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Over the past years, mobile health (mHealth) applications and specifically wearables have become able and available to collect data
of increasing quality of relevance for mental health. Despite the large potential of wearable technology, mental healthcare
professionals are currently lacking tools and knowledge to properly implement and make use of this technology in practice. The
Carewear project is aimed at developing and evaluating an online platform, allowing healthcare professionals to use data from
wearables in their clinical practice. Carewear implements data collection through self-tracking, which is aimed at helping people
in their behavioral change process, as a component of a broader intervention or therapy guided by a mental healthcare
professional. The Empatica E4 wearables are used to collect accelerometer data, electrodermal activity (EDA), and blood volume
pulse (BVP) in real life. This data is uploaded to the Carewear platform where algorithms calculate moments of acute stress,
average resting heart rate (HR), HR variability (HRV), step count, active periods, and total active minutes. The detected
moments of acute stress can be annotated to indicate whether they are associated with a negative feeling of stress. Also, the
mood of the day can be elaborated on. The online platform presents this information in a structured way to both the client and
their mental healthcare professional. The goal of the current study was a first assessment of the accuracy of the algorithms in
real life through comparisons with comprehensive annotated data in a small sample of five healthy participants without known
stress-related complaints. Additionally, we assessed the usability of the application through user reports concerning their
experiences with the wearable and online platform. While the current study shows that a substantial amount of false positives
are detected in a healthy sample and that usability could be improved, the concept of a user-friendly platform to combine
physiological data with self-report to inform on stress and mental health is viewed positively in our pilots.

1. Introduction

Over the past years, mobile health (mHealth) applications
and specifically wearables have become able and available
to collect data of increasing quality that is of relevance for
mental health. Wearables allow the continuous and ecologi-
cally valid collection of physiological data and can, further-
more, obtain relevant information at different stages of
mental health disorders: from initial risk factors, over treat-
ment progress, all the way to the process of recovery [1].

However, several challenges remain to make this sensor data
useful and usable for mental healthcare in real life. Substan-
tial technical capacity is needed for data handling and analy-
sis. Additionally, data needs to be made available for use by
mental healthcare professionals and clients in a collaborative
space, where it becomes actionable and interpretable. Despite
the large potential of wearable technology, mental healthcare
professionals are currently lacking the tools and the knowl-
edge to properly implement and make use of this technology
in real life [2].
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Wearables are a specific type of mHealth application con-
sisting of sensors and devices that can be worn on the body
and can collect longitudinal and continuous data on a reliable
and noninvasive manner outside of lab settings. However,
Can et al. [3], Larradet et al. [4], and Sun et al. [5] state that
measuring physiological signals during everyday activity is
more difficult than in lab conditions. A first challenge is that
the physiological responses of mental stress can be masked by
physical activity. Secondly, the accuracy of the measurements
is affected by signal artefacts caused by motion, electrode
placement, or respiratory movement. Thirdly, for training a
stress model, it is difficult to determine the user’s stress level
in natural circumstances to label the training data [6]. Addi-
tionally, the stress level that is then determined through self-
report is the perceived stress level [7], which might be differ-
ent from their physiological stress level. Kyriakou et al. [8]
observed that sometimes a physiological stress state was not
recognized by the participants of their research. The self-
reported stress moments can also be shaped by many social
factors, leading to discordance between physiological and
self-reported stress or emotional measures.

Gaining information about relevant parameters in daily
life, such as stress and physical activity, has always been
essential for tailoring and evaluating interventions in psycho-
therapy and counseling. Such data is collected through self-
report information in sessions or between sessions, through
pen-and-paper diary methods, or more recently also through
computer or smartphone apps. Asking clients to report on
events and emotions during the past week(s) has the poten-
tial limitation that it can be subjected to memory or reporting
bias. For example, individuals, especially those with a history
of depression, appear to overestimate the daily occurrence of
negative emotions [9]. Additionally, people have a tendency
to forget emotional peaks within 24 hours [7]. Diary methods
have been used successfully in treatment and research, but
often show decreased use over time [10, 11]. Wearables could
help collect data between sessions that is less subject to bias
and such automatic registration could reduce the load and
hereby potentially increase adherence to data collection
between sessions. The study of Patel et al. [12] shows that
most individuals show continued use of wearable data for
over 6 months.

The review of Kersten-van Dijk and colleagues [13] pro-
vides evidence that personal informatics, which refers to
using technological devices to monitor and review personally
relevant data, can provide end users with new insights and
raise awareness about stress for example. However, it is key
that the data is actionable and that sufficient support is pro-
vided. Platforms that make wearable data available for
research have already been developed [14], but do not sup-
port clinical application.

Different types of wearables are used in the literature on
stress detection. For example, Sun et al. [5] and Han et al.
[15] used Shimmer sensors that can be placed on different
parts of the body; Hovsepian et al. [16] and Rahman et al.
[17] used the AutoSense sensor suite that consists of a flexible
band worn around the chest. Tazawa et al. [18] used a Silmee
W20 wristband, de Arriba-Pérez et al. [19] used the (now dis-
continued) Microsoft Band 2 wrist wearable, and Mishra

et al. [20] used the commercially available Polar H7 chest
heart sensor. Other studies used a combination of different
sensors that are difficult to use in real life [21–23]. Neverthe-
less the wristband is the most common example of a wearable
suitable for real-life measurement and has already been used
in different settings over time. Developments include the use
of smartwatch sensory data to measure indicators of mental
health in schizophrenia [24], the application of accelerometer
data as a biomarker for depression [25, 26], and the design of
a smartwatch application for the management of ADHD
[27]. Wearable technology can provide additional data for
the prevention and treatment of disorders, map the effects
of interventions, and provide momentary feedback. How-
ever, careful selection of a manageable set of physiological
and behavioral parameters of interest for mental healthcare
is important.

Wearable monitors can collect data on cardiac cycles,
electrodermal activity (EDA), skin temperature (ST), and
acceleration. Momentary increases in heart rate (HR) and
EDA, which was checked for physical activity, could be indic-
ative of stress. Stress consists of a complex interplay between
psychological, behavioral, and physiological responses
evoked by a psychological or physical threat to homeostasis
[28]. Changes in HR, blood pressure, EDA, and breathing
rate are commonly observed in stressful situations [29–31]
and could therefore aid in stress detection. Nevertheless,
self-report information remains important as well, since
deriving valence from physiological activation is very diffi-
cult. Moreover, stress detections only become relevant for
psychological prevention and therapy when context is
provided.

Two other relevant parameters that can be calculated
are physical and sport activities and heart rate variability
(HRV). Stimulating physical activity has been shown to
reduce depressive symptoms and stress levels [32–34]
and promote recovery from burnout, depression, and anx-
iety [35]. Finally, HRV refers to variations in beat-to-beat
intervals controlled by the parasympathetic nervous system
and prefrontal cortex. Previous research has stated that
HRV is an index of flexibility to cope with complex chal-
lenges, and low HRV can be a sign of chronic stress and
allostatic load [36, 37]. Elevated stress, burnout, and
depression are associated with reduced HRV [37–39].
Wearables can monitor resting HRV, which could poten-
tially inform on resilience or risk for a mental illness.
However, since wearable devices with an adequate sam-
pling rate for HRV calculation are only being developed
recently, there is a lack of longitudinal ambulatory HRV
monitoring studies. The validity of such a longitudinal
HRV assessment is, therefore, still to be determined.

To increase the odds of continuous stress detection using
wearables in real-life settings, as opposed to lab and research
settings, it is important to opt for commercially available
devices that are easy to use and wear. Gradl et al. [40] gave
an overview of existing wearables together with their measur-
able parameters. They also rated each wearable with their
estimated potential to measure stress. They rated wearables
that are able to measure EDA, such as the Empatica E4 and
Sentio Feel, highest.

2 Journal of Sensors



Most studies in the literature that try to determine stress
levels use a combination of several parameters extracted from
one or more physiological signals. Features extracted from
EDA are used most often [5, 6, 8, 15, 22, 23, 41–47], closely
followed by features extracted from the cardiac cycle [5, 6,
15, 16, 21–23, 41, 42, 44, 46, 47]. These last studies mainly
use an ECG monitor in different forms to extract the signal
[5, 6, 15, 16, 21–23, 41, 42]. However, such a monitor is more
difficult to use outside of the lab as also stated by Rahman
et al. [17], so for real life, devices using photoplethysmogra-
phy (PPG) to measure BVP are preferred. Additionally, res-
piration rate [15, 16, 22, 23, 41] and skin temperature (ST)
[6, 8, 22, 43, 46] are regularly used.

Larradet et al. [4] wrote an extensive review in which they
presented the main differences between classification and
detection of stress and emotions according to data collected
in real life or in the laboratory. They state that EDA, ECG,
and EMG can greatly differ between real-life and laboratory
settings. So there is a real need for research to be done in
emotions recognition in real life. They showed that, while
there has been some research in this area, there are still very
few papers focusing on this matter today.

As stated above, self-reports are mostly used in real-life
experiments to define the ground truth. Because of this,
Can et al. [3] state that achieving precise annotations and
identification of the perceived stress in real life is a difficult
task. They also state that the stress level experienced in the
laboratory is different from daily life stress. Because of this,
they conclude that using a model that is trained using labora-
tory data to classify real-life events outperforms a model that
is solely trained using real-life data.

The resulting information from the different stress detec-
tion studies also varies in purpose. Sometimes the stressful
periods over the course of the day are detected [8, 16, 22,
41, 46], and in other cases, the stress level of an event or
period, lasting, e.g., twenty minutes, is registered [15, 41,
43, 44, 46]. Another approach is to define the overall stress
level of a day [21].

Previous diary-based research has suggested that having
more data points per day, as opposed to general daily stress
reports, will be better able to capture the relationship between
stress and behavior [11]. While these authors suggested that
increased reporting could lead to increased burden and
decreased willingness in participants, wearable monitoring
might nevertheless facilitate data sampling hence decreasing
burden. Thus, providing insight into specific moments of
stress during the day, by integrating real-life stress detections
with additional contextual self-report data, could provide the
healthcare professional and their client with actionable data
allowing to uncover patterns and tailor interventions.
Because of this, we want to detect short moments of acute
stress caused by the most stressful events throughout the
day to give the user the opportunity to annotate these
moments and discuss them with their mental healthcare
professional.

The Carewear project (HBC.2016.0099), therefore, is
aimed at developing and evaluating an online platform,
allowing healthcare professionals to use data from wearables
in their clinical practice. Carewear implements data collec-

tion through self-tracking, with the aim to help people in
their behavioral change process, but only as a component
of a broader intervention guided by a mental healthcare pro-
fessional. The online platform provides aggregated variables
and allows to integrate wearable data with personal experi-
ence. A psychologist of the team (NDW) also developed
two accompanying manuals [48, 49] for the online platform
to support the users of the platform. The first manual is
focused on practical information for both professional and
end user, consisting of how to wear the wearable and handle
the data. The second manual is for professionals only and
provides practice-oriented information on how to use the
platform in an evidence-based way in the context of stress-
related complaints and depression.

As also stated by Can et al. [3], Larradet et al. [4], and Sun
et al. [5], detecting stress in real life is much more difficult
than in lab conditions. Because of this, the current study’s
goal was a first assessment of the performance of the imple-
mented algorithms through comparisons with comprehen-
sive annotated data in a small healthy sample captured in
real life. Additionally, we assessed the usability of the applica-
tion through reports of the users on their experiences using
the wearable and online platform.

2. Materials and Methods

The Empatica E4 [50] wearables were used for data collection
(see Figure 1). This wristband is a class IIa medical device and
can collect accelerometer (ACC) data, electrodermal activity
(EDA), skin temperature (ST), and blood volume pulse
(BVP). Clients collect data with this wristband and after-
wards upload it to the Carewear platform. Algorithms are
implemented to remove artefacts and transform the raw data
into interpretable indicators, consisting of acute stress
moments, step count, minutes of increased physical activity
(sports), mean HR, and HRV (see Section 2.4). Users can
consequently consult and complete their data using the Care-
wear platform typically once each day. A physiological stress
detection that is classified as an acute stress moment will only
be logged as an actual stressful event after the client has ver-
ified this moment on the online platform (refer to Section
2.3). Providing additional, contextual information to the data
allows the client and healthcare professional to discover pat-
terns and tailor interventions to the actual needs.

2.1. Wearable. As mentioned above, the Empatica E4 inte-
grates different sensors in one wrist-worn wearable. Men-
ghini et al. [51] validated the accuracy of this device. They
concluded that it provided an accurate mean HR in both
static and dynamic conditions. HRV was accurate in static
conditions. The accuracy was less reliable in hand movement
conditions. The accelerometer is a 3-axis accelerometer sen-
sor that works in the range of -2 g till 2 g. The sample fre-
quency is 32Hz. The BVP data is collected using
photoplethysmograph (PPG). This sensor uses green and
red lights that are reflected as a function of the blood oxygen-
ation. The more the blood is oxygenated, the more the light is
absorbed. Thus, during a heartbeat, less light is reflected. The
sample frequency of the BVP signal is 64Hz. The Empatica
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E4 captures the EDA by measuring the electrical conduc-
tance across the skin. It achieves this by passing a minuscule
amount of current between two electrodes in contact with the
skin on the inside of the wrist. The data from the EDA sensor
is sampled at 4Hz. The wearable can also detect the skin tem-
perature, but this parameter is not included in the current
study. Finally, the user can press the operating button on
the Empatica E4 whenever an event occurs which the user
wants to manually register to discuss with their mental
healthcare professional. This manually tagged event is subse-
quently shown in the platform to be annotated. However, for
this study, we asked the participants not to use this feature.

2.2. Sample. Participants were recruited from a healthy stu-
dent sample. The sample consists of four female and two
male participants with a mean age of 20.5 years old
(SD = 0:8). Participants wore the Empatica E4 on their non-
dominant hand, which was the left hand for all participants,
to reduce the risk of movement artefacts for about one week
during all daily activities. They also kept a detailed journal of
activities and stress-related events. One included participant
had a diagnosis of attention deficit hyperactivity disorder
(ADHD) and reported the use of methylphenidate hydro-
chloride in their detailed journal. Participant 3 used the wear-
able for several days, but did not annotate the detected
moments of acute stress, so this person had to be excluded.
So the final sample consists of five participants. The study
was approved by the ethical committee of the Department
of Applied Psychology of Thomas More University of
Applied Sciences, and all participants provided informed
consent.

We created a table with relevant labels for the data log-
ging during the measurement period. The participants were
asked to continuously report on the activity they were per-
forming (e.g., eating, following class, and jogging) and on
whether they experienced any increased arousal. Addition-
ally, they were asked to keep note of every stressful occur-

rence, in their opinion, they experienced so as to compare it
with the data in the online platform. The listed stressful
events contained, but are not limited to, presenting before
audience, examinations, running late for public transporta-
tion or another appointment, driving a car, or being startled
because of remembering something they forgot or something
falling over or on the ground. At the end of the period, they
provided a written report detailing their personal experiences
with the wearable and platform.

The participants were given the necessary materials for
participation, consisting of a wearable, access to the online
platform, and documents to provide a detailed report on
their activities. They collected and annotated data during 1
week. Afterwards, they also provided a written report of their
experiences with the wearable and online platform.

2.3. Online Platform. An online platform was developed for
the Carewear project. Both the client and their mental health-
care professional each have their own interface.

(1) Development process of the platform: the online Care-
wear platform was designed in close collaboration
with organizations that were either offering employee
assistance programs, were specialized in technologi-
cal development, or provided clinically oriented ser-
vices. These organizations provided input and
feedback for the development of the online platform
during several user group meetings and discussions.
The design of the platform was subsequently further
scrutinized from the perspective of mental healthcare
professionals in a focus group of five lecturers in
applied psychology, of which three male and two
female. Each had expertise in the practice of mental
healthcare and was aware of research in this domain
and new trends in this regard. The received feedback
included, but was not limited to, warranting care in
using the colors green and red, as they can trigger a

Figure 1: The Empatica E4.
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negative emotion, use a slider instead of only the
dichotomous options positive or negative to annotate
how a user felt during a given stress event, and to
assure user privacy. The perspective of potential end
users was also covered in a focus group with six female
final-year students in applied psychology. The end
users found it for example important to have a means
to provide feedback of how they felt over the complete
day and to have a clear view of their goals. The input of
these different groups were integrated to create the
first working prototype of the online platform.

This first prototype of the Carewear platform was
then implemented in a pilot with five professionals:
two mental healthcare practitioners, two profes-
sionals offering employee assistance programs, and
one representative of the Regional Federation of Psy-
chological Consultants. Participants were generally
favorable towards the concept of making noninva-
sively collected continuous physiological data avail-
able as an additional source of information that can
contribute to better, personalized care. The positive
aspects, which had them believe this could actually
be of added value to treatment as usual, concerned
the fact that Carewear coupled a technical solution
with a manual for clinical application. Reported neg-
ative aspects consisted of difficulties with uploading
data (which were related to the absence of an Empa-
tica rest interface), measurement errors that occurred
which did not seem to reflect their real-life experi-
ences, no feedback when pressing twice for HRV
measurement, and usability aspects that could be
improved. One professional was less interested in
applying this platform for stress-related complaints,
but reported that “such an application would be very
useful for people who have difficulty connecting with
what is happening in their body” and was interested
in using the platform in chronic fatigue or pain
patients. Another clinician was also interested in
using Carewear in the context of anxiety disorders,
which is nevertheless out of the scope of this work.
Overall, these results were used to update the Care-
wear platform in terms of usability.

(2) Features of the implemented platform: the Carewear
platform from the client’s point of view consists of a
home page with an overview of the current day, from
which they can navigate to a detailed view of the day,
and a weekly and monthly overview as shown in
Figure 2. The home page (see Figure 2(a)) shows an
overview of their day containing the active periods,
the button-pressed events, and the detected moments
of acute stress. For each of these stress events, the user
can fill in additional information on their subjective
experience related to this event through a pop-up
screen (see Figure 3). In case the user remembers
the moment of the detected event, they can indicate
whether the subjective experience was associated
with a negative feeling of stress or not. Further

information about how they felt at that time, what
was the cause, and how long the feeling lasted can
be entered. The overall mood of that day with a pos-
sible clarification can also be filled in. Additionally,
the total step count and the average resting heart rate
of that day are shown.

The detailed view of the day (see Figure 2(b)) shows
the step count per hour, which is a downsampled plot
of the EDA and HR combined with an indication of
the stress detections, total step count, average resting
HR, total active minutes, and mood of the day. The
weekly and monthly overviews (see Figure 2(c)) show
a graph of the total step count, active minutes, overall
mood, number of stress detections, and HRV with a
linear regression line of its evolution plotted per day.

The mental healthcare professional can also view the
client’s pages and, additionally, has a home page and
an overview page of all clients. The home page (see
Figure 4(a)) shows the clients that need special atten-
tion. In this case, these are the users that have not
logged in onto the platform for a while or have not
entered information about the detected stress events.
The user should continue to use the platform in
agreement with the professional, even when their
mental state is improving. The overview page (see
Figure 4(b)) shows the information of all clients.
For each user, the amount of entered stress events
that were annotated relative to the total registered
amount is given, the last time that they logged in onto
the platform, and β of the HRV (refer to Section 2.4,
2.a). Pressing on the gear icon gives the mental
healthcare professional the possibility to change
some settings and information about the client (see
Figure 4(a)). Here, the step goal per day and per hour
can be altered. Also, the amount of detected stress
events shown per day can be configured, and this
way, only the most severe ones are shown to not over-
burden the client. Professionals can also extract PDF
files that give an overview of the different elements of
the platform.

Currently, the measurement data has to be uploaded
to the Carewear platform manually. The measure-
ment data is collected on the wearable and afterwards
manually uploaded to the Empatica secure cloud
platform. There is no rest interface available to con-
nect to this secure platform, so the user has to down-
load the data to his computer manually and
subsequently upload it to the Carewear platform.
This is typically executed once a day at which time
the user also takes the time to go through the
reported data and adds its annotations. As men-
tioned above, only the most severe stress detections
of that day are shown, so we need this longer time-
frame for defining the most severe stress detections
for that day. Asking the user to annotate his feelings
shortly after each stress event could present a burden
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Figure 2: Continued.
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during stressful times and require highly demanding
online computations on the data.

2.4. Algorithms. As stated above, the Empatica E4 mea-
sures EDA, BVP, and movement. These are used to cal-
culate the amount of steps, minutes of physical activity,

mean HR, and HRV and to detect moments of acute
stress. Before we can extract the different features, the
raw signals need to be converted and filtered to reduce
the effect of artefacts (and certainly movement artefacts),
which is the main challenge in the preprocessing step of
the data.
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Figure 2: Screen caps of the prototype for the Carewear online platform, with the (a) home page, (b) detailed view of the day, and (c) part of
the monthly overview.
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(1) Preprocessing:

(a) Accelerometer: the used accelerometer uses 3
axes. To calculate the strength of movement, the
different axes of the 3D-accelerometer signal
were combined into one value using the magni-
tude of the resulting vector calculated as follows:

ACCMAG =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

axisxð Þ2 + axisy
� �2 + axiszð Þ2

q

ð1Þ

(b) EDA: the EDA is recorded by measuring the skin
conductivity. The main challenge with using a
wristband is that it is prone to movement arte-
facts. Not all of these can be removed easily, but
to reduce their impact, a low-pass filter is used.
The slowly changing part of the EDA signal is
called the skin conductance level (SCL) and is a
measure of psychophysiological activation. A fast
change in the EDA signal (a “peak”) occurs in
reaction to a single stimulus (e.g., a startle event)
and is called (specific) skin conductance response
(SCR). It appears between 1.5 and 6.5 s after the
stimulus [45]. Given that we are interested in
the moments of acute stress that causes these
peak responses in this study, the slowly changing
part of the signal is removed. This is done using a
high-pass filter. Both filters are combined in a
second order Butterworth band-pass filter with

a lower cutoff frequency of 0.05Hz and a higher
cutoff frequency of 5Hz as used by Kyriakou
et al. [8] and Setz et al. [45].

(c) BVP to HR: the BVP is measured using a PPG
sensor. This still needs to be converted to HR.
Empatica also provides a conversion of the BVP
to HR, but we use our own algorithms as their
algorithm uses a sliding window to filter the sig-
nal that is too large for our purpose. Again,
movement artefacts have to be suppressed as
good as possible. A second order Butterworth
band-pass filter with cutoff frequencies that cor-
respond to a minimal HR of 15 beats per minute
(bpm) and a maximal HR of 240 bpm is used for
this purpose. On the filtered signal, a peak detec-
tion algorithm is used to detect the peaks in the
BVP. The time between these peaks is called the
interbeat interval (IBI). The HR is the inverse of
the IBI, so it can be calculated as such. A failure
to detect a peak or an erroneously detected addi-
tional peak has a large impact on the detected
HR, so the IBIs that produce an HR that are out-
side of the range of 15 till 240 bpm are removed.

(2) Features: using these processed signals, we calculate
the mean HR, the HRV and the change in HRV over
time, step count and amount of physical activity, and
finally the detected moments of acute stress.

(a) HRV and mean HR: as the detection of the BVP
peaks is prone to movement artefacts, we ask
the person to sit down and remain as still as pos-
sible for a period of 10 minutes each day to mea-
sure resting HRV. To label these periods, the user
has to press the button on the wearable twice at
the start and at the end of the period. The mean
resting HR is also calculated over this 10-
minute period. The HRV is defined as the root
mean square of successive differences (RMSSD),
so it can be calculated over the whole period as
follows:

HRV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑t
n=0 IBIn+1 − IBInð Þ2

n

s

ð2Þ

Since previous research [36, 37] has shown that a
low HRV can be related to stress and mental ill-
ness, reductions in HRV could be indicative of
decreasing mental health while increases in
HRV could be indicative of increased mental
health or recovery. However, such interpretation
of changes in HRV over time still needs scientific
validation. To show the information of an ongo-
ing increase or decrease to the mental healthcare
professional, we also calculate a value β which is
defined as the slope of the linear regression line

�ursday 7/2 at 9:37 am

Do you remember this moment? 

Title:

How did it feel?

How long did it last?

h.

Yes

min.

Save

No

Did you experience unpleasant stressful feelings?

Yes No

Notes

Had a discussion with a colleague

0 10

Figure 3: Screenshot of the prototype for the Carewear online
platform on how to enter information for a detected moment of
acute stress.
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(a)
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20h30
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HRVMary
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Nino

Trevor

Admin
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17/02/2019

23h09
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HRV

21/35 logs
18/02/2019

17h02
𝛽 = –0,01

HRV

3/12 logs
19/02/2019

11h37
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HRV

Home page

Add user

(b)

Settings

Name:

Daily reminder:

�omas More

Save

Yes At what time?

No

Step goals: 10000

19h00

E-mail:

Remarks:

per day and 250 per hour

Number of stress peaks per day: 3

(c)

Figure 4: Screenshots of the prototype for the Carewear online platform, with the (a) home page of the professional, (b) his detailed view of
his users, and (c) the setting configuration of a user.
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over all measured HRV values of the monitored
person.

(b) Step count+physical activity: physical activity is
not only an important factor for the healing pro-
cess of a client, but also for prevention and over-
all well-being. The amount of steps a person has
walked per hour and per day are shown. Also,
the periods of increased physical activity are
shown to the client and their mental healthcare
professional.

For measuring the amount of steps, a simple peak
detection algorithm using ACCMAG was imple-
mented. Every acceleration peak that is greater
than 1.375 times the earth gravity is detected as
step. This threshold has been determined by tests
executed by several persons during multiple
periods of 8 hours with several Fitbit devices used
as ground truth. This relatively simple approach
was used since the current application is mainly
interested in trends and relative changes as
opposed to the absolute value. Previous research
has shown that the absolute step also differs
between (commercial) wearable devices and the
gold standard [52].

For detecting physical activity, indicative of
doing sports such as walking, running, or rid-
ing a bicycle, we started by using the approach
as documented by Rahman et al. [17]. They
defined a threshold on the acceleration energy
to detect physical activity. If the standard devi-
ation of the energy of ACCMAG is greater than
0.21348, this is labeled as nonstationary (i.e.,
walking or running) and the others are labeled
stationary. During the tests with different Fitbit
devices used as ground truth, this seemed too
high for the accelerometer integrated in the
Empatica E4. We found that this threshold
multiplied by 0.835 gave results that were more
consistent with those reported by the Fitbit
devices. All periods, in which the mean of this
standard deviation is higher than the threshold
for longer than nine minutes, are reported as
active periods.

(c) Moments of acute stress: for detecting moments
of acute stress, we use a combination of SC,
HR and, movement. As mentioned above, our
body reacts with an increase in SC after a stim-
ulus that invokes arousal. To capture this, we
use the first-order derivative f tðSCÞ of this sig-
nal. Also, the HR reacts in the same way;
therefore, the derived signal f tðHRÞ is also
used here. For the amount of movement, we
are only interested to determine if this peak
is related to stress or could be related to phys-
ical activity. Therefore, we only need the mag-
nitude of the signal, so ACCMAG is used as is.

For the development of the stress probability algo-
rithm, sixteen healthy individuals were exposed to
two different stress inductions, consisting of the
Montreal Imaging Stress Task [53] and anxiety-
inducing VR clips. Note that nobody of these six-
teen individuals was included in the current study.
The participants (who provided informed con-
sent) and the observing researcher each noted
instances and indications of stress. The physiolog-
ical signals were analyzed and annotated manually
to label the occurring stress peaks during these
instances. Using these stress induction experi-
ments, we determined for each signal a probability
density function (PDF). This PDF shows the
chance that this signal value corresponds to an
actual moment of acute stress. It is modeled using
a Gaussian distribution with a given mean value μ
and standard deviation σ shown in Table 1.

To detect the possible moments of acute stress, a
peak detection algorithm is used on f tðSCÞ. Bursts
of peaks were grouped using nonmaximum sup-
pression to only use the strongest peak. After this,
for each detected peak, the probability that this
peak is related to a stress response is determined
using a combination of the three probabilities. For
the HR, the maximum probability in a window of
60 seconds before the SC peak is chosen. For AC
CMAG, the minimum probability in a window of
ten seconds before the peak is used. This way, peaks
that could be caused by movement and movement
artefacts receive a lower probability. This ten-
second window is based on the approach of Rah-
man et al. [17]. The probability that this detected
peak is a stress peak is then calculated as follows:

P SPð Þ = P SCð Þ:min P ACCMAGð Þð Þ:max P HRð Þð Þ:
ð3Þ

Each detected peak is thus given a certain proba-
bility. To not overload the user, only the three
moments of acute stress with the highest proba-
bility of each day are shown to the Carewear
application user. However, the number of pre-
sented moments of acute stress can be tailored
to the user by the professional in the platform,
if needed.

Table 1: Parameters for probability density functions (pdf) of
different signals used for detecting moments of acute stress.

Signal μ σ

f t SCð Þ ln 0:35ð Þ 0.6

f t HRð Þ 10 2.5

ACCMAG 0.981 0.3
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3. Results

First, the results from the five participants of this study are
shown; afterwards, the feedback received from them is elabo-
rated on.

3.1. Results of the Study with Five Healthy Participants.
Table 2 gives an overview of the results from our small sam-
ple. A total of 23 stress events or true positives (TPs) are
detected correctly. Some stress events that were manually
logged by the user are not detected giving 10 false negatives
(FNs). Part of these false negatives is because only the, in this
case, three detections with the highest probability were
shown to the user. Also, 62 events are erroneously detected
as false positive (FP) stress events. This gives a recall or sen-
sitivity of 0.7 and a precision or positive predictive value
(PPV) of 0.27.

As stated before, a total of three moments of acute stress
per day are returned. This can introduce a number of false
positives. For the moment, we do not take into account
how high the probability of a detected moment of acute stress
is, and the three highest ones are shown irrespective of their
probability. Participant 5 for example has two days in which
the highest probability is only 0.32. Only those showing
detections higher than a certain threshold can reduce the
amount of false positives. Using a threshold of 0.5 gives the
best trade-off between precision and recall in this study.
The results are shown in Table 3. This gives a recall of 0.7
and a precision of 0.30.

3.2. Feedback from Users. The participants were asked for
their feedback to improve the platform and user experience.
Most participants found the Empatica E4 wearable quite
big. Another drawback was that it does not provide direct
feedback to the user. The electrodes for the EDA sensor are

large, and they press into the skin, which can get painful after
wearing it for a prolonged period of time. This is especially
so, given the fact that the wearable has to be worn tight to
get measurements of a sufficient quality with less artefacts.
This furthermore causes increased sweating under the wrist-
band, which increases the uncomfortable feeling. We pro-
vided a manual on how to install the Empatica software on
the user’s computer, but in a few cases, an error was returned
during the installation. To solve these errors, an intervention
from a more technically oriented person was needed.
Another drawback is that transferring the data from the
wearable to the Carewear platform is quite time-consuming
and needs manual input from the user. This process can take
up to twenty minutes for the complete transfer. Once the data
is uploaded to the Carewear platform, it still needs to be proc-
essed by the algorithms before being visible to the user. The
processing time for this depends on the amount of data and
on the data itself. For the HRV measurement, currently the
user has to double tag the Empatica E4 button at the start
and end of the segment; however, this was not always suc-
cessfully executed. The users also had some doubts about
some of the events that were detected and some not, but these
are related to the false positives and negatives as shown
above. They however found that the distinction between
stress events and physical activity worked rather well. Anno-
tating the detected moments of acute stress was sometimes
difficult, because the users could not remember what exactly
happened at that particular time. Taken together, usability
can be improved by having a more comfortable wearable
device as well as having easier (and faster) data transfer and
processing procedures.

4. Discussion

This study is limited in the number of participants, which is,
however, not uncommon. A recent review by Larradet et al.
[4] showed that studies focusing on stress in real life have a
mean of 13 participants with a standard deviation of 10. Also,
all of them were recruited from the general population and
indicated that they did not experience a lot of stress while
wearing the device. This contributed to the substantial
amount of false positives and explains why they sometimes
had difficulty remembering what exactly happened at the
detected moments of acute stress. The validity assessment
of van Lier et al. [54] also states that the Empatica E4 works
best for large stressors, so future research should ascertain
the performance of the stress algorithm in a large group of
participants including persons with stress-related
complaints.

Determining the exact causes of a FP or FN is quite diffi-
cult, but in some cases, it is still feasible. A considerable part
of the stress events that were manually added by the partici-
pants but not detected as a stress event happened while mov-
ing, for example, being nervous to catch a train while running
to the platform. These kinds of stress events are difficult to
detect, as physical activity introduces noise on the signal
and can confound the assessment of stress [17]. Can et al.
also state that the quality of the BVP signal declines drasti-
cally in the case of intense physical activities [44]. This is also

Table 2: Results.

Participant TP FP FN

1 5 14 1

2 2 10 0

4 6 11 1

5 4 16 4

6 6 11 4

Total 23 62 10

Table 3: Results for the optimal threshold ðPðSPÞ > 0:5Þ.
Participant TP FP FN

1 5 14 1

2 2 10 0

4 6 10 1

5 4 8 4

6 6 11 4

Total 23 53 10
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the reason why we give these segments a lower probability in
our algorithm. The false detections were mainly caused by
noise on the measured signals, certainly the SC and HR.
Another part of the FP was during taking classes, so it is pos-
sible that these are cognitive tasks that are detected as stress
events. As shown in Table 3, the amount of FP can partially
be reduced by only showing the detections that have a prob-
ability that is higher than a certain threshold. The threshold
has to be kept low in this healthy sample, but in clients with
stress-related complaints, this could be increased while still
detecting the most stressful events. Also, some cases of inva-
lid data were seen, which was caused by not correctly fixating
the wearable. Participant 2, for example, was asked to use the
wearable again for a week, as most data was unreliable the
first time because of this reason. However, given that the
study consisted of naturalistic data collection (without stress
induction or deception) and that removing this participant
from the study results only presented minor changes with a
recall of 0.68 and a precision of 0.29, this individual was
included in the data analysis.

We collected two types of self-report information from
the participants. Firstly, we asked a continuous registration
of their activities, and secondly, the platform offered them
automated stress detections that they needed to annotate.
This constant monitoring and awareness of the data could
potentially confound the naturalistic experience. The reason
why we did not choose for random sampling in and experi-
ence sampling approach is that it was paramount to gain
information on their activities during the stress detections
to assess the performance of the algorithms. Given that data
collection only occurred during one week, random sampling
would have entailed substantial loss of data.

A limitation is that we did not make use of the skin tem-
perature in our algorithms, which can, according to Sano
et al. [43], aid in classifying between high- and low-stress
groups. Using additional information about the ST could
enhance the performance of our detection algorithms and
can add additional parameters from the different captured
signals. However, for the moment the algorithm is manually
implemented using rules and probabilities, adding additional
parameters and sufficiently tuning these rules and probabili-
ties are not easy. After obtaining more (labeled) data, we
could use machine learning techniques to better cope with
additional information and further increase the performance.
Can et al. [3] state that models that are trained using data col-
lected in lab conditions outperform models that are solely
based on real-life data. Thus, additional data should be col-
lected in the lab and in real life. As also stated by Larradet
et al. [4], using a continuous monitoring system in real life
allows for iterative and personalized learning. Using these
data can not only be used to improve the global model, but
also to personalize the model to take into account the exact
parameters (e.g., age, sex, fitness, etc.) of the monitored
person.

As mentioned above, the usability of the platform needs
some improvement. For example, the double tagging for
the HRV measurements should be changed to an automatic
detection of resting periods. A current major drawback in
the usage of our platform is the fact that the user has to exe-

cute a chain of manual transactions to transfer the data to the
Carewear platform. However, there is currently no REST API
available from Empatica, so automatically retrieving the data
from the Empatica platform is not possible. A solution for
this would be the development of an application that runs
on a smartphone which has a continuous connection with
the Empatica E4 using a BLE connection. The drawback of
this is that the battery of both the smartphone and the Empa-
tica E4 will be depleted sooner.

It is important to continue monitoring the market for
devices that provide the same set of sensors in a more easy-
to-wear package. For example, Empatica is currently working
on a new wearable, the EmbracePlus [55], which could
potentially solve some of the challenges we experienced with
the Empatica E4. Also, Fitbit introduces the Fitbit Sense with
additional sensors [56]. As mentioned before, we believe that
stress detection should be done continuously in real life and
on a broad scale, so it is important to use commercially avail-
able devices that are readily available and easy to use and
wear. Gradl et al. [40] rated wearables that are able to mea-
sure EDA highest. But they believe that cheaper and more
commercial devices, such as basic Fitbit trackers or Apple
smartwatches, also have potential to be used for stress
detection.

A final limitation is that stress detections and related con-
textual information do not inform us about how an individ-
ual recovers from this stressor or what the long-term impact
might be. Future research should also be aimed at informing
on physiological and affective stress recovery in real life.

5. Conclusion

Stress is a complex combination of physiological, behavioral,
and emotional responses. And although experiencing stress
by itself is not maladaptive, prolonged experience of stress
without sufficient recovery can impede daily-life functioning
and contribute to the development of mental illness. Captur-
ing all stressful events accurately using physiological
responses only is not feasible at this point. Combining
detected stress events with self-report is key to improve accu-
racy. To help individuals cope stressful situations, actionable
data is needed through adding context to these stress events.
From the first pilots and this study, we can conclude that the
current application can collect information about stressful
situations and their context, using objective data collected
in real life, and allow professionals and their clients to inter-
pret the data, observe patterns, and provide tailored
interventions.

While the current study shows that a substantial amount
of false positives are detected in a healthy sample and that
usability could be improved, the concept of a user-friendly
platform to combine physiological data with self-report to
inform on stress and mental health is viewed positively.
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