in the sampling interval, the variation in the IOD between
epochs is expanded and cannot be greatly weakened by the
difference between epochs at a low sampling interval [4].
The above data analysis shows that the sensitivity of the
EEM algorithm increases with the increase in the sampling
interval of the observation data, so the algorithm is more
suitable for data acquired with a high sampling frequency.
At the same time, this analysis confirms that formula (12)
should be used to estimate the prior STD.

3.4. Performance of the EEM to Enhance Cycle Slip Errors. To
verify the ability of the EEM to amplify cycle slip errors, a
simulated outlier of 0.5 cycles and a cycle slip of 1 cycle are
inserted into the L1 carrier phase of G11 in the observation
epoch corresponding to GPS time 2018:05:25:00:06:30. Then,
we calculate the χ2 values corresponding to the different

Table 4: STD values of V under different basic satellites (unit: m).

GPS PRN
Sampling interval

1 s 5 s 10 s 15 s 30 s 60 s

G01 0.0029 0.0107 0.0201 0.0290 0.0509 0.0794

G02 0.0027 0.0107 0.0202 0.0296 0.0534 0.0819

G03 0.0027 0.0097 0.0182 0.0264 0.0478 0.0788

G05 0.0028 0.0108 0.0206 0.0301 0.0556 0.0858

G06 0.0026 0.0101 0.0191 0.0277 0.0493 0.0801

G07 0.0028 0.0106 0.0200 0.0292 0.0530 0.0796

G08 0.0029 0.0110 0.0206 0.0293 0.0525 0.0792

G09 0.0028 0.0105 0.0198 0.0287 0.0497 0.0788

G10 0.0032 0.0112 0.0196 0.0280 0.0517 0.0839

G11 0.0029 0.0111 0.0208 0.0302 0.0532 0.0760

G12 0.0027 0.0105 0.0194 0.0281 0.0509 0.0807

G13 0.0028 0.0108 0.0203 0.0295 0.0531 0.0794

G14 0.0026 0.0094 0.0175 0.0251 0.0447 0.0765

G15 0.0032 0.0118 0.0207 0.0297 0.0535 0.0815

G16 0.0027 0.0098 0.0183 0.0266 0.0494 0.0826

G17 0.0028 0.0109 0.0205 0.0295 0.0532 0.0860

G18 0.0030 0.0108 0.0202 0.0292 0.0515 0.0854

G19 0.0028 0.0110 0.0208 0.0303 0.0546 0.0880

G20 0.0036 0.0123 0.0214 0.0302 0.0542 0.0862

G21 0.0031 0.0111 0.0204 0.0296 0.0541 0.0869

G22 0.0029 0.0103 0.0192 0.0279 0.0478 0.0809

G23 0.0027 0.0101 0.0191 0.0278 0.0498 0.0803

G24 0.0031 0.0115 0.0201 0.0285 0.0513 0.0817

G25 0.0027 0.0101 0.0187 0.0271 0.0488 0.0795

G26 0.0027 0.0099 0.0188 0.0273 0.0484 0.0816

G27 0.0030 0.0105 0.0187 0.0267 0.0476 0.0760

G28 0.0030 0.0115 0.0215 0.0309 0.0572 0.0863

G29 0.0030 0.0108 0.0195 0.0281 0.0501 0.0793

G30 0.0028 0.0102 0.0192 0.0279 0.0504 0.0770

G31 0.0026 0.0093 0.0174 0.0252 0.0455 0.0750

G32 0.0030 0.0108 0.0192 0.0269 0.0488 0.0808

Table 5: Statistic results of the STD (unit: m).

Sampling interval
σ0

Max Min Mean

1 s 0.0036 0.0026 0.0029

5 s 0.0123 0.0093 0.0107

10 s 0.0215 0.0174 0.0197

15 s 0.0310 0.0252 0.0285

30 s 0.0573 0.0448 0.0511

60 s 0.0880 0.0750 0.0812

Table 6: Values of χ2 for different basic satellites.

GPS PRN
Value of χ2

No cycle slip Outlier of 0.5 cycles 1 cycle slip

G01 0.27 40.234 64.206

G08 0.27 39.719 62.558

G11 0.27 278.374 443.99

G13 0.381 33.12 52.491

G15 0.739 45.657 62.921

G17 0.273 32.954 52.071

G28 0.4 33.425 53.079

G30 1.149 58.977 79.322
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Figure 6: Values of χ2 for different reference satellites under an
outlier of 0.5 cycles.
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inserted simulated cycle slips and outliers. Table 6 lists the χ2

values. The results show that when G11 is selected as the ref-
erence satellite, its χ2 value is much larger than the values of
the other observation satellites selected as the reference satel-
lite. To obtain experimental results that are more statistically
representative, an outlier of 0.5 cycles is inserted into satellite
G11 every 10 s during the continuous observation epoch
from GPS time 2018:05:25:00:00:20 to 2018:05:25:00:16:00
with a sampling interval of 1 s. Figure 6 shows the χ2 values
for the satellites with inserted and no inserted simulated
values. The results show that when satellite G11 is selected
as the reference satellite with an inserted outlier of 0.5 cycles,
the corresponding χ2 value is greater than the values of the
other reference satellites without inserted simulated outliers.
These results verify that the EEM algorithm can effectively
enlarge the errors caused by small cycle slips and outliers.

4. Conclusion

A method for detecting and repairing onboard GPS receiver
cycle slips is presented. This method combines single-
frequency and narrow-lane observations to construct ATS
observations, which can significantly enlarge the small errors
caused by cycle slips and outliers. By amplifying the influ-
ences caused by cycle slip and outliers, the EEM algorithm
can detect cycle slips more stably than other existing
algorithms.

The sensitivity of the EEM algorithm is evaluated by
inserting simulated cycle slips into different reference satel-
lites. The results show that the EEM, FBMWA, and TurboE-
dit methods have similar repair accuracies for cycle slips.
However, compared with the FBMWA and TurboEdit
methods, the EEM is not affected by pseudorange observa-
tions, which makes up for the shortcomings of the FBMWA
and TurboEdit algorithms. The proposed algorithm is appli-
cable even to observation satellite epochs with continuous
cycle slips and outliers.

The proposed EEM cycle slip detection method can effec-
tively detect and repair cycle slips and outliers and is still
applicable to observation epochs with continuous cycle slips.
However, for low-frequency observation data (sampling
interval less than 30 s), the EEM algorithm cannot eliminate
the impact of variation in the IOD. In addition, the EEM
algorithm depends on the quality of the observation data
from other satellites at the same time. Therefore, to thor-
oughly detect onboard GPS receiver cycle slips, the EEM,
FBMWA, and TurboEdit algorithms should be combined to
process cycle slips simultaneously.

Data Availability

The space-borne GPS observation data used in our work can
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