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Accurate and timely collection of urban land use and land cover information is crucial for many aspects of urban development and
environment protection. Very high-resolution (VHR) remote sensing images have made it possible to detect and distinguish
detailed information on the ground. While abundant texture information and limited spectral channels of VHR images will lead
to the increase of intraclass variance and the decrease of the interclass variance. Substantial studies on pixel-based classification
algorithms revealed that there were some limitations on land cover information extraction with VHR remote sensing imagery
when applying the conventional pixel-based classifiers. Aiming at evaluating the advantages of classifier ensemble strategies and
object-based image analysis (OBIA) method for VHR satellite data classification under complex urban area, we present an
approach-integrated multiscale segmentation OBIA and a mature classifier ensemble method named random forest. The
framework was tested on Chinese GaoFen-1 (GF-1), and GF-2 VHR remotely sensed data over the central business district
(CBD) of Zhengzhou metropolitan. Process flow of the proposed framework including data fusion, multiscale image
segmentation, best optimal segmentation scale evaluation, multivariance texture feature extraction, random forest ensemble
learning classifier construction, accuracy assessment, and time consumption. Advantages of the proposed framework were
compared and discussed with several mature state-of-art machine learning algorithms such as the k-nearest neighbor (KNN),
support vector machine (SVM), and decision tree classifier (DTC). Experimental results showed that the OA of the proposed
method is up to 99.29% and 98.98% for the GF-1 dataset and GF-2 dataset, respectively. And the OA is increased by 26.89%,
11.79%, 11.89%, and 4.26% compared with the traditional machine learning algorithms such as the decision tree classifier
(DTC), support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF) on the test of the GF-1 dataset; OA
increased by 32.31%, 13.48%, 9.77%, and 7.72% for the GF-2 dataset. In terms of time consuming, by rough statistic, OBIA-RF
spends 223.55 s, SVM spends 403.57 s, KNN spends 86.93 s, and DT spends 0.61 s on average of the GF-1 and GF-2 datasets.
Taking the account classification accuracy and running time, the proposed method has good ability of generalization and
robustness for complex urban surface classification with high-resolution remotely sensed data.

1. Introduction

The classification accuracy of remotely sensed data and its
sensitivity to classification algorithms have a critical impor-
tance for the geospatial community, as classified images pro-
vide the base layers for many applications and models [1].

Recent availability of submeter resolution imagery from
advanced satellite sensors, such asWorldView-3 and Chinese
GaoFen series, can provide new opportunities for detailed
urban land cover mapping at the object level [2]. Applica-
tions such as environmental monitoring, natural resource
management, and change detection require more accurate,
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detailed, and constantly updated land cover-type mapping
[3]. Detailed urban land cover information is not only essential
for understanding the urban environment changes and moni-
toring and managing the urban ecological environment but
also for supporting the government to make a decision on
urban expansion, urban planning, and management [4–6]. In
the last few decades, it has become an effective and convenient
mean to obtain this information from remotely sensed
imagery, because of its unique advantages of frequent and wide
coverage, by machine learning classification technology [7].

Most of land use and land cover classification research
are traditionally based on low- and medium-resolution
remotely sensed imagery, such as MODIS [6, 8, 9], Landsat
[10–12], and SPOT1/4 [13]. However, urban surface
coverage presents high-frequency heterogeneity, resulting in
a large number of mixed pixels in medium- and low-
resolution images. With the rapid development of sensor
technology, a large number of high-resolution remotely
sensed imagery (IKONOS, Quickbird, GeoEye-1, World-
View-1-4, GF-1/2, etc.) in meters or submeters are becoming
more and more popular [14]. With the characteristics of high
definition and abundant spatial information, high-resolution
satellite image can compensate the shortcomings of mixing
pixels in low- and medium-resolution images in urban land
cover classification [15, 16]. And high spatial resolution
images, where spatial resolution is equal or a little equal to
4 meters, could make it possible to map complex urban
surface. A major challenge in using high spatial resolution
for detailed urban mapping comes from the high level of
intraclass spectral variability, such as building roof and road,
and low level of interclass spectral variability, such as water
body and shadow. In this condition, traditional pixel-based
classification algorithms such as the maximum likelihood
classification (MLC) can easily make missclass error and
generate the salt-and-pepper effect which may reduce classi-
fication accuracy for very high-resolution imagery.

There are currently various classification algorithms, each
with its own advantages and limitations [17]. And that, com-
mon mature statistical-based machine learning algorithms,
such as MLC, requires hypothesis that training data follows a
normal distribution, but high-resolution images cannot meet
this requirement. Many previous studies revealed a bunch of
machine learning algorithms such as support vector machines
(SVM) [1], artificial neural networks (ANN) [18], and
decision tree [19] have been popular for land cover classifica-
tion. These classifiers always have limitations in practical
applications in areas such as volatile and complex urban area,
due to the enhanced complex of spatial relationship between
pixels and the complex earth’s surface phenomenon [21, 22].
Recently, ensemble methods have been introduced to integrate
multiple single classifiers to improve classification perfor-
mances. The combination of multisource remote sensing and
geographic data is believed to offer improved accuracies in
land cover classification [23]. In general, there are two steps
to build the ensemble, namely, generating base learners and
combining base learners. In order to obtain a good ensemble,
the base learner should be as accurate as possible and as
diverse as possible. Due to its high potential and superior
performance, ensemble methods have been employed in a

remote sensing community. Existing theoretical and empirical
studies have reported that ensemble classifiers can obtain
more accuracy prediction and outperform individual classi-
fiers [3, 17, 23–25]. The random forest (RF) classifier, as one
of the more popular ensemble learning algorithms in recent
years, is composed of multiple decision trees in that each tree
is trained using bootstrap sampling and employing the major-
ity vote for the final prediction [26, 27]. It has received increas-
ing attention due to its excellent classification result, the ability
to avoid overfitting, and the rapid speed to process [28–31].

In order to overcome limitations of pixel-based classifica-
tion, object-based image analysis (OBIA) or geospatial object-
based image analysis (GEOBIA) has been introduced to
improve the quality of information extraction from high-
resolution imagery. Image segmentation is a critical and
important step in (geographic) object-based image analysis
(GEOBIA or OBIA). The final feature extraction and classifi-
cation in OBIA are highly dependent on the quality of image
segmentation [32]. There are two main steps, containing
segmentation and classification in OBIA. The processed object
of OBIA is not a pixel, but an object composed of multiple
adjacent homogenous pixels through segmentation, which
containing not only the spectral information but also the
textual and contextual information from imagery [32, 33].
Due to its advantages, OBIA has been more popular in the
remote sensing community and successfully applied in land
cover classification [34–36]. Many previous studies have
showed that the OBIA method had outperformed the pixel-
based classification [32, 37–40]. However, the number of input
features used for classification has grown exponentially, some
of which are irrelevant and redundant features, affecting the
performance of the classifier, especially, when the purpose of
segmentation has been changed from helping pixel labeling
to object identification at present era [32].

In this paper, we verify the ability of GF-1 and GF-2 very
high-resolution imagery in urban land use and land cover
classification. For this purpose, we combined the random
forest ensemble classifier with the OBIA method. We test
the method on two selected complex urban areas of a
metropolis city. And the proposed strategy was also com-
pared with the pixel-based random forest and the state-of-
art mature machine learning algorithm including the SVM,
KNN, and DT classifiers from classification accuracy and
operational efficiency aspects.

The rest of this paper is organized as follows: a brief
introduction about the study area and dataset and prepro-
cessing are given in Section 2. The framework and details of
the proposed methodology strategy based on object-
oriented analysis and random forest are drawn in Section 3.
The results and discussion are shown in Section 4. Finally,
the conclusions are drawn in Section 5.

2. Study Area and Data Preprocess

The study site is a central business district (CBD) of Zheng-
dong new district which is located in the eastern part of
Zhengzhou city, capital of Henan province, and is a new
urban area invested and developed by Zhengzhou Municipal
Committee, municipal government in accordance with the
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State Council approved the City of Zhengzhou city master
plan in order to implement the megacity framework, expand
the size of the city, and accelerate urbanization and urban
modernization strategy. Based on the National Economic
and Technological Development Zone, the original area of
CBD is about 25 km2, west from 107 national road, east to
Jingzhu Expressway, south to the airport highway, north to
Lianhuo Expressway, and the long-term planning area of
CBD is about 150 km2. The study area is focused on Ruyihu,
the center of CBD (see Figure 1), which is surrounded by
three landmarks of the CBD-Zhengzhou International
Convention and Exhibition Center, Henan Arts Center,
Zhengzhou Convention and Exhibition Hotel. The land
surface is dominated by human-made material, which is a
challenging task to identify different land use and land cover
types. According to the planning and construction situation,
the types of surface cover are mainly divided into the urban
building areas (UB), urban commercial area (UC), urban
green areas (UG), urban road areas (UR), urban water area
(UW), and high building shadow (HS) (see Table 1). Data
availability statement stated that the very high-resolution
remotely sensed data used in this research is provided by
Henan Data and Application Center of the High Resolution
Earth Observation System through signing a contract with
National Defense Science and Technology Bureau of Henan.

Unfortunately, we do not have the priority to share the
high-resolution satellite remote sensed data. Anyway, we
can share our code used in this research. Researchers can
test algorithms using these codes with their own datasets
and repeat experiments to obtain similar research conclu-
sions. Researchers who are interested in this code can
download it from hyperlink https://pan. http://baidu.com/
s/19nXD7oHwq0FnpZJ7T6p5HQ, using password 6xae,
or contact with the corresponding author to obtain source
data to conduct secondary analysis.

2.1. Remote Sensing Data and Preprocessing. Under the
background of “Chinese high-resolution earth observation”
major project, a series of high-resolution satellites have been
launched, involving GF-1 (2m res. panchromatic cam-
era/8m res., multispectral camera/16m res., and wide-angle
multispectral camera), GF-2 (1m res., panchromatic cam-
era/4m res., and multispectral camera), GF-3 (1m res., C-
band synthetic aptitude radar), GF-4 (50m res., fixed-point
camera in geostationary orbit), GF-5 (VNIR hyperspectral
camera), GF-6 (2m res., wide-angle multispectral camera),
and GF-7 (stereographic cartography cameras). GF-1 satellite
is the first low earth orbit remote sensing satellite of China’s
high-resolution earth observation system, which breaks
through the key technologies of optical remote sensing for
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Figure 1: The study area location and corresponding GF-2 imagery.

Table 1: The classification scheme of land cover in the study area.

Category Symbols Description

Urban building areas (UB) 1 Residential area, campus, low density building

Urban commercial areas (UC) 2 Commercial area, high density building

Urban green areas (UG) 3 Grassland, tree group, oasis in the lake, artificial grass

Urban road areas (UR) 4 Cement and asphalt pavement

Urban water area (UW) 5 River, lake

High building shadow (HS) 6 Shadow of high buildings
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high spatial resolution and multispectral and wide coverage. It
can meet the needs of research data support in the fields of
resources and environment, precision agriculture, and disaster
measurement, which has become an important means of
information services and other aspects. It is of great strategic
significance to improve the level of satellite engineering in
China and the self-sufficiency rate of high-resolution data.

The selected remotely sensed data is GF-1 and GF-2 very
high-resolution satellite images, which was acquired on July
14, 2015 and July 30, 2015, respectively. The specific param-
eters are shown in Table 2.

The preprocess of selected dataset includes radiation
calibration, atmospheric correction, geometric registration,
orthorectification, image fusion (NNDiffuse pan-sharpening
algorithm), and image resize. Radiation calibration is the
process of converting DN values of image data into apparent
reflectivity using atmospheric correction techniques. Equa-
tion (1) can be used to convert the channel observation DN
value to equivalent brightness value.

Lε λεð Þ = Gain ∗DN + Bias, ð1Þ

where Gain is the calibration slope, DN is satellite
observation value, Bias is calibration intercept, and these
parameters can be obtained from meta file with satellite data.
Then, the apparent reflectivity can be calculated based on the
brightness value using

ρ = πLλd
2

ESUNλ cos θ
, ð2Þ

where ESUN is solar spectral radiation, d is solar-earth
distance, and cos θ is the zenith angle of sun.

The selected atmospheric correction is based on a 6S
radiative transfer model, which is a package included in Pixel
Information Export (http://www.piesat.cn/en/index.html).
The purpose of atmospheric correction is to eliminate the
absorption and dispersion from the sun and target.

Geometric correction includes image registration and
orthorectification. The purpose of geometric correction is to
correct image deformation caused by system and nonsystemic
factors. In this research, the image-to-image registration
method was selected to correct multispectral data based on
panchromatic data of GF-1 and GF-2 sensors, respectively.

Orthorectification is the process of correcting image
space and geometric distortion to generate a multicenter pro-
jection plane orthographic image. In addition to correcting
geometric distortions caused by general system factors, it
can also eliminate geometric distortion caused by terrain.

Image fusion is the process of generating new images
under the prescribed geographical coordinate system accord-
ing to a certain algorithm. This study combines multispectral
data with high spatial resolution and single-band images with
high spatial resolution, making the fused images have both
high spatial resolution and rich spectral resolution.

3. Methodology

The proposed methodology in this research (shown in
Figure 2) includes three main stages: (1) multiscale segmen-
tation and multifeature extraction; (2) construction of the
state-of-art machine learning algorithms such as decision

Table 2: Sensor parameters of GF-1 and GF-2 satellites.

Parameters PAN/multispectral

GF1 GF2

Satellite

Orbit type Sun synchronization Sun synchronization

Orbit altitude 646 km 631 km

Repeat time 41 days 69 days

Spectral range

Panchromatic 0.45–0.90 μm 0.45–0.90 μm

Multispectral

Blue 0.45–0.52 μm 0.45–0.52 μm

Green 0.52–0.59 μm 0.52–0.59 μm

Red 0.63–0.69 μm 0.63–0.69 μm

NIR 0.77–0.89 μm 0.77–0.89 μm

Spatial resolution
Panchromatic 2m 1m

Multispectral 8m 4m

Width 60 km 45 km

Receive time 2015-07-14 2015-7-3

Orbit ID 11937 5113

Product type Standard Standard

Product level Level 1A Level 1A

(Path, row) (3, 97) (3,152)

(Width, height) (4548, 4544), (18192, 18164) (29200, 27620)

Cloud 0% 5%

Solar(azimuth, zenith) (141.278, 73.7496) (134.537, 21.6698)

Satellite(azimuth, zenith) (297.354, 88.3146) (283.342, 83.754)
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tree classifier (DTC), random forest (RF), support vector
machine (SVM), k-nearest neighbor (KNN), and object-
based image analysis random forest (OBIA-RF); and (3)
accuracy assessment and comparison analysis and discus-
sion; more details can be found in Figure 2.

3.1. Multiscale Segmentation and Feature Extraction. Very
high-resolution (VHR) remote sensing images have a limita-
tion in spectral information which means there are 4 spectral
bands including green, blue, red, and near infrared in general.
While the VHR remote sensing images are always rich in
detailed characters, more specific details of land surface will
be presented on the images. In order to overcome this short-
coming, we conquer the disadvantage and make full use of

advantages of these data. After data preprocessing, we
performed multiscale segmentation and employed feature
extraction based on the segmented results to obtain multifea-
ture image sets as inputs of image classification models.

Quality of segmentation has a direct effect on the perfor-
mance of classification, which is related to the segmentation
parameters selected by an analyst. Most of the segmentation
algorithms are regarded as a subjective task with the trial-
and-error strategy. The multiscale segmentation algorithm,
the most popular method currently, employed in this exper-
iment is merging pixels of the original image into small object
patches from bottom to top, and then merging the small
patches into large patches to complete the merging of the
regional objects [41–43]. Three major parameters for the

GF-1 satellite image GF-2 satellite image Labeled samples

Preprocessing

Radiaiton calibration Image fusion Orthorectification

Multiscale
segmentation Texture features Spatial features Spectral features

K-nearest
neighbor

Pixel-based Pixel-based Pixel-based Pixel-based

Support vector
machine

Desicion tree
method

Random forest
method

Object-based Object-based Object-based Object-based

Comparison and analysis

Figure 2: Framework of urban land cover classification using GF-1 and GF-2 remotely sensed data.
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multiscale segmentation algorithm are scale, shape, and
compactness, defining within-object homogeneity. Here, we
select the appropriate scale parameters and heterogeneity
standard specifications to ensure the highest homogeneity
within the generated object and the heterogeneity between
adjacent objects and other objects. Scale parameter is consid-
ered the most effective parameter affecting the segmentation
quality [44–46]. In this study, shape parameter was set as 0.1.
The optimal segmentation scale parameter of GF-1 image is
quantitatively evaluated by ESP-2 (estimation of scale
parameter), of which the principle is to select the optimal
scales based on the rate of change (ROC) curve for the local
variance (LV)of object heterogeneity at a corresponding scale
[44, 47]. Peaks value of ROC-LV curves were considered the
most appropriate segmentation scales at which the image can
be segmented in the most optimal levels. Methodology model
of ROC can be described as

ROC = LVL − LVL−1
LVL−1

× 100, ð3Þ

where LVL is mean standard deviation of the object in the
L layer and LVL−1 is mean standard deviation in the next
lower layer. When ROC was obtained, the optimal segmenta-
tion scale parameter is selected by visually interpreting based
on segmentation result and the boundary matching effect of
the actual feature [47].

On the basis of the best segmentation result, a total of 24
spectral features, texture features, and spatial geometric fea-
tures were extracted. The extracted spectral, textural, and
spatial features from segmented VHR remotely sensed data
can be summarized as shown in Table 3.

In detail, the selected spectral features are mean value of
all four bands (which means average value of all image
objects). The brightness feature is that the sum of the average
values of the layers containing spectral information divided
by the number of layers of the image object, which can be
calculated by

B = 1
Nband

〠
n

i=1
Ci, ð4Þ

where B is the brightness value of the object, Nband is the
total number of bands contained in the object, and Ci is the
average gray value of the object.

In the high-resolution image, since the reflectivity of the
water body in the near-infrared band is significantly lower
than that of other ground objects, the shadows are very
similar in many features with water body so that they are
difficult to separate. In order to highlight the water, the ratio

and standard deviation of the fourth band and NDWI were
additionally extracted. The ratio of the fourth band is the
average gray value of all pixels in the fourth band divided
by the average gray value of all pixels in all 4 bands of the
image. In addition, only layers containing spectral informa-
tion can be used to obtain reasonable results. The standard
deviation of band 4 is calculated from all the pixel values
contained in an object in band 4.

The NDWI refers to the normalized ratio index between
the green band and the near-infrared band in the image.
Using NDWI can better distinguish the water in the image
from other features. It can be calculated by

NDWI =
Bgreen − Bnir
Bgreen + Bnir

, ð5Þ

where Bgreen is the value of object in the green band and
Bnir is the value of object in the near-infrared band.

NDVI is a vegetation index proposed based on the reflec-
tion characteristics of vegetation in the visible and infrared
bands. It is the ratio of the difference between the reflection
intensity value in the visible red band and the reflection
intensity value in the near-infrared band to the sum of the
two. The formula can be described as

NDVI = Bnir − Bred
Bnir + Bred

, ð6Þ

where Bnir is the value of object in the near-infrared band
and Bred is the value of object in the red band.

Although limited to spectral information, high-resolution
remote sensing images contain rich geometric and structural
information, which can reflect the spatial distribution and
geometric forms of ground objects. The selected texture
features contain eight features unit extracted based on the gray
level cooccurrence. The selected eight textural features
extracted from GLCM include entropy, mean, variance,
homogeneity, contrast, dissimilarity, correlation, and angular
second moment. Gray-level cooccurrence matrix (GLCM),
which is calculated based on statistic method, is also known
as gray-level spatial dependence matrix considered one of
the most popular techniques used for texture analysis. GLCM
has strong ability to assess texture features by considering
spatial relationship of pixels and its surrounding. GLCMmean
value is not simply the average of all original pixel values; pixel
value is weighted by its frequency of its occurrence in combi-
nation with a certain neighbor pixel value. Variance in GLCM
texture performs the same task as does the common descrip-
tive statistic called variance.

Table 3: Overview of extracted features based on segmentation.

Feature type Quantity Feature name

Spectral feature 9 Spectral bands 1-4, brightness, ratio band, standard deviation band4, NDVI, NDWI

Texture feature 8 Entropy, mean, variance, homogeneity, contrast, dissimilarity, correlation, angular second moment

Spatial feature 7 Area, border index, compactness, density, length/width, length, shape index
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Entropy measures the complexity of a given image, which
reflects the sharpness of the image and the depth of the
texture; entropy can be calculated using

Entropy = − log Pi,j 〠
N−1

i,j=0
Pi,j, ð7Þ

where i and j standards position of pixels of GLCM and
Pi,j is probability of presence of pixel pairs at certain distance
and angle.

Contrast measures local variations and texture of shadow
depth in GLCM. The larger the contrast, the deeper groove of
texture and clearer effect of the image will be shown. Contrast
can be calculated by

Contrast =〠〠 i − jð Þ2Pi,j: ð8Þ

Homogeneity represents values by the inverse of the
contrast weight, with weights decreasing exponentially away
from the diagonal, which can be calculated using

Homogeneity = 〠
N−1

i,j=0

Pi,j

1 + i − jð Þ2 : ð9Þ

Correlation coefficient concludes that the degree of two
variable’s activities is associated and can be calculated by

CC = 〠
N−1

i,j=0
i −�i
� �

j −�j
� � Pi,j

δxδy
: ð10Þ

Angular second moment (ASM) uses Pi,j as weight for
itself; high values of ASM occurs when the window is very
orderly, so it measures the homogeneousness of a given
image, and ASM can be calculated using

ASM = 〠
N−1

i,j=0
P2
i,j: ð11Þ

In addition to spectral and texture features, combining
the geometric characteristics of high-resolution remote sens-
ing images are extremely significant for detailed land cover
information extraction. In this article, the article seven spatial
geometric features include area, border index, compactness,
density, length, length/width, and shape index were selected.
Area of an image can be obtained through multiplying num-
ber of pixels constituting the image object and the covered
area of the object. The boundary index can be calculated as
the ratio between the boundary length of the image object
and the smallest enclosing rectangle. The tighter the image
object, the smaller its border. The density describes the distri-
bution in the pixel space of the image object, that is, how tight
the image object is. Density is based on the covariance
matrix, which is calculated by dividing the number of pixels
constituting the image object by its approximate radius.
Length-width ratio can be used as one of the features for road

extraction. It is calculated by the length and the width of the
objects. In addition, the length-width ratio can be used to
calculate the length of the image object. Shape index was
selected to describe the smoothness of the surface of an
object. The smoother the surface of the image object, the
lower its shape index. The more fragmented the image object,
the larger its shape index. It can be calculated by dividing the
frame length of an object by the volume of the object.

3.2. Classification Algorithms. In this research, an OBIA-RF
method, also known as a combination of OBIA and classifier
ensemble method which can take advantage of OBIA and
classifier ensemble was constructed, and four state-of-art
classification algorithms named KNN, SVM, and DTC were
selected for performance comparison. Performance evaluation
was carried out by quantitative indicators such as overall
accuracy, kappa coefficient, and execution time consumption.

3.2.1. Random Forest. Random forest algorithm is an ensem-
ble learning method proposed by Leo Breiman in 2001 [48],
and is one of the most well-known ensemble learning meth-
odology and has advantages of, i.e., performing out-of-
sample prediction rapidly, requiring only slight parameter
tuning, having capable ranking of the importance of features
[28]. Decision trees in RF are generated by randomly select-
ing sample (bootstrap sampling) subsets in the training
sample set and randomly selecting the feature variables to
achieve optimal splitting. The obtained decision trees do
not need pruning, and the final classification result is
obtained by the majority vote method from the classification
results of all decision trees in the integration. Gini index
which measures the impurity of a given element with respect
to the result of the classes is selected as a measure for the best
split selection for RF [49]. There are two key parameters in
the process of constructing a random forest pattern: the
number of spanning trees and the number of randomly
selected features. By literature review, the number of selected
features is more important than the number of how many
trees are trained; especially, generally, each split number of
randomly selected features is set as the square root of the
number of input characters [50–52]. This parameter can be
optimized based on the out-of-bag error estimate. In this
research, the number of trees is set as 100 and number of
random attribute selection is log2d, where d is the total
number of features. And then, the number of trees for RF
was tuning from 50 to 500 with a step of 10.

3.2.2. Support Vector Machine. SVM is one of the most
appealing algorithms for remotely sensed data classification
due to their advantages of generalization even with limited
training samples which is common in remote sensing data
processing [53]. And, as a supervised nonparametric statisti-
cal learning method, SVM does not need a training set strictly
conforming to the standard independent and identical
distribution. The advantages of SVM come from two aspects,
transforming original space training set into a very high-
dimensional new space and finding a large margin linear
boundary in the new space. SVM is a classifier based on the-
ory of structural risk minimization, which tries to lower the

7Journal of Sensors



generalization error by maximizing the margins on the
training data. Thus, SVM looks for an ideal margin by solving
optimization problem as

minω,b
1
2 ωj jj j2,

s:t:yi ω
Txi + b

� �
≥ 1, i = 1, 2,⋯,m:

ð12Þ

Furthermore, for classes that are nonseparable, the
optimization can be solved by the so-called ‘kernel stick.’
The optimization procedure seeks to find coefficients ai and
w0 in Equatuion (13), where Kð:, :Þ is kernel function. By
default, the kernel function is set as the Gaussian kernel,
kernel scale is 8, and box constraint is 1 standardized. And
then, the scale of kernels for SVM was tuning from 0.1 to 8
with a step of 0.4

f xð Þ = 〠
N

i=1
αiK x, zið Þ + ω0: ð13Þ

3.2.3. k-Nearest Neighbor. The k-nearest neighbor classifier
(k-NN) is a kind of nonparametric and memory-based

learning, as well as instance-based learning or lazy learning
used for classification and regression [26]. In the classification
procedure, a given pixel will be classified by plurality vote of its
neighbors in the feature space. The most intuitive k-NN
classifier is 1-NN classifier; in this case, a given pixel will be
assigned to the class of its closest neighbor in the feature space,
which can be described as C1NN

n ðxÞ = Yð1Þ. The useful tech-
nique which can help nearer neighbors contribute more than
the more distant one is assigning different weights to the
neighbors. A commonweighting scheme is setting each neigh-
bor a weight of 1/d, where d is the distance to the neighbor.
Classification performance of k-NN can be significantly
improved by metric learning, and diversity can be introduced
to k-NN classifier by using different subsets of features,
different distance metrics, different values of k, etc. In the
experiment part, Euclidean distance is selected and number
of neighbors is 100, distance weight is setting as equal to
evaluate algorithm performance, and the number of neighbors
for KNN was tuning from 1 to 300 with step of 10.

3.3. Comparisons and Assessment. Classification accuracy
was evaluated by the confusion matrix as well as overall
accuracy and the Kappa coefficient [54]. With the help of
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Figure 3: Cluster topology of high-performance computing.

8 Journal of Sensors



the confusion matrix, overall accuracy and kappa coefficient
can be calculated using

OA = ∑q
i=1nii
n

× 100%, ð14Þ

Kappa = n∑q
i=1nii −∑q

i=1ni+n+i
n2 −∑q

i=1ni+n+i
× 100%, ð15Þ

where q is the number of classes, n represents the total
number of considered pixel, nii are the diagonal elements of
the confusion matrix, ni+ represents the marginal sum of
the rows in the confusion matrix, and n+i represents the
marginal sum of the columns in the confusion matrix [55].

All experiments are performed on high-performance
computing system using a portable bash system (PBS), as
shown in Figure 3. Each algorithm is programmed as a job
which can be submitted to cluster. Finally, time consumption
of all algorithms is compared.

4. Results and Discussion

4.1. LULC Mapping. On the basis of segmentation results,
spectral features and texture features are integrated and fused
to generate multifeature images as inputs to all classifiers. In
this research, the best segmentation scale is setting to 105 for
GF-1 dataset and 210 for GF-2 dataset through estimation of
scale parameter analysis. Land cover types in the study area
include 6 categories named UB, UC, UR, UG, UW, and HS,
more details can be found in Table 1. Training and testing
samples are labeled by an expert of remote sensing with the

assistance of Google Earth. Labeled samples for training
and testing are shown in Table 4. In order to test the sample
sensitivity of the proposed process chain, limited and suffi-
cient samples were selected from the GF-1 and GF-2 datasets,
respectively. And 3-hold out validation method was selected
for accuracy assessment.

During the research procedure, the same labeled training
and testing samples are used as inputs of the DT, SVM, KNN,
and RF classifiers. The default parameters of the constructed
DT, RF, SVM, and KNN classifier models are selected for GF-
1 and GF-2 image processing. Overall accuracy, kappa coeffi-
cient of all experiments, and the best classification results for
GF-1 and GF-2 are shown in Table 5 and Figures 4 and 5.

It can be seen that the OBIA-RF algorithm has best
classification results with an overall accuracy of 99.43% and
98.98% for GF-1 and GF-2, respectively (Table 5 and
Figures 4 and 5). In general, the correct classification accuracy
of all categories covered by urban land surface reached 91%.
The overall accuracy of the original RF classification is
94.67% for GF-1 and 91.26% for GF-2, and the Kappa coeffi-
cient is 0.93 and 0.89, respectively. The overall accuracy of
the SVM classification method is 87.5% and 85.5%, and Kappa
coefficient is 0.85, 0.83 for the GF-1 and GF-2 datasets, respec-
tively. The overall accuracy of the DTC classification is the
lowest, only 72.4% and 66.67% for GF-1 and GF-2.

By analyzing the single-class accuracy of original RF and
OBIA-RF classification results, the accuracy of corrected
classification of UB, UR, and UC is relative lower than other
classes, that is, 91.4%, 90.4%, and 92.2% for the GF-1 dataset,
while the lowest single accuracy land use type of the GF-2
dataset is UR and UC for 85.4% and 86.7%, respectively.
When the OBIAmethod is combined with RF accuracy, these
difficult identified classes are improved to 91.4%, 90.4%, and
92.2% for GF-1 data and 99.2% and 99.5% for GF-2 data.

When pixel-based approach and object-based approach
are compared, research results demonstrate that object-
based approach outstands pixel-based approach, which is
also demonstrated by other research [37, 38]. While our
research further demonstrates that among the selected algo-
rithms, OBIA is more suitable for the classifier ensemble
method when compared with stand-of-art single classifier,
especially for higher spatial resolution satellite data, GF-2
instead of GF-1.

4.2. General Discussion. Based on Table 5, the best accuracies
are achieved by the OBIA-RF model for both GF-1 and GF-2
datasets. Obviously, these experiments showed the superior-
ity of OBIA-RF over the selected state-of-art method in terms
of classification accuracy. By statistics, the OBIA-RF method
lets 4.62%, 11.89%, 11.79%, and 26.89% better accuracy than
RF, KNN, SVM, and DTC for the GF-1 dataset and lets
7.72%, 9.77%, 13.48%, and 32.31% better accuracy than RF,
KNN, SVM, and DTC for the GF-2 dataset.

The DTC achieved the worst overall accuracy. SVM
model improves classification accuracy by 15.1% and
18.83% at pixel level and improves classification accuracy
by 21.95% and 30.21% at object level for GF-1 and GF-2,
respectively. The RF model led to further improvement in
classification accuracy by 22.27% and 24.59% at pixel level

Table 5: Overall accuracy and kappa coefficient of selected
algorithms.

DTC SVM KNN RF

GF-1

P
OA (%) 72.4 87.5 87.4 94.67

Kappa 0.68 0.85 0.85 0.93

Time used (s) 0.032 0.57 0.05 27.13

O
OA (%) 82.86 90.86 89.71 99.43

Kappa 0.79 0.89 0.87 0.99

Time used (s) 0.034 0.71 0.1 15.53

GF-2

P
OA (%) 66.67 85.5 89.21 91.26

Kappa 0.63 0.83 0.87 0.89

Time used (s) 0.36 589.31 1.89 251.32

O
OA (%) 64.76 94.97 96.69 98.98

Kappa 0.6 0.94 0.96 0.98

Time used (s) 0.58 402.86 86.83 208.02

Table 4: Labeled samples.

UB
(pixels)

UC
(pixels)

UR
(pixels)

UG
(pixels)

UW
(pixels)

HS
(pixels)

GF-1 628 524 846 1085 427 1246

GF-2 30620 58059 34323 48874 39996 27412
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for GF-1 and GF-2. RF reduces the correlation between trees
through random sampling of observations and features. This
can demonstrate the advantage of the classifier ensemble for
classification of VHR remotely sensed data. The OBIA
method led to final improvement in classification accuracy
by 4.62% and 7.72% in this study. This advantage is especially
valuable for the relative high benchmark of random forest
performance. When the OBIA method was combined with
traditional machine learning model, especially classifier
ensemble which takes advantage of textual, spatial structure
information, and spectral information, classification results
will be improved undoubtedly.

Furthermore, we investigate the sensitivity of the
proposed model as well as the selected state-of-art machine
learning model including DT, SVM, and KNN to parameter
choice. Figures 6 and 7 plot the OA as a function of parame-
ter for the corresponding machine learning model selected.
The sensitivity of models to parameter choice for the GF-1
and GF-2 datasets (Figures 6 and 7) shows that (a) OA of
the DTC model increased with the maximum number of
splits, the peak value appears when number of split, GF-1
dataset equals to (290, 430) and GF-2 dataset equals to
(480, 250), for pixel and OBIA training, respectively; (b)
OA of SVMmodel increased to peak value when scale of ker-
nels, GF-1 dataset equals to (0.5, 2.5) and GF-2 dataset equals
to (0.1, 4.1), for pixel and OBIA and then significantly
declines; (c) OA of KNN model appears when neighbors,
GF-1 dataset equals to (291, 71) and GF-2 dataset equals to
(221, 171), for pixel and OBIA training, respectively; (d)
accuracy of RF fluctuates continuously with parameters
changes, peak value appears when the number of trees
reached, GF-1 dataset equals to (70, 240) and GF-2 dataset

equals to (230, 450), for pixel and OBIA training, respec-
tively; and (e) the OBIA method performed better than
pixel-based method for all selected model including the GF-
1 dataset and GF-2 dataset.

Sensitivity test of models to parameter choice of GF-1
and GF-2 shows that rank of OA for selected model is RF,
DTC, SVM, and KNN. Furthermore, we also wonder which
features are most important in the procedure of prediction.
With the help of out-of-bag estimation, feature importance
in the RF ensemble learning are calculated and shown in
Figure 8 for the GF-1 dataset and Figure 9 for the GF-2 data-
set. This feature importance rank shows the contribution
weight of different features for complex urban surface
classification. Figure 8 demonstrates that the most important
features for GF-1 remotely sensed data interpretation is
texture information (mean value calculated using gray-level
cooccurrence matrix(GLCM)) and the second important
feature is standard deviation calculated using GLCM, and
followed by the important spatial feature calculated by ratio,
and then spatial feature of length/width. And, for the GF-2
dataset, the first five rank features for complex urban surface
interpretation belongs to spatial feature (length, ratio) and
spectral feature (NDVI, NDWI, mean2). By a comprehensive
consideration of the processing results of the selected two
datasets, a preliminary conclusion can be drawn as that
spatial and texture features play an important role for
complex urban surface classification with high- and very
high-resolution remotely sensed data.

The quality of segmentation directly affects the effect of
subsequent classification. In this research, the multiscale
segmentation method was selected, which has three user-
defined parameters: scale, shape, and compactness. And the

Figure 4: The classification map derived from GF-1 using the OBIA-RF method.

Figure 5: The classification map derived from GF-2 using the OBIA-RF method.
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scale parameter that defines the average size of the image
object is considered to be the most effective parameter that
affects the segmentation quality, while there is no universal
rule for this scale determination. By literature review [46],
the ESP2 (estimation of scale parameter) scale parameter
estimation tool is introduced and combined with visual
interpretation to evaluate the optimal scale value and
segmentation effect of GF-1 and GF-2 remote sensing images
in this research. Based on statistic results (Figure 10), the
appearance of first peaks are 105 and 220 for GF-1 and GF-
2, respectively, which are the optimal segmentation scales
of GF-1 and GF-2 images in this study. The shape and
compactness parameters have limited influence on the
performance of OBIA, and they were setconstant at 0.1 and

0.5, respectively. Therefore, in this research, we chose 0.1
and 0.5 to participate in the segmentation to get the final
segmentation map (Figure 10).

Finally, to more explicitly evaluate the practical speed of
proposed image classification chain compared to RF, SVM,
and KNN, we consider empirical run times. In terms of
image performance speed test, to ensure fair comparison,
all methods shared the same code. The algorithms were
deployed in the Henan Polytech High Performance Comput-
ing Center server, shown in Figure 3 (here, node is 1, and
thread number of per CPU core per node is 24). Through
rough statistic, OBIA-RF spent 223.55 s, SVM spent
403.57 s, KNN spent 86.93 s, and DTC spent 0.64 s for the
GF-1 and GF-2 datasets in average. The model with the most
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time consumption is SVM, followed by KNN. The most time
saving model is DTC, which got less than 70% classification
accuracy.

5. Conclusion and Future Work

In this paper, we have proposed a novel urban mapping pro-
cess chain which can take advantage of both the OBIA and
classifier ensemble methods. The novelty in this paper is in
the direction of successful evaluation of OBIA-RF on Chinese
high-resolution satellite images GF-1 and GF-2 datasets. The
performance of the OBIA-RF method has been compared
with the state-of-art model such as DTC, SVM, and KNN,
and performance of proposed OBIA-RF method has also
been examined from urban mapping accuracy, the sensitivity
to parametric selection, and time consumption. As the
proposed process chain considered only spectral and GLCM
texture features for image semantic, other features which
might be useful to urban mapping such as local indicator of
spatial association, mathematical morphology profiles, and
decomposition characteristics of full polarized SAR features
will be considered for future research.

Data Availability

The very high-resolution remotely sensed data used in this
research is provided by Henan Data and Application Center
of the High Resolution Earth Observation System through
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