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Due to the increase of Wireless Sensor Network (WSN) technologies demand, the optimal sensor node deployment is considered as
one of the most important factors that directly affect the network coverage. Most researches in WSNs that solved the problem of
coverage in homogeneous and heterogeneous cases are suffering from many drawbacks such as consumed energy and high cost.
In this paper, we propose an efficient deployment model based on probabilistic sensing model (PSM) and harmony search
algorithm (HSA) to achieve the balance between the network coverage performance and the network cost in a heterogeneous
wireless sensor network (HEWSN). The HSA is used for deployment optimization of HEWSN nodes which makes a balance
between the coverage and financial cost. The PSM is used to solve the overlapping problem among the sensors. The
performance of the proposed model is analyzed in terms of coverage ratio and cost evaluations. The simulation results showed
the capability of the proposed heterogeneous deployment model to achieve maximum coverage and a minimum number of
sensors compared to homogeneous deployment. Furthermore, a comparative study with a meta-heuristic genetic-based
algorithm in HEWSN has also been conducted, and its results confirm the superiority of the proposed model.

1. Introduction

Over the past decade, wireless sensor networks (WSNs) have
become a wealthy research field, providing several new trends
of applications. Nowadays, WSNs are considered an integral
part of the Internet of Things (IoT) systems [1]. WSNs are
set of low-power, low-cost, small size, and multifunctional
sensor nodes that work together to sense the field, perform
data processing, and communicate over AoI wirelessly. Nodes
send the data aggregation to a specific station called sink or
data sink, which is used to send information outside WSN to
the end-user as shown in Figure 1 [2].

Current applications of WSNs include the applications that
use WSN in physical life, such as military, civilian, connected
vehicles, smart cities, smart grids, smart healthcare, networks

of robots, and disaster recovery network civilian. For example,
in the military, theWSN is used for targeting system and battle-
field surveillance. In the civilian application, WSN can monitor
building, traffic, environment, wildlife, security, smart agricul-
ture system, and several other applications [3, 4]. The design
of several WSN applications requires deciding an exact place
of the optimal positions of sensor nodes to be located in AoI [5].

Maximizing the coverage area of the WSN system has
been a current research area of WSN in the last years. Actu-
ally, WSN depends upon coverage of the network that is basi-
cally depending upon the deployment of sensor nodes [6].
The coverage area has several types based on the observed
field such as the barrier coverage (means how can to protect
the area from an intruder), point coverage (means how to
cover a group of points), and full coverage (means that every
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point in the AoI is covered by at least one sensor). In each
coverage type, the quality of each point can be assessed after
the deployment process [7, 8].

The deployment problem of WSN is a critical issue
because it affects both the overall performance and the energy
consumed by the sensors in the whole system [9, 10]. The
deployment scheme is constructed according to many factors
such as application, kind of sensor, and environment of the
sensor [11]. Sensors can be deployed in AoI either determinis-
tically, i.e., planned or randomly [12]. The planned sensor
deployment is applied in many studies. For example, Authors
in [10] proposed a novel algorithm in planned deployment
was called maximal coverage hybrid search algorithm to
achieve maximum coverage with a minimum number of
deployment sensors. However, this type can be used for the
placement of sensor nodes in the small-scale area and is not
practical to cover AoI such as hostile environments and large
regions. The second type of WSN deployment is called
random sensor deployment, which is the most popular
deployment strategy and can be considered in this paper.
Dynamic deployment was used to enhance coverage in WSNs
by redistribution sensor nodes after initial random deploy-
ment [13]. In the same view, for the sensor localization, a
novel localization methods using dynamic deployment, collec-
tion of a novel local search process, and HS algorithm was
used in [14].

Further, the deployment states are divided into four
states: predeployment, initial deployment, postdeployment,
and redeployment. The predeployment and initial deploy-
ment are using the manual placement of the nodes by a
human or a robot or launching them from a plane. The rede-
ployment was used in adding new nodes to the network to
replace some broken. A postdeployment phase is used when
the network topology has been evolved due to a relocation of
nodes [15, 16]. According to the density, a sensor network
deployment could be a sparse or dense deployment in which
low or high number of sensors is used to cover AoI, respec-
tively. The sparse deployment type is used when obtaining
maximum coverage using less number of nodes. The dense
sensor deployment type usually has more number of nodes
in the AoI than required [17].

In general, WSN environments can be categorized as
heterogeneous or homogeneous wireless sensor nodes. The
homogenous wireless sensor nodes include sensors that have
the same sensing range, communication range, and the same
energy. The networks having the sensors which have various
sensing range, communication range, network protocols, or
different power are named heterogeneous sensor nodes.
Heterogeneous sensor deployment has many features, such
as it can obtain a more effective and flexible network. Also,
it can increase network performance and takes into account
reducing the cost of sensor deployment, energy, and commu-
nication [7, 18–20].

Maximum coverage sensor deployment problem pre-
sented with different exact and meta-heuristic algorithms.
The meta-heuristics are most widely used. The harmony
search algorithm is a recent meta-heuristic algorithm which
was invented by [21]. HSA has successfully applied to solve a
wide range of NP-complete optimization problems [22]. It is

inspired by the natural musical performance procedures that
occur when a musician searches for a better state of harmony.
According to [23], HSA hasmany features in comparison with
traditional optimization techniques can be summarized as
follows:

(i) Fewer mathematical requirements (low amount of
computation), free divergence

(ii) HSA may overcome the limitation of GA by consid-
ering the relationship among all decision variables,
whereas the GA only considers the relationship of
only two parents in each enhancement

Therefore, HSA in HEWSN will be a good alternative to
solve the coverage problem. Moreover, it can make a balance
between maximizing the coverage and reduction of both
financial cost and unnecessary energy consumption.

The optimization of random deployment problem is the
critical issue in WSN applications that required the optimiza-
tion of maximum coverage with minimum deployment cost.
The optimization problem for coverage is related to power
saving, network reconfiguration, and cost-minimizing. The
deployment cost of the sensing nodes is the major factor in
WSNs. WSN is a combination of many sensors where's each
sensor node has a limited radion range. Thus, the researcers
in [24] studied the optimum numbers of sensors that can
reduce the network cost and maximize the coverage effi-
ciently.? Although maximum coverage sensor deployment
with minimum cost in WSNs has often been investigated in
many studies [20], the performance of coverage is still unbal-
anced and suffering from many drawbacks such as energy
and financial cost. In addition, research on this problem in
HEWSN has progressed at a slow pace. In several WSN appli-
cations, the constructed nodes are provided with many types
of sensors to provide various sensing services which can be
achieved by heterogeneous sensors only [25]. Moreover, using
an optimal mixture of some inexpensive low capability devices
and some expensive high-capability devices can significantly
enhance the performance and coverage and extend the
duration of a network’s lifetime [20, 26, 27].

In this paper, we consider the problem of maximizing
coverage area in heterogeneous WSN with an optimized
sensor deployment and minimization in sensors overlapping.
The main contribution of this paper is summarized as:

Event

Figure 1: A general architecture for WSN.
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(1) We propose an efficient deployment model in
HEWSN which gives a maximum coverage area with
the optimized number of sensor nodes (network cost)

(2) In this model, we develop the PSM of the homoge-
nous WSN in [11] to minimize the overlapping prob-
lem in HEWSN and explore the ability of the
modified HS algorithm in providing solutions for
HEWSN coverage problems in a way that the optimal
deployment sensor nodes such that the network cost
can be minimized and the coverage requirements can
be satisfied

(3) A modified objective function based on HEWSN
combines coverage ratio, the number of sensor nodes
with different sensing range, and the minimum dis-
tance between sensor nodes is proposed to support
the selection of the optimal number of sensor nodes
and their locations

(4) This model which consists of PSM and HS algorithm
is the first that was used in HEWSN deployment, and
the comparative study is conducted with a homoge-
neous deployment using HS algorithm and a meta-
heuristic genetic-based algorithm in HEWSN using
different performance analysis including maximum
coverage, network cost, and overlapping effect

The rest of the paper is organized as follows. Section 2
introduces the literature reviews. The proposed HEWSN
deployment model and problem definition are described in
detail in Section 3. In Section 4, the experimental results
and comparative study with those of other state-of-the-art
methods are explained in detail. The conclusions of this study
are presented in Section 5.

2. Literature Review

The research works classified the deployment environment
to HEWSN and HOWSN deployments. Actually, most
studies in WSNs have focused on the deployment of many
numbers of inexpensive homogenous sensor devices. How-
ever, in practical settings, it is often suitable to consider
HEWSN deployment that has various capabilities [26].
HEWSN deployment takes into account the reducing costs
of sensor deployment, energy, and communication. In addi-
tion, HEWSN deployment can be covered in a broad area
and can be more efficient than HOWSN deployment.
Authors in [28] tested the complete coverage problem of cir-
cular sensing footprints through various radii by two config-
urations of heterogeneous. In the first case, the best results
are obtained when the sensing radius for one kind of nodes
is approximately half of the others. The second case, includ-
ing sensing cost and optimum coverage density, is obtained
when the sensing radius of one disk is almost about one-
fifth of the other. The results showed that more efficient
coverage can be obtained, and the sensing cost is significantly
minimized of HEWSN deployment as compared to the
HOWSN deployment case. HEWSN deployment acts also a
role in improving the network’s lifetime and coverage of

WSN by extending the network life cycle. The optimal
HEWSN deployment can extend lifetime sensing coverage
by many times as much as with HOWSN deployment. It
takes into account both the initial coverage and the duration
of sensing operation [29]. Authors in [30] introduced math-
ematical models to study the effect of HEWSN deployment on
the network’s coverage and energy consumption using sensors
of different types. The simulation results showed maximizing
coverage and energy consumption. In addition, HEWSN
deployment was also used for increasing network security
[31]. The authors introduced reinforced barrier-coverage with
consideration of HEWSN deployment in various capabilities.
It used this tool to guarantee that any penetration variation
of the intruder is monitored by at least one sensor and to
extend the lifetime of heterogeneous reinforced barriers.

In contrast, there is another kind of sensor called smart
nodes. Smart nodes are deployed according to the distance
information to maximize the coverage and the network
connectivity. Authors in [32] introduced smart nodes to pro-
vide the link establishment between unconnected nodes and
the sink. Simulation results proved that the coverage would
be increased with a limited minimum optimum number of
heterogeneous smart nodes and connectivity. Still, the smart
nodes have some limitations such as an expensive cost.

In HEWSN, authors in [33] used heterogonous sensor
deployment to solve the obstacles of the WSN coverage
problem. They proposed a novel algorithm based on the
circle packing technique. They have confirmed that the
proposed algorithm avoided the obstacle, produced sensor
deployments of broad coverage, and minimized the sensing
range demanded for each inside sensing node for accom-
plishing the packing condition. Authors in [34] used GA to
maximize the coverage in the heterogeneous case by remov-
ing intersection among the nodes. Experimental results
showed that no intersection between the nodes and the
coverage area was maximized. Authors in [35] presented
PSM and an improved GA (IGA) to maximize the coverage
with a number of sensors which have different sensing
ranges. In addition, the definition of the overlapping for the
fitness function includes in these improvements. The algo-
rithm tested on 15 states was constructed for this problem.
The simulation results showed that the proposed algorithm
is effective in all terms of the computational complexity,
stability, and quality of solutions. However, this improved
version of GA is still suffering from high complexity, because
of using many sensors with various sensing radius.

The Particle Swarm Optimization (PSO) algorithm has
been applied to solve optimization problems in WSNs
[20]. Authors in [36] proposed an energy-efficient and light-
weight self-organized distributed greedy heuristic algorithm
to maximize coverage area with a minimal number of
mobile nodes. They used random deployment of nodes with
sufficient node density over two-dimension areas. Simula-
tion results showed the improved performance of the
proposed technique in terms of average displacement of
nodes, the number of computation rounds, and the number
of active nodes. In HEWSN, Song et al. [37] proposed a
distributed coverage control law with mobile sensors and
PSM based on PSO. The methodology was used to minimize
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the coverage cost, as well as communication ranges, and
exceed a threshold. However, they discarded the connectiv-
ity process. In fact, PSO has a high-quality solution, simplic-
ity, and fast convergence. On the other hand, PSO has some
limitations, such as using big amounts of memory which
may limit its implementation to base stations [38].

Ant Colony Optimization (ACO) provided solutions to
problems in HEWSN, such as [39]. The authors proposed a
swarm intelligence based on the ACO method. The method-
ology depended on searching the maximum number of con-
nected covers that achieve both sensing coverage and
network connectivity. Simulation results showed that the
proposed method provided a more approximate, effective,
and efficient way for extending the lifetime of HEWSN. In
the same context, Lin et al. [40] proposed an ACO technique
that can maximize the lifetime of HEWSN. This technique
depended on searching the maximum number of disjoint-
associated covers that satisfy both network connectivity and
sensing coverage. Simulation results approved the effective-
ness and efficiency of the technique and showed that an
ACO is a promising method for extending the HEWSN
lifetime.

Harmony search algorithm (HSA) is a music-based
meta-heuristic algorithm for solving optimization problems.
This algorithm has been proposed to solve several kinds of
problems in the previous decade, generating very effective
and efficient results in WSN. For the coverage problem in
HEWSN, the HS algorithm is not used yet for deployment
optimization in HEWSN, but is used in HOWSN in several
researches. It is more efficient compared to other meta-
heuristic algorithms and traditional techniques that compu-
tationally expensive [23]. HSA is selected to maximize the
coverage and minimize the number of deployed sensors in
WSN. HSA had many providing solutions for WSN prob-
lems. For solving coverage and connectivity, Halim et al.
[41] implemented modified HSA for node deployment pur-
pose and enhancing the coverage. The modified HSA outper-
formed better compared to HSA such as the highest coverage
achieved by modified HSA is 70% while HSA highest cover-
age is 54%. However, it suffers from high energy cost, and the
full coverage is still unreachable. Mohamed et al. [42] exam-
ined a scalable HSA in terms of k-coverage enhancement
algorithm and execution time. The proposed algorithm tried
to improve initial coverage and to achieve the required K
-coverage degree efficiently. Also, the same author in [13]
proposed HSA based on dynamic deployment to maximize
the network coverage and connectivity. Authors in [43] have
proposed the combination of the Markov chain model and
HSA to solve the coverage hole problem by redistribution
mobile nodes after the initial deployment of the static nodes.
The HSA was applied to set the optimal positions of the
added mobile nodes, and the Markov chain model was
applied to illustrate the network schemes. Authors in [44]
also proposed HSA to enhance the connectivity of the non-
uniform density WSNs. The simulation results showed an
increased coverage area of the cluster nodes and network
connectivity significantly.

Maximizing network lifetime and minimizing energy
consumption is another problem solved by HSA in WSN.

Authors in [45] proposed a proper position for the date sink
node that gathers data from whole sensors. Also, they pro-
posed two phases in WSN using the improved HSA; the first
phase is used to achieve a sensor node deployment by making
the sensors power balanced in both k-coverage and con-
nected WSN. The second phase tries to increase the network
lifetime by moving a few of high power consumption mobile
nodes to the nearest locations of low power consumption
ones. Authors in [46] introduced a protocol built on HSA
to cover all of the target areas by adjusting the sensing range
of every sensor node. The results showed decreasing both the
nodes sensing radius and energy consumption. Authors in
[47] introduced both HSA and topology control protocol.
This protocol has many tasks such as learning automata to
set the suitable transition radius of the sensor nodes in a dis-
tributed topology environment. In addition, it is able to sup-
ply the full connectivity in sparse deployment and to extend
the lifetime of the sensor network by keeping the energy con-
sumption least. The simulation results showed the efficiency
of the proposed protocol. Authors in [48] proposed a new
algorithm that is named efficient energy dynamic clustering
based on HSA that orders the network sensors into a suitable
number of clusters. Simulation results showed that the pro-
posed algorithm could achieve an optimal number of clusters
in each round during simulation. Authors in [49] proposed
combining HSA with ACO to improve the performance of
each other. The role of modified HSA is to increase the net-
work lifetime. Authors in [50] proposed an enhanced HSA
in a k-covered and connected WSN. The objective is to
achieve optimal coverage with sensor node deployment and
efficient energy by staying node k-coverage and connectivity
in hotspot areas. On the same idea, Authors in [51] examined
HSA to display a solution of the coverage area targets with at
least both energy consumption and k-sensors in the systems
and compare its results with the PSO algorithm. Simulation
results appeared that the HSA had more control either in
minimizing the whole of sensor turns or in accomplishing k
-coverage and higher convergence rate than PSO. Authors
in [52] proposed a shared-infrastructure deployment prob-
lem technique to maximize the coverage network, and HSA
is adjusted and assigned maximum budget to introduce a
solution for metropolitan WSNs. Authors in [53] proposed
an HSA for choosing the optimal path in WSN to achieve
objective optimization such as reducing the transmitted
power consumption and the network transmission delay.
An improved particle swarm optimization (PSO) combined
with a mutation operator is introduced to search the parking
positions with optimal coverage rate. Then, the genetic algo-
rithm (GA) is adopted to schedule the moving trajectory for
multiple mobile sinks [54].

For minimizing cost, Wang et al. [55] introduced a model
called binary differential evolution harmony search to
achieve many factors such as minimum cost, reliability, and
scalability of industrial WSNs. The simulation results dem-
onstrated that the improved model is efficiently valid and
reliable. Authors in [11] proposed an HSA and compared
their results to GA. The simulation results showed the supe-
riority of HSA on GA for maximizing the network coverage
and minimizing the number of sensor deployment by a factor

4 Journal of Sensors



of 40%. However, it has a higher cost compared to HEWSN.
Sun et al. [56] minimized cost by determining the positions
of the base station, sensor nodes, and relay nodes in both
single-tiered and two-tiered to meet the coverage and
connectivity requirements.

Look closer to what has been so far presented in the
previous studies, we find most studies in WSNs that solved
the problem of coverage in homogeneous case are still suffer-
ing frommany drawbacks such as high consumed energy and
high financial network cost. Furthermore, and another look
at the other meta-heuristic-based solutions for HEWSN pre-
sented in this section, none of them addresses the problem of
finding the optimal number of sensor nodes that can mini-
mize the network cost and at the same time maximize the
network coverage. The HS-based solutions were providing
optimum solutions to different problems in HOWSN, but
were not included in HEWSN coverage problems. Encour-
aged by these finding, the proposed work requires a more
balancer method between maximizing coverage and reducing
unnecessary network cost with an overlapping minimization,
therefore we propose a solution in HEWSN for finding the
optimal number of sensor nodes (i.e., the network cost) in a
way that the optimal location of these sensors can be reached
(i.e., full coverage) using PSM and HS algorithm. (a) Accord-
ing to the three parameters of HSA, Harmony Memory
Considering Rate (HMCR), Pitch Adjusting Rate (PAR),
and Bandwidth (BWrange), the HSA can find the suitable
number of sensor nodes as well as its positions. In addition,
PSM can solve the overlapping problem.

A description of the proposed model and the problem
formulation that is considered in this research is presented
in the next section.

3. HEWSN Deployment Model and
Problem Formulation

This section presents the block diagram of the proposed
HEWSN deployment model, which is divided into four main
steps. The first step overviews the general assumptions and
preliminaries of the AoI initialization in subsection A. In the
second step, the methodology of HEWSN random deploy-
ment is presented in subsection B. In the third step, the deter-
mination of coverage probability based on PSM is introduced
in subsection C. In the last step, the HSA which is considered
the optimization algorithm is presented in subsection D.
Figure 2 shows the block diagram of the proposed model.

3.1. Assumptions and Preliminaries of AoI. The assumption
and preliminaries of AoI are presented as follows:

(i) The AoI has 2-D, width (W), and height (H).

(ii) Two types of nodes with different sensing ranges Rsi
which represent the radius of each sensor node as
given in the following equation:

Rsi
= f i

sensing_range
i

� �
 i = 1 to n, ð1Þ

where f i is the number of different sensing ranges types
(i.e., if sensing range = 10 meter, Rs1

= 10 meter, Rs2
= 5

meter,….etc.).
Uncertainty range represents uncertainty value in the

coverage sensor detection. We assume that its value equal
to half of Rs [57] and is given in the following equation

Ue =
Rsi

2 : ð2Þ

(i) The AoI divided into a number of rows and columns
which are represented in a group of cells

(ii) According to [58, 59], each cell size has the same
dimensions and is set manually based on the sensor’s
sensing range. The number of cells in width and
height of AoI is calculated according to the following
equations, respectively

CellsW_Dim = W
cell_width

����
���� ð3Þ

CellsH_Dim = H
cell_height

����
���� ð4Þ

(iii) Nodes are immobile, i.e., static

The target point is the center of each cell which located at
xth row and yth column as illustrated in Figure 3.

3.2. Problem Formulation

3.2.1. HEWSN Random Deployment. The maximum number
of deployed sensors is equal to the AoI cells. Each sensor
node position in AoI encodes in real number. Each position

Output

Initialization of AoI

HEWSN random deployment

Determination of coverage probability
based on PSM 

Optimization algorithm (HSA)

Im
pr

ov
ise

 n
ew

 
ha

rm
on

y

Best solution (maximum coverage with
optimized deployment sensors)

Figure 2: The block diagram of the proposed model.
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represents both x-axis and y-axis, which is determined under
consideration of the lower and upper boundaries for each
sensing node. The lower boundaries of each sensor node
are shown in the following equations, respectively [11].

lowerxsi = Rsi
−Ue,

lowerysi = Rsi
−Ue,

ð5Þ

where the lowerxsi and lowerysi are lower boundaries of x
-axis and y-axis for every sensor node. The upper boundaries
of each sensor node are defined in the following equations,
respectively:

upperxsi =W − Rsi
−Ue

� �
, ð6Þ

upperysi =H − Rsi
−Ue

� �
, ð7Þ

where W and H are the dimensions of AoI, whereas
upperxsi and upperysi are upper boundaries of x-axis and y
-axis for every sensor node. The aim of boundaries calcula-
tion in both Equations (6) and (7) is to avoid sensing unnec-
essary field by preventing sensor nodes from being close to
the sensing field border, which leads to save up energy.

In this paper, the deployment process is done randomly.
So, the random positions for each sensor node are produced
in the following equations.

xsi = lowerxsi + upperxsi − lowerxsið Þ × rand ðÞ ð8Þ

ysi = lowerysi + upperysi − lowerysi
� �

× rand ðÞ ð9Þ

where rand ðÞ is a random function used to generate
numbers within (0, 1). However, Equations (8) and (9) are
used to generate unlimited random positions. Therefore, we
assume a restricted range between the minimum and the
maximum number of sensors as illustrated in the following
equations [11]:

Min _noS =
W

2 Rsi
+Ue

� � × H

2 Rsi
+Ue

� � , ð10Þ

Max _noS =
W

2 Rsi
−Ue

� � × H

2 Rsi
−Ue

� � , ð11Þ

where Rsi
is the sensing range, Ue is the uncertainty

range, and both were calculated in Equations (1) and (2),
respectively. Doubling the values in Equations (10) and (11)
is necessary to gain the diameter of Rsi

and Ue of each sensor.

3.2.2. Categorization of Coverage Probability Based on PSM.
In WSN, the best signal of the sensor node is based on the
sensing range. There are two popular types of sensing
models, which are used to enhance the sensing range in
WSN. The first model is called Binary Sensing Model
(BSM), and the second model is called Probability Sensing
Model (PSM) [60]. The BSM supposed that the sensor node
can detect each point if the point is within its sensing range.
On the other hand, PSM, which is considered more realistic
and more precise than BSM, takes in practice several
dependent factors instead of the sensing radius that is used
in BSM. These factors have no associated uncertainty in
BSM such as noises and interferences among sensors that
can affect the coverage value negatively and minimize the
signal intensity [61, 62]. The coverage probability of PSM is
shown in Figure 4 and calculated in Equation (12) [60].

Probcov si, tð Þ =

1 if d si, tð Þ ≤ Rsi
−Ue, i = 1 to n,

e−
α1 λ

β1
1:

λ2
β2

+ α2

 !
if Rsi

−Ue < d si, tð Þ < Rsi
+Ue

0 if d si, tð Þ ≥ Rsi
+Ue,

8>>>>><
>>>>>:

,

ð12Þ

where Rsi
and Ue are calculated according to Equations

(1) and (2), whereas d (si, t) is the calculated distance between
the position of the sensor node si and the position of target
point t in the AoI. This distance is considered the real Euclid-
ean distance between si and t in AoI as shown in Equation
(13) [2]: Rs.

d si, tð Þ =Qi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xsi − xtð Þ2 + ysi − ytð Þ2

q� �
, i = 1 to n, ð13Þ

where Qi is the different sensing ranges that used for

0
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30

40

50

10 20 30 40 50

Rs

Rs+Ue Rs−Ue

t

Figure 4: An explanation of probabilistic sensing model.
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Figure 3: Set of target points in the area of interest 50 × 50m2.
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covering the AoI, whereas x and y are the coordinates for
each si and t. The parameters α1, α2, β1, and β2 are represent-
ing the physical characteristics of the sensor unit and are
supposed to be: α1 = 1; α2 = 0; β1 = 1; and β2 = 0:5 for each
type, whereas λ1 and λ2 are considered as input parameters
and calculated by the following equations [57, 62, 63].

λ1 =Ue − Rsi
+ d si ; tð Þ, ð14Þ

λ2 =Ue + Rsi
− d si ; tð Þ: ð15Þ

In PSM, the overlapped region occurs when the target
point t exists in the overlapping region for the set of sensors
Sov . Thus, the probability of overlapping coverage in PSM
would be calculated by the following equation [62].

Probsov tð Þ = 1 −
Y
si∈Sov

e−
α1 × λ1

β1
� �

λ2
β2

+ α2

0
@

1
A, i = 1 to n,

ð16Þ

where si is the sensor type. The ProbsovðtÞ value was
based on a coverage threshold value (Cth) and was divided
into four categories:

(1) If ProbsovðtÞ = 1, the target point is completely
covered as illustrated in Figure 5 in a blue dark circle
(acceptable)

(2) If Cth < ProbsovðtÞ < 1, i.e., the target point is
(partially covered—considered covered), as illus-
trated in Figure 5 in a sky blue circle (acceptable)

(3) If 0 < ProbsovðtÞ < Cth, i.e., the target point is
(partially covered—considered uncovered), as illus-
trated in Figure 5 in a blank circle (rejected)

(4) If ProbsovðtÞ = 0, the target point is completely
uncovered, as illustrated in Figure 5 in a filled circle
(rejected)

3.3. Harmony Search Optimization. In this section, we intro-
duce an engineering approach applied in the design and
development of an algorithm, inspired by the improvisation
process of the musical instruments to find fantastic harmony,
called harmony search algorithm. It has received a great deal
of attention regarding its potential as an optimization
technique for solving discrete and continuous optimization
problems. In HS, harmony parameters are typically used to
create new harmony in each improvisation. The central role
of these parameters is to direct the search toward the most
desirable areas of the search space. These parameters are

(1) Harmony memory size (HMS) representing the total
number of harmonies in the HM

(2) Harmony memory consideration rate (HMCR)
which represents the probability of picking up values
from HM to the variables in the solution vector

(3) Random selection rate (RSR) representing the proba-
bility of randomly chosen feasible values from the

Probsov = 0, not 

Probsov = 1, fully
covered

Cin<Probsov (t) <1

0<Probsov <Cin

0

10

20

30

40

50

covered partially covered
(accepted)

partially covered
(unaccepted)

10 20 30 40 50

Figure 5: Categorization of target points based on the coverage
probability of PSM.
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Generate the initial harmony memory vector,
evaluate each harmony using ObjFun, and

sort the vector accrding to ObjFun

Yes

Yes

Return the best solution vector (harmony)

End

Include x ’ in the HM and exclude the existing xworst.
sort the vectors based‑on their ObjFun values.

Achieve
stopping
criteria?

No

No

Improvise a new harmony vector x based on
HMCR, PAR and RSR.

Evaluate its ObjFun.

Initialize HS algorithm parameters, the AoI
and the objective function ObjFun

ObjFun.(x”) is
better than

ObjFun.(xworst)

Figure 6: Steps of harmony search algorithm.
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range of all possible values to the variables in the
solution vector, formally

(4) Pitch adjusting rate (PAR) representing the probabil-
ity of further adjusting the pitch with neighboring
pitches

(5) The number of improvisations (NI) representing the
number of iterations to be used during the solution
process, or stopping criterion

HS algorithm starts with an initial HM of $n$ harmonies
generated randomly. Each harmony in the harmony memory
represents a potential solution to the problem under consider-
ation. These solution vectors are represented by the number
of sensor node positions which are represented in real numbers.
For HEWSN, the solution vectors are produced from AoI
dimensions randomly and kept in HM. Each harmony in the
harmony memory is evaluated using an objective function.
The objective function used to measure the better quality of
the solution vector is described in Subsection 3.3.1. The harmo-
nies evolve through successive iterations, called improvisations.
During each improvisation, a new harmony is created through
harmony operators. After that, the harmony memory is
updated if the new harmony is better than its worst one. The
procedure continues until the termination condition is satisfied.
When the termination condition is satisfied, the best harmony
obtained is regarded as an optimal or approximate optimal
solution to the problem. Figure 6 shows the optimization steps
of HS, which is presented in detail in the next subsections.

3.3.1. Initialize the Algorithm and Problem Parameters. HS
algorithm parameters that are required to solve the optimiza-
tion problem (i.e., HMS, HMCR, PAR, BW, and NI) are
specified in this step. These parameters are used to improve
the solution vector. The probability of performing HMCR
operation is chosen in such a way so that the inheritance of
existing strings in HM occurs without disruption. Generally,
HMCR rate lies between 0.7 and 0.95. Since PAR occurs
occasionally, it is clear that the probability of performing
PAR operation will be quite low. Usually, the PAR rate lies
between 0.10 and 0.30. Values in these ranges help the
algorithm to strike a balance between exploration and
exploitation.

The objective function (ObjFun) is the most important
function for the optimization algorithms, where the best Obj-

Fun is proved the effectiveness of the optimization algorithm.
The ObjFun can be used to handle each generated solution
vector which includes a group of sensor node positions. For
the present problem, we have to maximize the coverage ratio
of the network and minimize the number of added mobile
nodes to the network, which is defined by the objective func-
tion. In other words, it is employed to scale the fittest of the
positions and number of sensor node deployment. Each sen-
sor node position is presented in real number and occurs at x
th row and yth column. Therefore, to maximize the coverage
and minimize the number of sensors deployment, the objec-
tive function is calculated based on network coverage ratio
(Cratio), HEWSN cost, and the minimum distance (MD).
The objective function is depicted in the following equation.

ObjFun =
1

SensCost

� �
× Cratio × MD, ð17Þ

where the SensCost is defined as the cost of the number of
sensor deployment and is calculated based on the following
equation.

SensCost = HESno −MinnoSð Þ
MaxnoS −MinnoS

, ð18Þ

where HESno is the number of heterogeneous sensor
deployment, and the aim is to be minimized, whereas Max
_noS and Min _noS are calculated using Equations (10) and
(11).

The coverage ratio (Cratio) is used to scale the QoS in the
ObjFun of the proposed algorithm, where the aim is to be
maximized. Cratio is computed by the following equation
[57]:

Cratio =
NEf f

CellsWDim
× CellsHDim

� � , ð19Þ

where NEf f is the number of positions that are covered
adequately and is calculated based on ProbsovðtÞ value in
Equation (16), whereas (CellsWDim

× CellsHDim
) is the dimen-

sions of whole AoI that was calculated in Equations (3) and
(4).

MD is the minimum distance between sensors, where the
aim is to prohibit the unwanted convergence between sensors
that may happen through the construction procedure of the
proposed method, and it is computed in the following
equation.

MD=
MD si, sj

� �
MAX Diagonalð Þ ð20Þ

where the numerator is used to compute the minimum
distance between sensors and is calculated in the following
equation.

MD Si, Sjð Þ = Sni Snj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xsi − xsj
� �2 + ysi − ysj

� �2r !
, ð21Þ

where Sni and Snj are the permutations of sensing range
types for the deployment sensors. xsi and ysi are x-axis and
y-axis of each sensor, respectively. For example, if any study
has two types of sensors with different sensing ranges, the
probabilities of MD will be calculated exponentially such
as 2n. So, the complexity will be increased with increasing
types of sensors with different sensing ranges.

The diagonal means the length of diagonal AoI. So, the
divisor of ObjFun in Equation (20) is used to compute the
diagonal for each type and then selects the largest one to
reach the minimum value of MD. The diagonal for each type
is calculated in the following equation.
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Diagonal =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W − Rsi

−Ue

� �2 + H − Rsi
−Ue

� �2q
, ð22Þ

where W and H are the width and height of the AoI,
whereas Rsi

and Ue are calculated in Equations (1) and (2),
respectively.

3.3.2. Initialize the Harmony Memory. Initialize the HM
matrix ðN ×HMSÞ, where N is the number of decision
variables, and M is HMS. Then fill the HM randomly by
generating the feasible solution vectors. For each decision
variable (si), lowersi ≤ si ≤ uppersi , where lowersi and uppersi
represent the lower and upper boundaries of allowed values,
respectively. Formally, HM and the corresponding fitness
function values are shown as follows:

HM=

x11 x12 ⋯ x1N−1 x1N

x21 x22 ⋯ x2N−1 x2N

⋮ ⋯ ⋯ ⋯ ⋯

xHMS−1
1 xHMS−1

2 ⋯ xHMS−1
N−1 xHMS−1

N

xHMS
1 xHMS

2 ⋯ xHMS
N−1 xHMS

N

2
666666664

3
777777775

⇒
⇒
⇒
⇒
⇒

f X1� �
,

f xX2�,
⋮,

f XHMS−1� �
,

f XHMS� �
,

ð23Þ

where ½xi1xi2 ⋯ xiN−1x
i
N � represents the feasible solution

vector Xi in the harmony memory, and f ðXiÞ represents its
corresponding objective function. The width (N) in Equation
(23) of each solution vector can be modified and allowed each
solution vector to encode a various number of sensors. The
modifying in length grants the ability of HSA to select the
optimal number of sensors as well as its optimal positions.
Thus, to achieve this ability, the proposed work needs calcu-
lating range depending on the given network to avoid the
extra computational demands and the false variable decisions
on the number of nodes as mentioned in Equations (10) and
(11). In addition, the length of each harmony memory vector
represents as HMVlength, will vary between Min _nos and
Max _nos parameters, and is computed by the following
equation.

HMVlength = Min _nos + Maxnos −Minnosð Þ × rand ðÞ ð24Þ

where Min _nos and Max _nos are calculated as Equations
(10) and (11), respectively. The following example explains
the role of HMVlengthon the enhancement of the network
coverage andminimizing the cost of the network in heteroge-
neous case.

Example 1.Assume existence AoI with the size of (50 × 50m2)
and many requirements such as finding the number of the
optimal sensor with optimal positions. For example, two types
of sensor nodes have various sensing range (Rsi

) 10 and 5
meters, respectively. Uncertainty values of Ue are assumed to
be half of Rsi

for each one. Therefore, Min _nos is computed
in Equation (10) and equal to 3 and 11 sensors, respectively,
while Max _nos is calculated in Equation (11) and equal to
25 and 100 sensors, respectively. Thus, the HMVlengthis mod-

ifying between (3 and 100) sensors. Assume one of the har-
mony memory vectors that have 5 node positions and
monitored by 5 sensor nodes:

#; #; 2.4; 5.8 #; #; 12.5; 16.8; #; #; 33.2; 3.4; 15.7; 44.8; #; #;
#; #; 8; 7.2; :::

In the previous vector, the x-axis and y-axis of the first
node are (2.4 and 5.8), the positions of the second node are
(12.5 and 16.8), the positions of the third node are (33.2
and 3.4), the positions of the fourth node are (15.7 and
44.8), and finally, the positions of the fifth node are (8 and
7.2). The positions which signed with “#” are unused
positions and are encoded to make the length of the
HMVlengthto be as the Max _nos. In the end, every harmony
memory vector is generated with a various number of candi-
date sensor node positions. Hence, the proposed ObjFun will
measure and compute the quality of each harmony memory
vector as the quality of the network coverage and cost as
defined in step 1. The unused factor “#” that may exist in
the harmony memory vector is deleted, and the rest of the
components are employed to cover the AoI.

3.3.3. Improvise a New Harmony. A new Harmony
vectorX ′ = ðx1′ x2′⋯ xN′ Þ is generated based on three parame-
ters: memory consideration, pitch adjustment, and random
selection which are modified to matching the WSN nature
as follows.

For each component xi′, pick up the corresponding com-

ponent of xji randomly from any of the values in the specified
HM range ðx1i − xHMS

i Þ with the probability of Phmcr.

xi′←
xi′∈ x′ =

n
x1i , x2i ,⋯ : xHMS

i

�
with prob:HMCR

xi′∈ Xi with prob: 1 −HMCRð Þ

8<
:

9=
;:

ð25Þ

For example, the values of the x-axis ðxsi1, xsi2, xsi3,⋯:,
xsi

HMSÞ and the y-axis ðysi1, ysi2, ysi3,⋯, ysiHMSÞ are selected
from HM randomly and proceed in a similar way for the
remnant components. On the other hand, the values can be
picked randomly from the range of allowed values with the
probability of 1 − Phmcr, where xsi ∈ [lowerxs; upperxs] and
ysi ∈ [lowerys; upperys]. For example, HMCR of 0.95
indicates that the probability of the HS algorithm to choose
the decision variable values from historically stored values
in the HM is 95%, and the probability of selecting a new
random value from the allowed range is (100-95)%.

After the harmony memory considering factor is
completed, change xi′with the probability of Ppar. The pitch
adjustment is applied only if the value is chosen from the
HM. The pitch adjustment procedure is illustrated in the
following equation.

Pitch adj: dec:for xi′←
Yes with prob:PAR,

Nowith prob: 1 − PARð Þ:

( )
,

ð26Þ
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If the pitch adjustment decision for xi′ is yes, then the
small amount bw of changes takes place for pitch adjust-
ments:

xi′← xi′± BWrange ∗ rand ðÞ ð27Þ

where the parameter BWrange is the distance bandwidth
which is used to modify the new node position value. The
change is applied for the values of the x-axis and the y-axis
of the corresponding xi′:

3.3.4. Harmony Memory Update. Evaluate the new harmony
x′ = ðx1′x2′⋯ xN′ Þ by calculating its objective function ObjFun
using Equation (23). If the value of its ObjFun is better than
that of the worst harmony xworst in the HM, x′is included
in the HM, and the existing xworst is excluded from the HM.
Subsequently, the vectors are sorted based-on their ObjFun
values.

3.3.5. Termination Criterion Check. In this step, repeat steps 3
at Subsections 3.3.3 and 4 at Subsection 3.3.4 until the termi-
nation criterion is met. The solution vector in HM that can
achieve maximizing coverage and minimizing the number
of sensors deployment is selected to be the best solution
vector.

4. Experimental Results and Comparative Study

4.1. Simulation Setup. The simulation environment is based
on PSM and HEWSN random deployment using HSA. The
simulations were applied over two different areas in three
scenarios for each one. In the first area, the AoI is designed

to be 50 × 50m2 dimension area which is separated into 25
cells and all results based on 25 sensors as a maximum
number of sensor deployment. In the second area, the AoI
is designed to be 100 × 100m2 dimension area which is
separated into 100 cells and all results based on 50 sensors
as a maximum number of sensors deployment. Most of the
simulation parameters in Table 1 are set according to [57].
The measure of cell in each scenario is set to be 10m, as
mentioned in Figure 3. The sensing range Rs has two types
A and B, where type A is set to be 10m and type B set to be
5m. The uncertainty in sensor detection Re is set to be half
of the sensing range Rs (means 5 and 2.5, respectively). The
coverage threshold Cth is set to be 0.9, whereas the PSM’s
parameters are set to be α1 = 1; α2 = 0; β1 = 1, and β2 = 0:5.

The values of λ1 and λ2 are calculated based on Equations
(14) and (15). In addition, the minimum and maximum
numbers of sensors that achieved the network requirements
are calculated according to Equations (10) and (11),
respectively. Finally, the simulation worked on a computer
that has windows 7, core i5-3470, 8GB RAM, and CPU
3.20GHz. More details about simulation environment
parameters are illustrated in Table 1.

The HMCR and PAR are two fundamental parameters in
HSA. They are used to set the probability of components stored
inHM. If the value of HMCR is extremely high (near 1), almost
all the harmonies are used in the HM. Therefore, typically, we
used HMCR = 90% and the HMS = 30 solution vectors as the
work in [11].

On the other hand, a low PAR with a little value of
bandwidth can slow down the convergence of HSA. How-
ever, a very high PAR with a high-value bandwidth may also
lead to wrong solutions [64]. Thus, the applications usually

Table 1: Simulation parameters.

Parameter Value

Area of interest (AoI)
AoI 1 50 × 50m2

AoI 2 100 × 100m2

Size of each cell 10m

Maximum iterations number (MItr) 60000 iterations

Experiments number
AoI 1 12 runs of each scenario

AoI 2 10 runs of each scenario

Coverage threshold (Cth) 0.9

Parameters describing the sensing nodes.

α1 1

α2 0

β1 1

β2 0.5

Uncertainty range (Ue) 5 and 2.5

Harmony memory size (HMS)
AoI 1 30 vectors

AoI 2 50 vectors

Harmony memory consideration rate (HMCR) 90%

Pitch adjustment rate (PAR) 0.3

Bandwidth distance (BWrange) 0.2

Runs Over 30 runs
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use PAR = 0:1 to 0.5. PAR value = 0.3 which means that the
neighboring value will be chosen with a 30% probability [11].

The proposed model is benchmarked against the baseline
cases of sensor network deployment [11]. Several metrics are
selected to evaluate the efficiency and effectiveness of the
proposed model named coverage ratio, the minimum
number of sensors deployment (network cost), and reducing
the overlap among sensor nodes. The parameters that are
mentioned in Tables 2–5 such as corresponding sensors ratio
ðCorrratio Þ and cost are calculated in Equations (28) and (29).

The coverage ratio (Cratio) was given in Equation (19),
and the corresponding sensors ratio ðCorrratio Þ is calculated
by Equation (28) and depicted in Equation (29).

Corrratio = corresp: No: of sensors ÷MNð Þ × 100, ð28Þ

where the corresponding number of sensors means the
number of deploying sensors, whereas MN means the
maximum number of deploying sensors.

The minimum number of deploying sensors (network
cost) is calculated based on Equation (28).

Cost = Cratio − Corrratio: ð29Þ

4.2. Simulation Results. Three simulation scenarios have been
created to show the performance of the proposed model in
both AoI of size 50 × 50m2 and AoI of size 100 × 100m2.
For comparison purposes, the proposed model in HEWSN
deployment has been simulated, and the simulation results
of HSA in HOWSN deployment have been inserted. The
performance of the proposed model has been evaluated in
three metrics: maximizing coverage, minimizing network
cost, and reducing the overlap of sensor nodes using
MATLAB simulator. The three scenarios of the proposed
model are explained in the following subsections.

4.2.1. Scenarios of the Proposed Model over AoI 1. The
proposed model conducted three scenarios to confirm
the efficiency and effectiveness of the proposed deploy-
ment model for solving the network coverage and cost
problems in WSN. Each scenario executes 12 runs, as
presented in Table 2. One best result of each scenario
was chosen depending on the best minimum number of
HEWSN random deployment to offer an efficient solution
for coverage problem as follows.

(1) Maximizing Coverage of HEWSN Based on HSA. The first
part of the main problem which is investigated is to maximize
the coverage. Each scenario used 25 sensors as the maximum
number of deployed sensors. In the best result of the first sce-
nario, the corresponding number of deploying sensors is 16
out of 25 sensors (8 sensors with sensing range 5m and 8 sen-
sors with sensing range 10m) as illustrated in Figure 7. In the
best result of the second scenario, the proposed model used
less number of sensors, where the corresponding number of
deploying sensors is 18 out of 25 sensors (9 sensors with sens-
ing range 5m and 9 sensors with sensing range 10m) as illus-
trated in Figure 8. Finally, in the best result of the third
scenario, the best corresponding number of deploying sensors
is 17 out of 25 sensors (9 sensors with sensing range 5m and 8
sensors with sensing range 10m) as illustrated in Figure 9.

It is clear from the results shown in Figures 7–9, the
coverage ratio of HSA increases with the decreased number
of sensors. The first best result that is obtained in Figure 7

Table 2: Results of HEWSN deployment based on HSA.

Cell size vs. sensing range
HEWSN deployment 10(10,5)

S1 S2 S3

Number of runs 12 12 12

Maximum number of node sensors (MN) 25 25 25

Best (maximum coverage ratio) 96% 100% 100%

Number of corresponding sensors 16HES = 12HOSð Þ 18HES = 13:5HOSð Þ 17HES = 12:5HOSð Þ
Corresponding sensor ratio 48% 54% 50%

Average of each scenario 88% 92% 94%

Table 3: The best minimum cost of HEWSN deployment based on
HSA.

Cell size versus sensing range
HEWSN deployment

10(10,5)

Maximum number of node sensors 25

Number of corresponding sensors 17HES = 12:5HOS
Best (maximum coverage ratio) 100%

Corresponding sensor ratio 50%

Cost 50%

Table 4: The best result of HEWSN deployment over 100 × 100m2.

Cell size versus sensing range 10(10,5)
Scenarios of AoI 2 S1 S2 S3

Maximum number of node sensors (MN) 50 50 50

Number of runs 10 10 10

Number of corresponding sensors 42 45 49

Best (maximum coverage ratio) 79% 88% 90%

Corresponding sensor ratio 64% 67% 73%

Average of each scenario 69% 76% 82%

Cost 15% 21% 17%
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shows that the coverage of the proposed model was near the
full coverage, where the coverage ratio reached at 96% when
the corresponding number of deploying sensors is 16 sensors
and the corresponding sensor ratio is 48%. In the second
result, the coverage ratio reached 100% and 54% of the corre-
sponding sensor ratio when the corresponding number of

deploying sensors is 18 sensors, as shown in Figure 8. The
third result in Figure 9 shows the best performance of the
proposed model that has an ability to cover all of the targets
and find the optimal positions of the deploying sensor nodes
with a minimum number of sensors. Table 2 summarized the
best results of the three scenarios based on the proposed
model. The average coverage ratio for 12 runs in each sce-
nario was 88%, 92%, and 94%.

(2) Minimizing Cost of HEWSN Based on HSA. The second
part of the main problem, which is also investigated to
minimize the network cost. The number of cells in the AoI 1
is equal to the maximum number of deployed sensors.
Table 3 shows a summary of HEWSN with the best
minimum cost based HSA as follows.

As shown in Table 3, the cost of the best result of
HEWSN deployment was reduced by 50% when the number
of corresponding sensors is equal to 12.5 HOS out of 25
sensors.

4.2.2. Scenarios of the Proposed Model over AoI 2. In this
scenario, the proposed model was investigated to offer an
efficient solution for coverage and cost problems in a broad
area. The cost consideration for the number of sensors
deployment in a small area can be determined, but to cover

Table 5: Results of HEWSN deployment based on GA.

Cell size versus sensing range
HEWSN deployment 10(10,5)

S1 S2 S3 S4 S5

Maximum number of node sensors
(MN)

25 25 25 30 35

Number of runs 12 12 12 12 12

Number of corresponding sensors 20HES = 15HOS 22HES = 16:5HOS 23HES = 17HOS 27HES = 20:5HOS 34HES = 23:5HOS
Best (maximum coverage ratio) 56% 60% 60% 68% 84%

Corresponding sensor ratio 60% 66% 68% 58% 61%

Average of each scenario 44% 50% 55% 60% 67%
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Figure 7: Best result of first scenario in HEWSN deployment with
10m and 5m using 16HES = 12HOS sensors based on HSA.
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Figure 8: Best result of the second scenario in HEWSN deployment
with 10m and 5m using 18HES = 13:5HOS sensors based on HSA.
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Figure 9: Best result of the third scenario in HEWSN deployment
with 10m and 5m using 17HES = 12:5HOS sensors based on HSA.
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the broad area using sensor networks is still necessary and
undetermined. Three scenarios were considered to optimize
the proposed model performance in terms of coverage ratio
and minimum cost over a large scale. These scenarios are
aimed at knowing the ability of the proposed model on both
maximizing the coverage and minimizing the number of
deployed sensors. Table 4 summarized the three scenarios,
and Figure 10 depicts the best result of AoI 2 as follows.

As shown in Table 4, the coverage ratio reached at 90%
when the number of deploying sensors equal to 49 out of
50 sensors. The average of the best scenario was 82%, and
the cost was reduced by 17%.

4.3. Comparative Study. This section presents two compari-
sons, the first comparison between the proposed model and
GA in HEWSN and the second comparison between HSA
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Figure 10: Best result of AoI 100 × 100m2 based on HSA.
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Figure 11: Best result of first scenario in HEWSN deployment with
10m and 5m using 20HES = 15HOS sensors based on GA.
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and GA in HOWSN. Both comparisons have been evaluated
into two metrics, maximizing coverage and minimizing cost
as follows.

4.3.1. Scenarios of Genetic Algorithm (GA). In Genetic Algo-
rithm, the group of solutions is known as chromosomes.
These chromosomes represent a group of sensor node
positions and are stored in population, which is equivalent
to Harmony Memory in Harmony Search. In each genera-
tion of GA, a set of population size chromosomes is known
as offsprings. In our scenarios, a population size is equal to
50, GA terminates after 1,000 generations, and a single point
crossover operator is used with a probability of Pc = ð0:80Þ.

For the mutation operator, if a generated random
number is with a probability of Pm = ð0:025Þ, each gene in
the offspring can be modified using Equation (27). The values
of both Pm and Pc are taken according to the comparison
application in [11].

In the previous section, the simulation results are
executed to investigate the performance of the proposed

model. In this section, three scenarios are introduced in this
simulation using 12 runs. One best result of each scenario
is chosen depending on the best minimum number of
HEWSN random deployment as illustrated in Figures 11–
13. In the best result of the first scenario, the corresponding
number of deploying sensors is 20 out of 25 sensors (10 sen-
sors with sensing range 10m and ten sensors with sensing
range 5m) as illustrated in Figure 11. In the best result of
the second scenario, the corresponding number of deploying
sensors is 22 out of 25 sensors (11 sensors with sensing range
5m and 11 sensors with sensing range 10m) as illustrated in
Figure 12. In the best result of the third scenario, the corre-
sponding number of deploying sensors is 23 out of 25 sensors
(12 sensors with sensing range 5m and 11 sensors with
sensing range 10m) as illustrated in Figure 13.

As shown in Figure 11, the coverage ratio reached at 56%
when the corresponding number of deploying sensors equal to
20 sensors, and the corresponding sensor ratio is 60%. In the
second and the third-best results, the coverage ratio reached
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Figure 13: Best result of the third scenario in HEWSN deployment
with 10m and 5m using 23HES = 17HOS sensors based on GA.
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Figure 16: Best result of HOWSN deployment with 10m using 15
sensors based on HSA.

14 Journal of Sensors



at 60% when the corresponding number of deploying sensors
equal to 22 and 23 and the corresponding sensor ratio equal to
66% and 68% as shown in Figures 12 and 13, respectively.

Moreover, and to be more precise, GA dose did not reach
maximum coverage ratio with a minimum number of sensors
(15 of HOWSN or 17 of HEWSN), but it can be reached at
68% as the best result of the 4th scenario when the corre-
sponding number of deploying sensors equal to 27 and the
maximum number of sensors deployment equal to 30 as
shown in Figure 14. Also, it can be reached at 84% as the best
result of the 5th scenario when the corresponding number of
deploying sensors equal to 34 sensors and the maximum
number of sensor deployment equal to 35 as shown in
Figure 15. Table 5 is summarized the best results of the five
scenarios based on GA.

As shown in Table 5, the best results of the 4th and 5th

scenarios increased with the increasing number of deployed
sensors. The coverage ratio of the 4th scenario reached 68%
when the number of deploying sensors equal to 27. In addi-
tion, it reached 84%, i.e., with increasing 16%, when the num-
ber of deploying sensors identical to 34 sensors as in the 5th

scenario. The average coverage ratio of HEWSN random
deployment in each scenario based on GA was 44%, 50%,
55%, 60%, and 67%, respectively.

4.3.2. The Comparison of the Proposed Model with HSA in
HOWSN. For comparison purpose, Figure 16 in [11] illus-

trated the best simulation result of HOWSN deployment
based on HSA.

As shown in Figure 16, the coverage ratio reached at 100%
when the corresponding number of deploying sensors is 15 out
of 25 sensors with a 60% corresponding sensor ratio. The cost
of HOWSN deployment was reduced by 40%, whereas the
average coverage ratio was around 93% for all results.

Table 6 illustrates the comparison between the proposed
model and both GA and HSA in HEWSN and HOWSN
random deployment, respectively.

As shown in Table 6, the coverage ratio of HEWSN based
GA increases with an increased number of corresponding
deploying sensors. The coverage ratio reached 84% when
the number of corresponding sensors was 34 sensors. In
addition, the cost was reduced by 23%. In other words, GA
can be reached near full coverage when the number of
deploying sensors was more than the number of cells.

In summary, the proposed model introduced the superi-
ority against GA in HEWSN and increased by about 16% and
27% in terms of coverage ratio and cost, respectively. In addi-
tion, the cost of HOWSN based on HSA was reduced by 40%,
whereas the cost of HEWSN deployment was reduced by
50%. Moreover, the coverage ratio of the proposed model
was 94%, whereas it was 93% in HOWSN based on HSA.

4.4. The Impact of Minimum Overlapping on the Proposed
Deployment Model. The third metric is to minimize the over-
lapping coverage area in WSN with nodes having a different
radius. This section illustrates the impact of the decreasing
overlap between sensors that are introduced in the ObjFun
of the proposed model. In fact, the MD operator is defined
to prevent the deployed sensors from being close to each
other and then avoid the network from overlapping problem,
i.e., avoid an extra cost of the unnecessary deployed sensors.
In other words, the coverage ratio is maximized by minimiz-
ing the overlap problem. It is clear that the overlap among
sensors in Figure 9 was low. Each sensor is about the same
distance from the other sensor.

In addition, Figure 9 can be able to obtain the best
network coverage due to all target points were covered with
a minimum network cost. On the other hand, Figure 15 has
the least displacement among sensors, where the number of
sensors that are used to cover the network is higher than that
in Figure 9. It used 34 sensors close to each other and then the
coverage was minimized by around 16% (the rest to reach

Table 6: Best result comparison between HEWSN and HOWSN deployment based on HSA and GA.

Parameters HEWSN (HSA) HEWSN (GA) HOWSN (HSA)

Number of runs Over 30 Over 30 Over 30

Cell size versus sensing range 10(10,5) 10(10,5) 10(10)

Maximum number of sensors 25 35 25

Corresponding sensors 12.5 34HES = 23:5HOSð Þ 15

Best (maximum coverage ratio) 100% 84% 100%

Corresponding sensor ratio 50% 61% 60%

Cost minimization by 50% 23% 40%

Average of (best scenario) 94% 67% 93%
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Figure 17: The impact of overlapping on the best result of the
proposed model.
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maximum coverage 100%). This means that (Figure 15) the
number of demanded sensors to get maximum coverage is
to be around 40 sensors. This extra 23 (the extra numbers
to 17 sensors of best Figure 9) sensors can increase the net-
work cost by around 42% compared to the best result in
Figure 9. Figure 17 shows the impact of overlapping on the
best result of the proposed model.

5. Conclusion

In this paper, we addressed the problem of maximizing the
coverage and minimizing the number of deployment of
sensors in HEWSN using HSA and PSM. One of the main
contributions of our work is to update and reformulate the
equations that are used in PSM for homogeneous wireless
sensor network and to evaluate the proposed deployment
model by comparison with the existing method based on
HSA. The proposed work introduced heterogeneous sensor
network deployment based on the probabilistic sensing
model (PSM) and harmony search algorithm (HSA). PSM
is used to enhance the probability of coverage without
interference. Here, HSA is used for optimizing the maximum
coverage with the minimum number of sensors in HEWSN.
The simulation results and quantitative analysis proved that
the proposed model can provide solutions up to 100% of
the coverage ratio over a small area. Also, it demonstrated
the efficiency and superiority of the proposed algorithm in
HEWSN random deployment with the minimum number
of sensor nodes, where it reduced the network deployment
cost by a factor of 50% with a minimum overlapping.

On the other hand, the proposed work has evaluated the
performance of the proposed algorithmwithHSA inHOWSN
random deployment. The results showed that the proposed
model reduced the deployment cost by a factor of 10% by
comparing with HSA in HOWSN deployment. Our contribu-
tion here is twofold. First, the minimum cost of heterogeneous
sensors for PSM as the maximizing coverage in heterogeneous
wireless sensor network (HEWSN) model has been reformu-
lated, and second, using of HSA and PSM for providing
optimum deployment in HEWSN.

Data Availability

The data (measured data and codes) used to support the
findings of this study are available from the corresponding
author upon request and with the institute’s permission.

Conflicts of Interest

The author declares that they have no competing interests.

Acknowledgments

The authors would like to thank Dr. Osama Moh’d Alia for
his quick responses and valuable guidance to accomplish this
article research.

References

[1] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless
sensor networks towards the internet of things: a survey,” in
19th International Conference, Software, Telecommunications
and Computer Networks (SoftCOM), Split, Croatia, 2011.

[2] O. Zorlu and O. K. Sahingoz, “Increasing the coverage of
homogeneous wireless sensor network by genetic algorithm
based deployment,” in Sixth International Conference, Digital
Information and Communication Technology and its Applica-
tions (DICTAP), Konya, Turkey, July 2016.

[3] S. S. Kashi, “Area coverage of heterogeneous wireless sensor
networks in support of Internet of Things demands,” Comput-
ing, vol. 101, no. 1-23, pp. 363–385, 2019.

[4] J. He, Z. Xing, R. Hu et al., “Directional antenna intelligent
coverage method based on traversal optimization algorithm,”
Computers, Materials & Continua, vol. 60, no. 2, pp. 527–
544, 2019.

[5] A. Ndam Njoya, W. Abdou, A. Dipanda, and E. Tonye, “Opti-
mization of sensor deployment using multi-objective evolu-
tionary algorithms,” Journal of Reliable Intelligent
Environments, vol. 2, no. 4, pp. 209–220, 2016.

[6] S. Kaur and R. Uppal, “Dynamic deployment of homogeneous
sensor nodes using genetic algorithm with maximum cover-
age,” in 2015 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), New Delhi,
India, March 2015.

[7] A. Sangwan and R. P. Singh, “Survey on coverage problems in
wireless sensor networks,”Wireless Personal Communications,
vol. 80, no. 4, pp. 1475–1500, 2015.

[8] M. Rout and R. Roy, “Optimal wireless sensor network infor-
mation coverage using particle swarm optimisation method,”
International Journal of Electronics Letters, vol. 5, no. 4,
pp. 491–499, 2016.

[9] C.-W. Tsai, P.-W. Tsai, J.-S. Pan, and H.-C. Chao, “Metaheur-
istics for the deployment problem of WSN: a review,” Micro-
processors and Microsystems, vol. 39, no. 8, pp. 1305–1317,
2015.

[10] T. S. Panag and J. Dhillon, “Maximal coverage hybrid search
algorithm for deployment in wireless sensor networks,” Wire-
less Networks, vol. 25, no. 2, pp. 637–652, 2019.

[11] O. Moh’d Alia and A. Al-Ajouri, “Maximizing wireless sensor
network coverage with minimum cost using harmony search
algorithm,” IEEE Sensors Journal, vol. 17, no. 3, pp. 882–896,
2017.

[12] D. S. Deif and Y. Gadallah, “Classification of wireless sensor
networks deployment techniques,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 2, pp. 834–855, 2014.

[13] S. M. Mohamed, H. S. Hamza, and I. A. Saroit, “Improving
coverage and connectivity in mobile sensor networks using
harmony search,” in 2014 12th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), Hammamet, Tunisia, May 2014.

[14] D. Manjarres, J. Del Ser, S. Gil-Lopez, M. Vecchio, I. Landa-
Torres, and R. Lopez-Valcarce, “A novel heuristic approach
for distance- and connectivity-based multihop node localiza-
tion in wireless sensor networks,” Soft Computing, vol. 17,
no. 1, pp. 17–28, 2013.

[15] H. Zhang and C. Liu, “A review on node deployment of wire-
less sensor network,” International Journal of Computer Sci-
ence Issues(IJCSI), vol. 9, no. 6, p. 378, 2012.

16 Journal of Sensors



[16] C. Duan, J. Feng, H. Chang, J. Pan, and L. Duan, “Research on
sensor network coverage enhancement based on non-
cooperative games,” Computers, Materials & Continua,
vol. 60, no. 3, pp. 989–1002, 2019.

[17] R. Mulligan and H. M. Ammari, “Coverage in wireless sensor
networks: a survey,” Network protocols and algorithms, vol. 2,
no. 2, pp. 27–53, 2010.

[18] Y. Miao, Y. Wang, and W. J. Xuan, “Hybrid particle swarm
algorithm for minimum exposure path problem in heteroge-
neous wireless sensor network,” International Journal of Wire-
less and Mobile Computing, vol. 8, no. 1, pp. 74–81, 2015.

[19] C.-H. Wu and Y.-C. Chung, “Heterogeneous wireless sensor
network deployment and topology control based on irregular
sensor model,” in International Conference on Grid and Perva-
sive Computing, Lecture Notes in Computer Science, Lecture
Notes in Computer Science, 2007.

[20] J. Wang, J. Chunwei, G. Yu, A. K. Sangaiah, and G.-j. Kim, “A
PSO based energy efficient coverage control algorithm for
wireless sensor networks,” Computers, Materials & Continua,
vol. 56, no. 3, pp. 433–446, 2018.

[21] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuris-
tic optioptimizationorithm: harmony search,” Simulation,
vol. 76, no. 2, pp. 60–68, 2001.

[22] D. Manjarres, I. Landa-Torres, S. Gil-Lopez et al., “A survey on
applications of the harmony search algorithm,” Engineering
Applications of Artificial Intelligence, vol. 26, no. 8, pp. 1818–
1831, 2013.

[23] B. Alatas, “Chaotic harmony search algorithms,” Applied
Mathematics and Computation, vol. 216, no. 9, pp. 2687–
2699, 2010.

[24] H. P. Gupta, Stochastic Coverage and Connectivity in Heteroge-
neous Wireless Sensor Networks, 2014.

[25] M. Karatas, “Optimal deployment of heterogeneous sensor
networks for a hybrid point and barrier coverage application,”
Computer Networks, vol. 132, pp. 129–144, 2018.

[26] J.-J. Lee, B. Krishnamachari, and C.-C. Kuo, “Impact of hetero-
geneous deployment on lifetime sensing coverage in sensor
networks,” in 2004 First Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Net-
works, 2004. IEEE SECON 2004, Santa Clara, CA, USA, USA,
October 2004.

[27] J.-W. Lee and W. Kim, “Design of randomly deployed hetero-
geneous wireless sensor networks by algorithms based on
swarm intelligence,” International Journal of Distributed Sen-
sor Networks, vol. 11, no. 8, 2015.

[28] W. Abbas and X. Koutsoukos, “Efficient complete coverage
through heterogeneous sensing nodes,” IEEE Wireless Com-
munications Letters, vol. 4, no. 1, pp. 14–17, 2015.

[29] S. Hu, J. Han, X. Wei, and Z. Chen, “A multi-hop heteroge-
neous cluster-based optimization algorithm for wireless sensor
networks,” Wireless Networks, vol. 21, no. 1, pp. 57–65, 2015.

[30] A. Imani and M. Eslami, “Effect of heterogeneity on coverage,
energy consumption and connectivity of wireless sensor net-
works,” in 2017 Iranian Conference on Electrical Engineering
(ICEE), Tehran, Iran, May 2017.

[31] H. Kim and J. Ben-Othman, “HeteRBar: construction of hetero-
geneous reinforced barrier in wireless sensor networks,” IEEE
Communications Letters, vol. 21, no. 8, pp. 1859–1862, 2017.

[32] S. Agrawal, L. Diwan, and M. Gupta, Coverage Assessment in
Randomly Deployed Wireless Sensor Networks Via Heteroge-
neous Nodes, Wireless Networks journal, Springer, 2015.

[33] M.-L. Lam and Y.-H. Liu, “Heterogeneous sensor network
deployment using circle packings,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, Roma,
Italy, April 2007.

[34] G. K. Brar and A. K. Virk, “Deployment of nodes for maxi-
mum coverage in heterogeneous wireless sensor network using
genetic algorithm,” International Journal, vol. 2, no. 6, 2014.

[35] D. T. H. Ly, N. T. Hanh, H. T. T. Binh, and N. D. Nghia, “An
improved genetic algorithm for maximaximizing a coverage in
wireless sensor networks,” in Proceedings of the Sixth Interna-
tional Symposium on Information and Communication Tech-
nology,, Hue City, Vietnam, 2015.

[36] D. Saha and A. Das, “Coverage area maximization heteroge-
neous sensor nodes with minimum displacement in mobile
networks,” in IEEE International Conference on Advanced Net-
works and Telecommuncations Systems (ANTS), Kolkata,
India, 2015.

[37] C. Song, L. Liu, G. Feng, and S. Xu, “Coverage control for het-
erogeneous mobile sensor networks on a circle,” Automatica,
vol. 63, pp. 349–358, 2016.

[38] R. V. Kulkarni and G. K. Venayagamoorthy, “Particle swarm
optimization in wireless-sensor networks: a brief survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), vol. 41, no. 2, pp. 262–267, 2011.

[39] M. Akilandeswari and U. Srikanth, “Metaheuristic approach
for maximizing lifetime of heterogeneous wireless sensor net-
works,” in International Conference Computer Communica-
tion and Informatics (ICCCI), United States, 2012.

[40] Y. Lin, J. Zhang, H. S.-H. Chung, W. H. Ip, Y. Li, and Y.-H. Shi,
“An ant colony optioptimizationroach for maximaximizing
lifetime of heterogeneous wireless sensor networks,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), vol. 42, no. 3, pp. 408–420, 2012.

[41] N. Halim, A. Isa, A. Hamid, and I. Isa, “Effect of modified har-
mony search towards the area coverage in wireless sensor net-
work (WSN),” Journal of Telecommunication, Electronic and
Computer Engineering (JTEC), vol. 9, no. 2-13, pp. 51–55, 2017.

[42] S. M. Mohamed, H. S. Hamza, and I. A. Saroit, “Harmony
search-based k-coverage enhancement in wireless sensor net-
works,” International Journal of Computer, Electrical, Automa-
tion, Control and Information Engineering, vol. 9, no. 1,
p. 19924, 2015.

[43] A. Mohsen, W. Aljoby, K. Alenezi, and A. Alenezi, “A robust
harmony search algorithm based Markov model for node
deployment in hybrid wireless sensor networks,” International
Journal of Geomate, vol. 11, no. 27, pp. 2747–2754, 2016.

[44] A. S. Alsaidi, T.-C. Wan, and A. Munther, “Application of har-
mony search optimization algorithm to improve connectivity
in wireless sensor network with non-uniform density,” Journal
of Information Science and Engineering, vol. 31, no. 4,
pp. 1475–1489, 2015.

[45] S. Ebrahimnezhad, H. J. Kamali, and M. E. Moghaddam,
“Extending coverage and lifetime of k-coverage wireless sensor
networks using improved harmony search,” Sensors & Trans-
ducers, vol. 130, no. 7, p. 61, 2011.

[46] A. Nikdel, M. S. Kohshoori, S. M. Jamei, R. B. Ramhormoz,
and I. B. Izeh, “An intelligent and energy efficient area cover-
age protocol for wireless sensor networks,” International Jour-
nal of Grid and Distributed Computing, vol. 4, 2011.

[47] M. Nikravan and S. M. Jameii, “Combining harmony search
and learning automata for topology control in wireless sensor

17Journal of Sensors



networks,” International Journal of Wireless & Mobile Net-
works, vol. 4, no. 6, pp. 87–98, 2012.

[48] O. Moh'd Alia, Z. Shaaban, A. Basheer, A. Al-Ajouri, and
A. Alsswey, “Musicians'-inspired clustering protocol for effi-
cient energy wireless sensor networks,” in Fourth International
Conference on Communications and Networking, ComNet-
2014, Hammamet, Tunisia, March 2014.

[49] Z. Kamaei, H. Bakhshi, and B. Masoumi, “Improved harmony
search algorithm with ant colony Optimization Algorithm to
increase the lifetime of wireless sensor networks,” Interna-
tional Journal of Computer Applications, vol. 120, no. 14,
pp. 6–12, 2015.

[50] S. E. Nezhad, H. J. Kamali, andM. E. Moghaddam, “Solving K-
coverage problem in wireless sensor networks using improved
harmony search,” in 2010 International Conference on Broad-
band, Wireless Computing, Communication and Applications,
Fukuoka, Japan, November 2010.

[51] M. A. Z. Soltani, A. T. Haghighat, H. Rashidi, and T. G. Che-
gini, “A couple of algorithms for k-coverage problem in visual
sensor networks,” in International Conference on Communica-
tion Engineering and Networks, Hong Kong, China, 2011.

[52] I. Landa-Torres, S. Gil-Lopez, J. Del Ser, S. Salcedo-Sanz,
D. Manjarres, and J. A. Portilla-Figueras, “Efficient citywide
planning of open WiFi access networks using novel grouping
harmony searchheuristics,” Engineering Applications of Artifi-
cial Intelligence, vol. 26, no. 3, pp. 1124–1130, 2013.

[53] Z.-R. Peng, H. Yin, H.-T. Dong, H. Li, and A. Pan, “A harmony
search based low-delay and low-energy wireless sensor net-
work,” International Journal of Future Generation Communi-
cation and Networking, vol. 8, no. 2, pp. 21–32, 2015.

[54] J. Wang, Y. Gao, C. Zhou, R. Simon Sherratt, and L. Wang,
“Optimal coverage multi-path scheduling scheme with multi-
ple mobile sinks for WSNs,” Computers, Materials & Con-
tinua, vol. 62, no. 2, pp. 695–711, 2020.

[55] L. Wang, L. An, H.-Q. Ni, W. Ye, P. M. Pardalos, and M.-
R. Fei, “Pareto-based multi-objective node placement of indus-
trial wireless sensor networks using binary differential evolu-
tion harmony search,” Advances in Manufacturing, vol. 4,
no. 1, pp. 66–78, 2016.

[56] Y. Sun and S. Halgamuge, “Minimum-cost heterogeneous
node placement in wireless sensor networks,” IEEE Access,
vol. 7, pp. 14847–14858, 2019.

[57] H. Zainol Abidin and N. M. Din, “Sensor node placement in
wireless sensor network based on territorial predator scent
marking algorithm,” ISRN Sensor Networks, vol. 2013, 7 pages,
2013.

[58] H. Zainol Abidin, N. Din, I. Yassin, H. Omar, N. Radzi, and
S. Sadon, “Sensor node placement in wireless sensor network
using multi-objective territorial predator scent marking algo-
rithm,” Arabian Journal for Science and Engineering, vol. 39,
no. 8, pp. 6317–6325, 2014.

[59] Y. Yoon and Y.-H. Kim, “An efficient genetic algorithm for
maximum coverage deployment in wireless sensor networks,”
IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1473–
1483, 2013.

[60] B. Wang, “Coverage problems in sensor networks: a survey,”
ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 32, 2011.

[61] S. Panov and S. Koceski, “Area coverage in wireless sensor net-
work by using harmony search algorithm,” in 2014 3rd Medi-
terranean Conference on Embedded Computing (MECO),
Budva, Montenegro, June 2014.

[62] Y. Zou and K. Chakrabarty, “Sensor deployment and target
localizationed on virtual forces,” in (2003) IEEE Societies,
INFOCOM 2003. Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications, San Francisco, CA,
USA, April 2003.

[63] X. Wang and S. Wang, “Hierarchical deployment optimization
for wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 7, pp. 1028–1041, 2011.

[64] X.-S. Yang, “Harmony search as a metaheuristic algorithm,” in
Music-Inspired Harmony Search Algorithm, pp. 1–14,
Springer, 2009.

18 Journal of Sensors


	An Efficient Deployment Model for Maximizing Coverage of Heterogeneous Wireless Sensor Network Based on Harmony Search Algorithm
	1. Introduction
	2. Literature Review
	3. HEWSN Deployment Model and Problem Formulation
	3.1. Assumptions and Preliminaries of AoI
	3.2. Problem Formulation
	3.2.1. HEWSN Random Deployment
	3.2.2. Categorization of Coverage Probability Based on PSM

	3.3. Harmony Search Optimization
	3.3.1. Initialize the Algorithm and Problem Parameters
	3.3.2. Initialize the Harmony Memory
	3.3.3. Improvise a New Harmony
	3.3.4. Harmony Memory Update
	3.3.5. Termination Criterion Check


	4. Experimental Results and Comparative Study
	4.1. Simulation Setup
	4.2. Simulation Results
	4.2.1. Scenarios of the Proposed Model over AoI 1
	4.2.2. Scenarios of the Proposed Model over AoI 2

	4.3. Comparative Study
	4.3.1. Scenarios of Genetic Algorithm (GA)
	4.3.2. The Comparison of the Proposed Model with HSA in HOWSN

	4.4. The Impact of Minimum Overlapping on the Proposed Deployment Model

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

