
Research Article
Breast Cancer Classification from Mammogram Images Using
Extreme Learning Machine-Based DenseNet121 Model

Raj Kumar Pattanaik,1 Satyasis Mishra,2 Mohammed Siddique,1

Tiruveedula Gopikrishna ,3 and Sunita Satapathy4

1Department of Mathematics, Centurion University of Technology and Management, Odisha, India
2Department of ECE, Centurion University of Technology and Management, Odisha, India
3Department of CSE, Adama Science and Technology University, Adama, Ethiopia
4Department of Zoology, Centurion University of Technology and Management, Odisha, India

Correspondence should be addressed to Tiruveedula Gopikrishna; gktiruveedula@gmail.com

Received 11 October 2022; Revised 8 December 2022; Accepted 12 December 2022; Published 31 December 2022

Academic Editor: Giorgio Pennazza

Copyright © 2022 Raj Kumar Pattanaik et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Breast cancer is characterized by abnormal discontinuities in the lining cells of a woman’s milk duct. Large numbers of women die
from breast cancer as a result of developing symptoms in the milk ducts. If the diagnosis is made early, the death rates can be
decreased. For radiologists and physicians, manually analyzing mammography images for breast cancer become time-
consuming. To prevent manual analysis and simplify the work of classification, this paper introduces a novel hybrid
DenseNet121-based Extreme Learning Machine Model (ELM) for classifying breast cancer from mammogram images. The
mammogram images were processed through preprocessing and data augmentation phase. The features were collected
separately after the pooling and flatten layer at the first stage of the classification. Further, the features are fed as input to the
proposed DenseNet121-ELM model’s fully connected layer as input. An extreme learning machine model has replaced the fully
connected layer. The weights of the extreme learning machine have been updated by the AdaGrad optimization algorithm to
increase the model’s robustness and performance. Due to its faster convergence speed than other optimization techniques, the
AdaGrad algorithm optimization was chosen. In this research, the Digital Database for Screening Mammography (DDSM)
dataset mammogram images were utilized, and the results are presented. We have considered the batch size of 32, 64, and 128
for the performance measure, accuracy, sensitivity, specificity, and computational time. The proposed DenseNet121+ELM
model achieves 99.47% and 99.14% as training accuracy and testing accuracy for batch size 128. Also, it achieves specificity,
sensitivity, and computational time of 99.37%, 99.94%, and 159.7731 minutes, respectively. Further, the comparison result of
performance measures is presented for batch sizes 32, 64, and 128 to show the robustness of the proposed DenseNet121+ELM
model. The automatic classification performance of the DenseNet121+ELM model has much potential to be applied to the
clinical diagnosis of breast cancer.

1. Introduction

Breast cancer is the uncontrolled growth of breast tissue.
Breast cancer accounts for 12.5% of all new cancer cases
each year, making it the most prevalent cancer in the world.
About 30% of newly diagnosed malignancies in women are
predicted to be breast cancers in 2022. Being a woman and
getting older are the two most significant risk factors for
breast cancer. The biggest global public health issue right

now is cancer. According to the WHO (World Health Orga-
nization), IARC (International Agency for Research on Can-
cer), and the GBD (Global Burden of Disease Cancer
Collaboration), they say that the cases of cancer have risen
28 percent from 2006 to 2010 and there will be 2.7 million
new cases of cancer in 2030. Breast cancer affects more
women than any other type of cancer (1.7 million incidents,
535,000 deaths, and 14.9 million life years adjusted for peo-
ple with disabilities). The incidence and mortality rates of
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breast cancer have shown enduring inequities, according to
the American Cancer Society. The American Cancer Society
(ACS) research states that in 2022, breast cancer will be a
major cause of high-mortality rates [1]. The report estimates
a daily death toll of 1,670. Invasive breast cancer will affect
roughly 13% (or 1 in 8) of American women during their
lifetime. Breast cancer treatment at its early stage becomes
an essential part of the diagnosis. There is also a highly sig-
nificant diagnosis of breast cancer early on in order to
improve the survival rate. Breast cancer diagnosis by manual
intervention consumes lots of time to understand and clas-
sify from the mammogram images. In recent years, deep
learning algorithms like CNN have proved their capability
to detect breast cancers from pathological images. It was also
found that some models failed due to overfitting. We believe
this complex diagnosis system can be made more accessible
by designing an automated deep-learning classification sys-
tem. Motivated by the advancement of deep learning, we
have developed a novel classification model for the classifica-
tion of breast cancer. The development of deep learning as
an image classification technique is crucial in the current
research era. Several studies proposed classifying mammog-
raphy images, and the effectiveness of the classifiers was
demonstrated using binary, multi, and dual classification.
By randomly deleting layers from CNN models during train-
ing, deep learning significantly enhances the training of deep
networks [2]. The MobileNets are built using a productive
architecture that creates deep neural networks using depth-
wise convolutions [3]. ResNet was suggested by Xie et al.
[4] for image classification. With a training accuracy of
98%, Falconi et al. [5] recommended VGG, Xception, and
ResNet for the classification of breast cancer. DenseNet
and SENet were suggested by Li et al. [6] to be interleaved
with histological images for the classification of breast can-
cer. With five-folder cross-validation, Wang et al. [7] pro-
posed modified InceptionV3 architecture and achieved an
area under the curve (AUC) value of 0.9468, sensitivity,
and specificity of 0.886 and 0.876, respectively. With the
MIAS dataset, Shin et al. [8] proposed Multiscale All Con-
volutional Neural Network (MA-CNN) and achieved a
sensitivity of 96% and 0.99 AUC. Squeeze-Excitation-
Pruning (SEP) block for histopathology images for breast
cancer classification was suggested by Zhu et al. [9] in
their hybrid CNN architecture. After a thorough review
of the literature, it was found that there was no research
on the use of the DenseNet121+ELM model for mammog-
raphy images. Due to the lack of faster-performance con-
ventional CNN automatic classifiers, we are inspired to
propose the DenseNet121-ELMmodel. The proposed model
performs well when compared to the existing CNN models
for classification.

The contributions are as follows:

(i) We developed DenseNet121 model hybridization
with an extreme learning machine (ELM) at fully
connected layer

(ii) We proposed an extreme learning machine (ELM)
model after the flattened layer for classification

(iii) We have utilized AdaGrad optimization for the
weight optimization of the model with a batch size
of 32, 64, and 128

The remaining sections are organized as follows: the
related research done by researchers is presented in Section
2, the methodology, the research diagram, and the architec-
ture of the proposed DenseNet121+ELM models are pre-
sented in Section 3, the results and discussion are presented
in Section 4, and the conclusion and references are presented
in Section 5.

2. Related Works

On the basis of medical imaging, researchers from all
around the world are developing techniques for automatic
breast cancer identification and classification. Due to the
rapid growth of deep learning in the medical imaging field,
the researchers are attracted towards this new research. The
essential element of any diagnostic system is that it aids
radiologists and medical professionals in the early identifi-
cation of cancer. For breast cancer, various deep learning-
based classification algorithms were developed. Shear-wave
elastography (SWE) data and CNN were combined with a
segmentation-free radiomics technique for breast tumor
classification proposed by Zhou et al. [10]. For feature
extraction, this approach produced elastic morphology
data. For the suggested experiment, 318 malignant breast
tumors and 222 benign breast tumors were used. During
the final experiment, the suggested SWE-CNN model
achieved specificity of 95.7%, sensitivity of 96.2%, and accu-
racy of 95.8%. Mask regions with CNN were suggested by
Chiao et al. [11] for the classification of breast cancer from
CT scan images. The data was collected from China Medi-
cal University Hospital using ultrasound images together
with biopsy, histology, and diagnostic reports. For the
experiment, a total of 307 ultrasound images from 80
instances were gathered. They have achieved an overall
accuracy of 85% in diagnosing benign and malignant breast
tumors using the proposed Mask R-CNN. A compact SE-
ResNet module for the CNN classifier was suggested by
Jiang et al. [12] in order to enhance CNN performance with
fewer parameters. The CNN’s squeeze-and-excitation block
and residual module are combined to form the SE-ResNet.
The research employed the BreakHis dataset, which has an
accuracy rate of 98.87% for binary classification and 93.81%
for multiclass classification. A deep learning architecture
with transfer learning was presented by Khan et al. [13]
for the classification of breast cancer in breast cytology
images. The LRH hospital in Peshawar, Pakistan, provided
the histopathology dataset. The GoogLeNet, Visual Geome-
try Group Network (VGGNet), and Residual Networks
(ResNet) were utilized for feature extraction. The combined
features were then given to the fully connected layer with
average pooling for the classification of cancerous and
benign cells. The accuracy of the proposed deep learning
framework was 97.525%. The deep learning Xception
model for breast cancer classification was proposed by
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Abunasser et al. [14]. The research used 7909 microscopic
images from the BreakHis breast cancer dataset, which
included 2,480 benign and 5,429 malignant samples. The
proposed Xception model attained training accuracy, preci-
sion, recall, and F1-score of 99.78%, 97.60%, and 97.58%,
respectively. A hybrid improved marine predators algo-
rithm- (IMPA-) ResNet50 model and transfer learning were
proposed by Houssein et al. in 2022 [15]. The optimum
hyperparameters of the CNN architecture were identified
using the IMPA. For experimentation, the DDSM dataset
and the MIAS dataset were employed. The MIAS dataset
achieved 98.88% accuracy, 97.61% sensitivity, and 98.40%
specificity for the classification of breast cancer, while the
DDSM and earned an accuracy of 98.32%, 98.56% sensitiv-
ity, and 98.68%. The DenseNet CNN model was proposed
by Nawaz et al. [16] for the multiclass classification of
breast cancer and predicted the subclass of cancers like
fibroadenoma and lobular carcinoma. DenseNet CNN
model produced outstanding processing results with
95.4% accuracy using the histopathology BreakHis image
dataset. Khan et al. [17] proposed deep CNN ResNet50
model to segment and classify types of breast abnormalities
into benign and malignant cases. The proposed model has
reached 88% accuracy in classifying breast cancer abnor-
malities such as masses, calcifications, carcinomas, and
asymmetry mammograms. In order to distinguish between
normal tissue and benign lesions in hematoxylin-eosin-
stained breast cancer microscopy images, Hameed et al.
[18] proposed Xception with six intermediate layers. The
classification proposal made by the Xception model makes
use of its own layering structure. The performance of the
model was investigated on four normalized datasets result-
ing from Reinhard, Ruifrok, Macenko, and Vahadane stain
normalization. They employed 5 × 5 cross-validation for the
performance measure and achieved 97.79% accuracy with a
kappa value of http://0.965. Hu moment, Haralick textures,
color histogram feature extraction techniques, and a DNN
classifier were proposed by Joseph et al. [19] for the multi-
classification of histopathology images. To prevent overfit-
ting, the DNN employs four dense layers, a softmax
function in its structure, and data augmentation. When
classifying images using the BreakHis dataset, 97.87%
accuracy was attained for 40 × magnification-dependent
histopathological images. In order to enhance the color sep-
aration and contrast, Alkassar et al. [20] suggested a
magnification-specific binary (MSB) and magnification-
specific multicategory (MSM) classification approach that
normalizes the hematoxylin and eosin stains. With the
BreakHis histopathology dataset, two unique feature type-
s—deep and shallow features— were extracted using two
deep DenseNet and Xception structure networks and
achieved an accuracy of 99% and 92% in terms of MSB
and MSM classification. Altameem et al. [21] proposed an
ensemble approach, where the Gompertz function was used
to form fuzzy rankings of the base classification. Incep-
tionV4, ResNet-164, VGG-11, and DenseNet121 models
were considered as base classifiers. They have used four
datasets as DDSM, BCDR, Mini-MIAS, and INbreast. An
accuracy rate of 99.32% was achieved by the InceptionV4

model with fuzzy rank-based Gompertz function which
was higher than the other ResNet-164, VGG-11, and Den-
seNet121 base models. Alqhtani [22] proposed a novel
layer-based Convolutional Neural Network (BreastCNN)
for breast cancer method, which works in five different
layers and uses different types of filters. Breast cancer was
classified with an accuracy of 99.7% using the Database
for Mastology Research (DMR), which contains 745 healthy
and 261 sick photos. Hosni Mahmoud et al. [23] proposed
a deep CNN method for feature extraction, and the features
are coupled along with the texture features for the classifi-
cation of breast cancer. A support vector machine was
trained on deep CNN for classification along with scale-
invariant feature transform (SIFT) algorithm and achieved
an accuracy of 97.8% with a TP rate of 98.45% and a TN
rate of 96%. A hybrid model based on “Pulse-Coupled Neu-
ral Networks (PCNNs) and Deep Convolutional Neural
Networks (CNNs)” was developed by Altaf [24] using three
publically accessible datasets, including the DDSM,
INbreast, and BCDR datasets. From the three datasets, they
have used 900, 300, and 450 images, respectively. The
hybrid PCNN-CNN model attained 98.72%. For the
DDSM, INbreast, and BCDR datasets, respectively, accu-
racy values were 97.5%, 96.94%, and 96.94%. Using a com-
bination of deep neural networks (ResNet 18, ShuffleNet,
and InceptionV3Net with 18, 48, and 50 hidden layers)
and transfer learning with the BreakHis dataset, Aljuaid
et al. [25] proposed a novel CAD method for breast cancer
classification and achieved average accuracies of 99.7%,
97.66%, and 96.94% for ResNet, InceptionV3Net, and Shuf-
fleNet, respectively. ResNet, InceptionV3Net, and Shuffle-
Net each achieved average accuracies of 97.81%, 96.07%,
and 95.79% for binary classification and multiclassification,
respectively.

3. Materials and Methods

3.1. Research Implementation Diagram. The research flow
diagram in Figure 1(a) presents step-by-step accomplish-
ment of the research work.

3.2. Proposed DenseNet121+ELM Model and Its Architecture.
The proposed DenseNet121+ELM model architecture is
shown in Figure 1(b). After resizing the input mammogra-
phy images to their original 224 × 224 size, the data was
divided into training and testing phases. The dataset is nor-
malized to have a unique dataset and fed to the models
VGG19 [26], MobileNet [2], MobileNetV2 [27], Xception
[28], ResNet50V2 [28], InceptionV3 [6], InceptionRes-
NetV2 [6], DenseNet201 [29], and DenseNet121 [27]. All
the data go through the convolution phases, average pooling,
and flatten phases. The models VGG19 [26], MobileNet [2],
MobileNetV2 [27], Xception [28], ResNet50V2 [28], Incep-
tionV3 [6], InceptionResNetV2 [6], and DenseNet201 [29]
were classify through the conventional phase of the classifi-
cation through a simple neural network with AdaGrad
weight optimization. The DenseNet121 architecture is pre-
sented in Figure 2(b).
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3.2.1. ELM Model. The output function of ELM [29] with N
hidden neurons is represented by

Y = 〠
N

n=0
βngn wn ; xð Þ + bN , ð1Þ

where gðw ; xÞ = ½1, g1ðw1 ; xÞ,⋯:,gNðwN ; xÞ� − is the hid-
den matrix, and β is the weight vector, Equation (1) can be
written as

Ηβ = Y , ð2Þ
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Figure 1: (a) Research implementation diagram. (b) Research workflow of proposed DenseNet121+ELM model with comparison CNN
models for the classification of breast cancer.
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Where Η is the hidden layer matrix, whose matrix elements
are mentioned as

Η =
1 g w1 ; x1ð Þ ⋯ gN wN ; x1ð Þ
⋮ ⋮ ⋮ ⋮

1 g w1 ; xNð Þ ⋯ gN wN ; xNð Þ

2
664

3
775: ð3Þ

Equation (2) is a linear system, which is given by

β =H†y,

H† = HTH
À Á−1

HT ,
ð4Þ

where Η† is the “Moore–Penrose generalized inverse of
matrix Η.” The input x is treated as the feature input data-
set, which is collected from the flattened layer, and fed as
input to the ELM model.

The DenseNet121 model has one 7 × 7 convolution, 58
(fifty-eight) 3 × 3 convolutions, 61 (sixty-one) 1 × 1 convolu-
tion, 4 average pooling, and one fully connected layer. Fea-
tures are extracted from dense blocks that go through
transition. One 1 × 1 convolutional layer and one 2 × 2 aver-
age pooling layer with a stride of 2 are present in each indi-
vidual transition layer. In this study, the classification
performance of mammography images was improved and
differentiated only by combining the DenseNet121 model
with the extreme learning model. The feed-forward neural
network known as the extreme learning machine serves as
a classifier at the fully connected layer. We have replaced
the neural network with ELM at the fully connected layer
in the DenseNet121 model. The DenseNet121+ELM model’s

weights have been optimized using the AdaGrad optimiza-
tion technique. The architecture model of ELM is presented
in Figure 2(a). For batch size 128, the classification perfor-
mance results are shown in Table 1.

3.2.2. The Steps for Algorithm Is Presented as Follows. In
actual practice, the CNN weights are optimized with a back-
propagation algorithm. The weights of the DenseNet121
model are optimized with a backpropagation algorithm.
We have considered AdaGrad optimizer for our research.

Step 1. The input size images 224 × 224 are considered for
this research. The images have undergone the process of
data augmentation, and the augmented images are fed as
input to the models. The convolution takes place with the
image and the filter. Considering the image size as ImP1×P2
is the real image; the filter is chosen randomly as the image
size as WM×N filter. The convolution is given by ½TM×N � = ½
ImP1×P2 ∗WM×N �.

Wij

Â Ã
=

w11 w12 ⋯ wM−2,N

w21 w22 ⋯ wM−1,N

⋮ ⋮ ⋯ ⋮

wM,N−2 wM,N−1 ⋯ wMN

2
666664

3
777775, ð5Þ

where i = 0, 1⋯⋯m and j = 0, 1⋯⋯N .
By rotating the filter in 180 degrees, then take transpose,
We have

Wij

Â ÃT = w11,w12,⋯w21,w22:⋯⋯WMN½ �: ð6Þ
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Figure 2: (a) ELM fully connected layer network structure. (b) DenseNet121 architecture.
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Step 2. After convolution, it passes the phases of dense layer,
and the average pooling has been accomplished with pool
size (2,2) with stride 2.

Step 3. After average pooling, the features are flattened by
the flatten layer, making the feature matrix into a vector
matrix. The vector matrix is fed as input to the fully con-
nected ELM layer. The weights are updated with AdaGrad
and the learning rate was adjusted.

The updated formulae are as follows:
Now, the new weight optimization equation is given by

Wnew
ij n + 1ð Þ =Wij nð Þ + ηxg nð Þ: ð7Þ

The learning parameter value of 0.001 is chosen for η.
Now, the flattened vector is given.

We have

Fij

Â Ã
= f11, f12,⋯f21, f22:⋯⋯ f MN½ �, ð8Þ

where i = 1, 2, ::⋯M, and j = 1, 2, ::⋯N and f11 =wnew
11 , f12

=wnew
12 , ::⋯ ⋯ f MN =wnew

MN .

Step 4. The output of the fully connected layer is passed
through the softmax layer to classifiy the images into cancer-
ous and noncancerous.

Figure 3: Sample images from dataset (DDSM).

Table 2: Image generation after data augmentation.

Type of breast images Training Testing

Healthy 1540 660

Nonhealthy 6160 2640

Total 7700 3300

Total images: 11,000

Table 3: Training phase parameters.

Hyperparameters Values

Image size 224 × 224
Batch size 32,64,128

Learning rate 0.0001

Rotation 45

No. of iterations 100

Table 1: Comparison accuracies for proposed work and previous research.

Reference Dataset used Model Accuracy in %

Abunasser et al., [14] Kaggel Xception 98.59%

Houssein et al., [15] DDSM IMPA-ResNet50 98.32%

Nawaz et al., [16] BreakHis dataset DenseNet 95.4%

Khan et al., [17] CBIS-DDSM ResNet50 88%

Hameed et al., [18] MIFLUDAN project Xception 97.33%

Joseph et al., [19] BreakHis dataset DNN 96.84%

Alkassar et al., [20] BreakHis DenseNet and Xception 99%

Our proposed method Kaggle dataset DenseNet121+ELM 99.47%
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The output of the hidden layer is given by Y as

y½ � = sigmoid 〠f M1XN2 ∗ WFC
M1XN2

Â ÃT� �
, ð9Þ

where f M1XN2 is the feature matrix. Now, the Y is passed
through the softmax layer, and the equation is given by

Cclass½ � = Soft max yð Þ, ð10Þ

where

Cclass½ � =
Cclass1

Cclass2

" #
ð11Þ

is the output class for cancerous and noncancerous cancer.

3.3. Dataset. This study collects data from open-source web-
sites using the Digital Database for Screening Mammogra-
phy (DDSM) dataset [17] shown in Figure 3 and uses

classification models to compare the accuracy. The dataset
is available at https://www.kaggle.com/datasets/awsaf49/
cbis-ddsm-breast-cancer-image-dataset.

3.4. Data Augmentation. The data augmentation process has
undergone “shifting, rotating, and flipping.” A total of 3672
images went through the data augmentation phase, generat-
ing about 11000 images. Table 2 shows that out of the total
data, 70% of the images are used for training and 30% are
used for testing. Table 3 lists the hyperparameters that were
applied during the experiment.

4. Results

4.1. Classification Results. For training and testing, 11000
images were used during classification, and the details of
image distributions are provided in Table 2. The training
accuracy of DenseNet121, DenseNet201, InceptionResNetV2,
and DenseNet121+ELM is compared in Figure 4. Table 4

1
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Figure 4: Batch size 32 training accuracy of breast cancer classification using DenseNet121, DenseNet201, InceptionResNetV2, and
DenseNet121+ELM.

Table 4: Performance measure results of the models with batch size 32.

Models No. of iteration Specificity Sensitivity Training accuracy Testing accuracy Computational time in minutes

VGG19 100 97.73 97.98 94.74 90.44 219.8159

MobileNet 100 98.53 98.4 95.08 91.55 210.7027

Xception 100 98.85 98.8 95.76 93.04 199.8891

ResNet50V2 100 98.56 98.37 96.06 93.47 198.8683

InceptionV3 100 100 99.52 96.4 94.44 194.7695

InceptionResNetV2 100 98.59 100 96.8 95.31 178.7057

DenseNet201 100 98.59 99.28 97.4 96.3 174.9159

DenseNet121 100 99.27 100 97.52 96.77 171.9848

DenseNet121+ELM 100 99.37 99.94 98.67 97.33 167.3545
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compares training accuracy for DenseNet121+ELM to the
other listed models and shows that it performs better.

For batch size 32, the performance results are shown in
Table 1. Figures 4 and 5 show the training accuracy and
training loss for a batch size of 32. It has been found that
the proposed DenseNet121+ELM model experiences less
training loss than the DenseNet121, DenseNet201, and
InceptionResNetV2 models. The suggested DenseNet121
+ELM converged in about 20 iterations compared to almost
50, 75, and 84 iterations for DenseNet121, DenseNet201,
and InceptionResNetV2, respectively.

The training accuracy and loss for the 64 batch size are
shown in Figures 6 and 7. It has been noted that while Den-
seNet121, DenseNet201, and InceptionResNetV2 required
roughly 40, 60, and 72 iterations, respectively; for conver-
gence, the proposed DenseNet121+ELM required just about
15 iterations. When compared to the other specified models,
it is found that the proposed DenseNet121+ELM model has
a lower training loss. For batch size 64, the performance
results are shown in Table 5.

The training accuracy and loss for a batch size of 128 are
shown in Figures 8 and 9. It has been noted that the pro-
posed DenseNet121+ELM required just about 15 iterations
to reach convergence, compared to almost 20 iterations, 25
iterations, and 45 iterations for DenseNet121, DenseNet201,
and InceptionResNetV2, respectively. When compared to
the other models, it is observed that DenseNet201 has a
higher training loss, whereas the proposed DenseNet121
+ELM model has a lower training loss. The proposed Dense-
Net121+ELM model took lesser computational time of
159.7731 minutes, compared to 167.1242 minutes for Den-
seNet121, 164.3344 minutes for DenseNet201, and
160.4033 minutes for InceptionResNetV2. For batch size
128, the performance results are shown in Table 6. The sys-

tem’s performance parameters, such as “sensitivity, specific-
ity, and accuracy,” are also crucial [12] for classification.

Sensitivity = TP
TP + FN

,

Specificity = TN
TN + FP

,

Accuracy = TP + TN
TP + TN + FP + FN

,

ð12Þ
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Figure 5: Batch size 32 training loss of breast cancer classification
using DenseNet121, DenseNet201, InceptionResNetV2, and
DenseNet121+ELM.
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Figure 6: Batch size 64 training accuracy of breast cancer
classification using DenseNet121, DenseNet201, InceptionResNetV2,
and DenseNet121+ELM.
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Figure 7: Batch size 64 training loss of breast cancer classification
using DenseNet121, DenseNet201, InceptionResNetV2, and
DenseNet121+ELM.
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where “true positive,” “true negative,” “false positive,” and
“false negative” are denoted by TP, TN, FP, and FN. We also
took into account computational time, which is a crucial
performance measure.

From Table 6, it can be shown that the 128 batch size
leads to improved training and testing accuracy as well as
faster calculation. The batch size of 128 resulted in 99.34%
training accuracy, 98.84% testing accuracy, and a calculation
time of 159.7731 minutes. The computation took 167.3545
minutes for batch size 32 and 163.8975 minutes for batch
size 64, as shown in Tables 5 and 6, respectively. The testing
accuracy is a crucial performance indicator that gives the
models credibility, regardless of how well they were trained.
Compared to the previous models, the suggested Dense-
Net121+ELM model suffers less loss. The proposed model
converged in a substantially less number of epochs when
compared to the total number of epochs. Table 1 shows
the proposed model’s accuracy in comparison to earlier
research. It can be concluded that the proposed Dense-
Net121+ELM model shows better performance results with

batch size 128 when compared to the other batch sizes 32
and 64. Figure 10 presents the comparison of all the models
considered for the research.

5. Discussion

The classification procedure took into account a total of
11000 images, out of which 7700 were used for training
and 3300 for testing. Table 4 gives more information about
the augmented images. The VGG19, MobileNet, Mobile-
NetV2, Xception, ResNet50V2, InceptionV3, InceptionRes-
NetV2, DenseNet201, DenseNet121, and DenseNet121
+ELM models were employed to classify the augmented
images. The fully connected layer weights of the CNN
models were tuned using the AdaGrad algorithm. The train-
ing performance of the malignant and noncancerous classi-
fication of breast cancer was shown in Figures 4, 6, and 8.
With batch sizes of 32, 64, and 128, all the mentioned
models were considered for the classification along with
the proposed DenseNet121+ELM model. The training losses

Table 5: Performance measure results of the models with batch size 64.

Models No. of iteration Specificity Sensitivity Training accuracy Testing accuracy Computational time in minutes

VGG19 100 97.81 98.05 94.63 91.64 214.3589

MobileNet 100 98.61 98.47 94.97 92.75 202.2457

Xception 100 98.93 98.87 95.65 94.24 198.3321

ResNet50V2 100 98.64 98.44 95.95 94.67 197.3123

InceptionV3 100 100 99.57 96.29 95.64 187.3125

InceptionResNetV2 100 98.67 100 96.69 96.51 171.2487

DenseNet201 100 98.67 99.35 97.29 97.5 168.4589

DenseNet121 100 99.35 100 98.41 97.97 164.5278

DenseNet121+ELM 100 99.45 100 99.34 98.53 163.8975
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Figure 8: Batch size 128 training loss of breast cancer classification
using DenseNet121, DenseNet201, InceptionResNetV2, and
DenseNet121+ELM.
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using DenseNet121, DenseNet201, InceptionResNetV2, and
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9Journal of Sensors



for InceptionResNetV2, DenseNet201, DenseNet121, and
DenseNet121+ELM were shown in Figures 5, 7, and 9. With
a batch size of 128, the VGG19 model achieved training and
testing accuracy of 97.76% and 97.98%, respectively. Addi-
tionally, the VGG19 model achieved specificity, sensitivity,
and computational time at corresponding values of 97.73%,
97.88%, and 211.2344 minutes. The MobileNet model
achieved training and testing accuracy of 98.23% and
98.42% with a batch size of 128. Additionally, it achieved
98.53% specificity, 98.41% sensitivity, and 198.1212 minutes
of computational time, respectively. The Xception model
achieved 98.85% and 98.73% training and testing accuracy,
and 98.65% specificity, 98.82% sensitivity, and 194.2076
minutes of processing time. The ResNet50V2 model
achieved training and testing accuracy of 98.56%, 98.87%,
respectively, and took 193.1878 minutes computational time
for convergence. The InceptionV3 model reached training
and testing accuracy of 98.63% and 98.52%, respectively.
Additionally, it achieved 100% specificity, 99.52% sensitivity,
and 183.1881 minutes of processing time, respectively. The
InceptionResNetV2 model achieved 98.58% training and
98.47% testing accuracy, and also achieved 98.59% specific-
ity, 100% sensitivity, with a computational time of
167.1242 minutes. The DenseNet201 model achieved train-
ing and testing accuracy of 98.98% and 98.85%, 98.84%

specificity, 99.28% sensitivity, and a computational time of
164.3344 minutes. The training and testing accuracy of
99.27% and 98.84% were achieved by the DenseNet121
model. Also, 99.18% specificity, 100% sensitivity, and a com-
putation time of 160.4033 minutes were achieved by the
model. The training and testing accuracy for the Dense-
Net121+ELM model were 99.47% and 99.14%, respectively.
Further, 99.37% specificity, 99.94% sensitivity, and
159.7731 minutes of computational time were obtained,
respectively, by the proposed DenseNet121+ELM model.
For this study, training and testing data for all models with
batch sizes of 34 and 64 were presented in Tables 5 and
6.100 epochs were taken into account for all categorization
performance measure studies. The DenseNet121+ELM
model has been proven to be suitable and worthy for classi-
fying breast cancer.

6. Conclusion

In this study, a novel DenseNet121+ELM model was pro-
posed for classifying breast cancer from mammography
images. The ELM model took the role of the conventional
neural network in the fully connected layer of the proposed
DenseNet121+ELM model. The preprocessed images under-
went data augmentation, and the aligned-augmented images
served as the classification input. The DenseNet121+ELM
model received the augmented images for classification.
For weight optimization, the AdaGrad optimization was
taken into account. The DDSM high-resolution breast-
imaging dataset was considered for the classification. We
have considered InceptionResNetV2, DenseNet201, Dense-
Net121, and DenseNet121+ELM models for figure illustra-
tion. The batch sizes 32, 64, and 128, and the learning rate
of 0.001, were considered for this study. In comparison to
the other models, the DenseNet121+ELM model converges
faster during training and testing. The proposed Dense-
Net121+ELM model was considered as a reliable classifier
in classifying cancerous and noncancerous breast cancer
from the images. Compared to other CNN conventional
algorithms, the proposed DenseNet121+ELM model will
aid medical professionals and radiologists in recognizing
breast cancer without needing manual interventions. The
proposed DenseNet121+ELM model took lots of time to
simulate, which is the model’s drawback. However, this

Table 6: Performance measure results of the models with batch size 128.

Models No. of iteration Specificity Sensitivity Training accuracy Testing accuracy Computational time in minutes

VGG19 100 97.73 97.98 97.76 97.88 211.2344

MobileNet 100 98.53 98.41 98.23 98.42 198.1212

Xception 100 98.65 98.82 98.85 98.73 194.2076

ResNet50V2 100 98.56 98.87 98.76 98.37 193.1878

InceptionV3 100 100 99.52 98.63 98.52 183.1881

InceptionResNetV2 100 98.59 100 98.58 98.47 167.1242

DenseNet201 100 98.84 99.28 98.98 98.85 164.3344

DenseNet121 100 99.18 100 99.27 98.84 160.4033

DenseNet121+ELM 100 99.37 99.94 99.47 99.14 159.7731
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Figure 10: Batch size 128 specificity and sensitivity comparison of
all models.
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proposed model will provide a superior solution to medical
diagnosis due to the faster processing unit. This model is
new, and till now, it has not been utilized elsewhere. The
proposed DenseNet121+ELM model can be employed for a
brain tumor dataset, liver disease dataset, etc. in future
research.

Data Availability

The dataset is collected from the publically available website
https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-
breast-cancer-image-dataset.

Conflicts of Interest

The authors of the paper Satyasis Mishra, Raj Kumar Patt-
naik, Mohammed Siddique, Sunita Satapathy, and Tiruvee-
dula Gopikrishna declare no conflict of interest or financial
conflicts.

Authors’ Contributions

Satyasis Mishra prepared the documentation and methodol-
ogy part of the research. Raj Kumar Patnaik prepared the
document per the journal format and helped collect and pre-
process the data. Mohammed Siddique complied research
diagram, and python programs were compiled. Sunita Sata-
pathy collected data from different parts of Ethiopia. Tiru-
veedula Gopikrishna prepared all simulation works and all
figures with the GPU system. All authors reviewed the
manuscript.

Acknowledgments

The authors thank Dr. Mohammed Naimuddin for the
critical reading of the manuscript and language editing.

References

[1] https://www.cancer.org/research/cancer-facts-statistics/all-
cancer-facts-figures/cancer-facts-figures-2022.html.

[2] D. Shen, G. Wu, and H. I. Suk, “Deep learning in medical
image analysis,” Annual Review of Biomedical Engineering,
vol. 19, no. 1, pp. 221–248, 2017.

[3] G. Andrew, M. Z. Howard, B. Chen et al., “MobileNets: effi-
cient convolutional neural networks for mobile vision applica-
tions,” 2017, arXiv:1704.04861v1 [cs.CV].

[4] S. Xie, R. B. Girshick, P. Doll’ar, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 2016.

[5] L. G. Falconi, M. Perez, W. G. Aguilar, and A. Conci, “Transfer
learning and fine tuning in breast mammogram abnormalities
classification on CBIS-DDSM database,” Advances in Science,
Technology and Engineering Systems Journal, vol. 5, no. 2,
pp. 154–165, 2020.

[6] X. Li, X. Shen, Y. Zhou, X. Wang, and T. Q. Li, “Classification
of breast cancer histopathological images using interleaved
DenseNet with SENet (IDSNet),” PLoS One, vol. 15, no. 5, arti-
cle e0232127, 2020.

[7] Y. Wang, E. J. Choi, Y. Choi, H. Zhang, G. Y. Jin, and S. B. Ko,
“Breast cancer classification in automated breast ultrasound
using multiview convolutional neural network with transfer
learning,” Ultrasound in Medicine & Biology, vol. 46, no. 5,
pp. 1119–1132, 2020.

[8] H. Shin, H. R. Chang, G. Roth et al., “Deep convolutional neu-
ral networks for computer-aided detection: CNN architec-
tures, dataset characteristics and transfer learning,” IEEE
Transactions on Medical Imaging, vol. 35, no. 5, pp. 1285–
1298, 2016.

[9] C. Zhu, F. Song, Y. Wang, H. Dong, Y. Guo, and J. Liu, “Breast
cancer histopathology image classification through assembling
multiple compact CNNs,” BMCMedical Informatics and Deci-
sion Making, vol. 19, no. 1, p. 198, 2019.

[10] Y. Zhou, J. Xu, Q. Liu et al., “A radiomics approach with CNN
for shear-wave elastography breast tumor classification,” IEEE
Transactions on Biomedical Engineering, vol. 65, no. 9,
pp. 1935–1942, 2018.

[11] J. Y. Chiao, K. Y. Chen, K. Y. Liao, P. H. Hsieh, G. Zhang, and
T. C. Huang, “Detection and classification the breast tumors
using mask R-CNN on sonograms,” Medicine (Baltimore),
vol. 98, no. 19, article e15200, 2019.

[12] Y. Jiang, L. Chen, H. Zhang, and X. Xiao, “Breast cancer histo-
pathological image classification using convolutional neural
networks with small SE-ResNet module,” PLoS One, vol. 14,
no. 3, article e0214587, 2019.

[13] S. U. Khan, N. Islam, Z. Jan, I. U. Din, and J. J. P. C. Rodrigues,
“A novel deep learning based framework for the detection and
classification of breast cancer using transfer learning,” Pattern
Recognition Letters, vol. 125, pp. 1–6, 2019.

[14] B. S. Abunasser, M. R. J. AL-Hiealy, I. S. Zaqout, and S. S. Abu-
Naser, “Breast cancer detection and classification using deep
learning Xception algorithm,” International Journal of
Advanced Computer Science and Applications (IJACSA),
vol. 13, no. 7, 2022.

[15] E. H. Houssein, M. M. Emam, and A. A. Ali, “An optimized
deep learning architecture for breast cancer diagnosis based
on improved marine predators algorithm,” Neural Computing
and Applications, vol. 34, no. 20, pp. 18015–18033, 2022.

[16] M. Nawaz, A. Adel, and T. Hassan, “Multi-class breast cancer
classification using deep learning convolutional neural net-
work,” International Journal of Advanced Computer Science
and Applications (IJACSA), vol. 9, no. 6, 2018.

[17] M. Heenaye-Mamode Khan, N. Boodoo-Jahangeer, W. Dullull
et al., “Multi- class classification of breast cancer abnormalities
using deep convolutional neural network (CNN),” PLoS One,
vol. 16, no. 8, article e0256500, 2021.

[18] Z. Hameed, B. Garcia-Zapirain, J. J. Aguirre, and M. A.
Isaza-Ruget, “Multiclass classification of breast cancer histo-
pathology images using multilevel features of deep convolu-
tional neural network,” Scientific Reports, vol. 12, no. 1,
p. 15600, 2022.

[19] A. A. Joseph, M. Abdullahi, S. B. Junaidu, H. H. Ibrahim, and
H. Chiroma, “Improved multi-classification of breast cancer
histopathological images using handcrafted features and deep
neural network (dense layer),” Intelligent Systems with Appli-
cations, vol. 14, p. 200066, 2022.

[20] S. Alkassar, A. Bilal, M. A. M. Jebur, J. H. Abdullah, and J. A.
Al-Khalidy, “Going deeper: magnification-invariant approach
for breast cancer classification using histopathological
images,” IET Computer Vision, vol. 15, no. 2, pp. 151–164,
2021.

11Journal of Sensors

https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset
https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html


[21] A. Altameem, C. Mahanty, R. C. Poonia, A. K. J. Saudagar, and
R. Kumar, “Breast cancer detection in mammography images
using deep convolutional neural networks and fuzzy ensemble
modeling techniques,”Diagnostics, vol. 12, no. 8, p. 1812, 2022.

[22] S. M. Alqhtani, “BreastCNN: a novel layer-based convolu-
tional neural network for breast cancer diagnosis in DMR-
thermogram images,” Applied Artificial Intelligence, vol. 36,
no. 1, 2022.

[23] H. A. Hosni Mahmoud, A. H. Alharbi, and S. Doaa, “Breast
cancer classification using deep convolution neural network
with transfer learning,” Intelligent Automation and Soft Com-
puting, vol. 29, no. 3, pp. 803–814, 2021.

[24] M. M. Altaf and National Center for Robotics Technology and
Internet of Things, King Abdulaziz City for Science and Tech-
nology, Riyadh, Saudi Arabia, “A hybrid deep learning model
for breast cancer diagnosis based on transfer learning and
pulse-coupled neural networks,” Mathematical Biosciences
and Engineering, vol. 18, no. 5, pp. 5029–5046, 2021.

[25] H. Aljuaid, N. Alturki, N. Alsubaie, L. Cavallaro, and A. Liotta,
“Computer-aided diagnosis for breast cancer classification
using deep neural networks and transfer learning,” Computer
Methods and Programs in Biomedicine, vol. 223, p. 106951,
2022.

[26] W. M. Salama and M. H. Aly, “Deep learning in mammog-
raphy images segmentation and classification: automated
CNN approach,” Alexandria Engineering Journal, vol. 60,
pp. 4701–4709, 2021.

[27] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, and
M. Kaur, “Classification of the COVID-19 infected patients
using DenseNet201 based deep transfer learning,” Journal of
Biomolecular Structure and Dynamics, vol. 39, no. 15,
pp. 5682–5689, 2021.

[28] M. Rahimzadeh and A. Attar, “A modified deep convolutional
neural network for detecting COVID-19 and pneumonia from
chest X-ray images based on the concatenation of Xception
and ResNet50V2,” Informatics in Medicine Unlocked, vol. 19,
p. 100360, 2020.

[29] H. Gao, Z. Liu, L. van der Maaten, and K. Weinberger,
“Densely connected convolutional networks,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 2017.

12 Journal of Sensors


	Breast Cancer Classification from Mammogram Images Using Extreme Learning Machine-Based DenseNet121 Model
	1. Introduction
	2. Related Works
	3. Materials and Methods
	3.1. Research Implementation Diagram
	3.2. Proposed DenseNet121+ELM Model and Its Architecture
	3.2.1. ELM Model
	3.2.2. The Steps for Algorithm Is Presented as Follows

	3.3. Dataset
	3.4. Data Augmentation

	4. Results
	4.1. Classification Results

	5. Discussion
	6. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



