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The residual structure may learn the entire input region indiscriminately because the residual connection can still learn well as the
network depth grows. To a certain extent, the attention mechanism can focus the network’s attention to the interesting area,
enhancing the learning performance of essential areas while decreasing the computational load for the system. As a result, the
combination of these two advantages could have substantial research significance, for both improve the efficiency and reduce
the computational load. A dense residual connection network that combine feature fusion attention approach in image super
resolution process is proposed. The dense residual block is enhanced with pixel and channel attention blocks, and a dual-
channel path design incorporating global maximum pooling and global average pooling is utilized. A hybrid loss function is
also proposed in order to increase the network’s sensitivity to the maximum error between individual pixels. The PSNR/SSIM/
L∞ performance metrics increased after applying the hybrid loss function and our attention techniques. The experimental
results demonstrated that our novel approach has several advantages over some recent approaches, as well as showing good
outcomes on many testing datasets.

1. Introduction

Image super-resolution (SR) is an important task in the field
of computer vision [1–5]. In SR process, high-resolution
(HR) images can be reconstructed from low-resolution (LR)
images, which can break through the resolution limit of the
original image. So it can be applied to fields such as enhanc-
ing LR film and television works, intelligent monitoring,
video processing, HR film, and television production.

In recent years, with the development of convolution neu-
ral network (CNN) and deep learning methods, the research
of image super-resolution based on deep learning has gradu-
ally become a hot spot. The method based on deep learning
is good at dealing with this kind of nonlinear problems. With
continuous development, convolution neural network is more
and more widely used in the field of image processing. Among
them, SRCNN [6, 7] proposed a super-resolution network
model based on 3 convolution layers, which mainly achieve
image feature extraction, representation, feature nonlinear
mapping, and final reconstruction. The network’s depth is so

constrained because it only consists of 3 convolution layers
connected in series. Building a deeper deep learning network
is made possible until the residual network [8] emerge. For
instance, VDSR [9] has built a deeper super-resolution net-
work combined with residual module [8, 10, 11], and the net-
work performance has also been greatly improved. Since then,
residual connections and deeper networks have become one of
the hottest areas of super-resolution [12], while dense residual
connections [13–16] and cascaded [17] structures with multi-
ple skip connections are becoming more and more popular.
This kind of method allows reusing the feature of various net-
work layers, pushing residual information and gradient infor-
mation to propagate more quickly, and enhancing their
performance.

Among them, SRDenseNet [13] is mainly constructed by
DenseNet [15] module. And DenseNet not only greatly
reduces the amount of network parameters but also alleviates
the problem of gradient disappearance to a certain extent by
reusing the feature map of shallow networks and bypass the
redundant features. This architecture makes full use of the
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features extracted from the shallow network and is reused in
the deeper layer. The improvement of RDN [16] mainly intro-
duces continuous memory mechanism (CM), global connec-
tion, and local residual connection to increase residual
propagation. SRResNet [18] mainly removes redundant mod-
ules in SRResNet, such as batch normalization (BN) compared
with EDSR [19], which can expand the depth of the model to
improve the quality of the reconstructed image.

In recently, there are also many attractive methods such as
HAN [20] based on heterogeneous graph, RFANet [21] based
on residual feature aggregation, and DeFiAN [22] with extra
Hessian filtering, they all take advantages of attention mecha-
nism. For SwinIR [23] with Swin Transformer, it is hard to
transfer feature information between neighbor window, which
may limit the application to some extent. Moreover, in the
feature learning process of the traditional deep learning net-
work, with nonlinearmapping such as convolution and activa-
tion function alone the network cannot make full use of the
high-frequency information and makes it hard to restore the
detailed feature. Adding attention mechanism to the network
improve the ability of extracting high-frequency information.
In recent years, attention mechanism is widely used in image
processing. Attention mechanism includes channel attention
mechanism and spatial attention mechanism. Channel
attention is used to capture the correlation between different
channel feature of the model.

After different convolution kernels, each channel will
generate new weight information. The convolution kernel
output is decomposed into multichannel information com-
ponents. The attention mechanism assigns each weight value
learned to the corresponding channel. The problem of infor-
mation overload can be resolved elegantly by introducing
the attention mechanism, which allows us to concentrate
on the information that is more important for the current
task among the many inputs, focus the system’s attention
less on other information, and even filter out unimportant
information. At the same time, we can enhance the task’s
accuracy and processing efficiency. Feature attention is pop-
ular in many disciplines, including text image [24], CT
image [25] or medical image [26], binocular camera image
[27], 3D remote sensing image [28], infrared image [29],
and video [30].

Additionally, there is a wealth of study in the fields rele-
vant to attention technology. Such as content attention [31],
grid attention [32], spatial attention [33], hierarchical atten-
tion [34], shuffle [35], multilevel feature enhancement [36],
and residual attention [37].

A comprehensive feature attention system has not yet
been developed among these existing attention techniques.
Therefore, an integrated multichannel attention network
based on channel attention, pixel attention, and residual
attention to realize the super-resolution of images and fur-
ther recover the detailed feature in images is proposed. For
this paper, our main contributions are as follows:

(1) A dense residual connection network based on fea-
ture attention mechanism is proposed, including
pixel attention and channel attention. Combined
with the residual scaling dense connection module

and the new hybrid loss function proposed by us,
our new method achieved significant performance
improvement especially for the L∞ error.

(2) We proposed and verified a residual scaling dense
block (RSDB) based on residual scaling. Compared
with traditional residual dense block (RDB), our
new method incorporates residual scaling layer and
feature attention layer to further improve the perfor-
mance. The experimental results also show that our
method has better residual convergence speed.

(3) A new hybird loss function LH is proposed and ver-
ified, which can effectively reduce the L∞ error of the
network. Compared with the traditional L1 loss func-
tion or L2 loss function, this method cannot only
improve the PSNR and SSIM performance but also
greatly improve the L∞ error performance and can
be easily adjusted according to user requirements,
which is of great value in L∞ sensitive occasions.

As we know, the attention mechanism can focus the net-
work’s attention to the relevant area, enhancing the learning
performance of essential areas while decreasing the compu-
tational load on the network. The channel attention model
can automatically learn the importance of each feature chan-
nel and assign different weights to each feature channel. Big-
ger weights will be assigned to it if the feature information is
important, and vice versa. Such requirement is essential for
the automobile system in autodriving application. As a
result, the combination of the two approaches have substan-
tial research significance. The experimental result infers that
the residual dense connection equipped with pixel attention
and channel attention could achieve positive influence on
the final results.

2. Our Method

2.1. RDAN and the Basic Block. Attention mechanism in
neural network is a resource optimization allocation scheme
that assigns computing resources to more important tasks
first and solves the problem of information overload when
computing resources are limited, especially for the mobile
vehicle systems [38, 39]. Generally speaking, the more
parameters of the model in the deep learning network, the
stronger the expression ability of the model, and the greater
the amount of information stored in the model, but this may
bring the problem of information overload.

We can focus on the more critical information in the
current task among the many input information by incorpo-
rating the attention mechanism and even filter out irrelevant
information, so as to solve the problem of information over-
load and improve the efficiency and accuracy of task pro-
cessing. The attention mechanism has been widely used to
tasks like image segmentation and super-resolution in the
field of computer vision. All of the visual attention models
in use today are spatial, and typically, the feature map of
the final convolution layer is weighted. We proposed a
model called residual dense attention network (RDAN)
based on multichannel feature fusion attention. Figure 1
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Figure 1: Schematic diagram of RDAN feature attention fusion network structure. Our RDAN is constructed by dense connection of
residual dense attention blocks (RDAB). The RDAB is composed of the basic block in dense connection. The basic block is equipped
with channel attention and pixel attention in sequence. The detailed structure is shown in Figures 2 and 3.
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Figure 2: Composition of the basic block. The residual dense attention block is shown on the left side. The RDAB contains several basic
block connecting in dense. The basic block is depicted on the right side. The basic block is equipped with multichannel attention and
pixel attention structure. The basic block is the fundamental component of our RDABs.
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Figure 3: Multipath channel attention and pixel attention modules. The multichannel attention block is on the left side. The input is divided
into two brunches after the first convolution layer. The feature flows into two different pooling channels and then concatenated and
activated before flow out this block. While the pixel attention module is on the right side, the PA module has two convolution layers and
two activation layer connecting in alternative orders.
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depicts the method’s structural breakdown. The multichan-
nel attention module and the pixel attention module can
be combined with RDN to restore the detailed feature
information.

RDAN is mainly composed of residual dense attention
block (RDAB) through dense residual connection. RDAB is
composed of basic blocks (BB) through dense connection,
and pixel-wise connection is utilized in the dense connec-
tion. The specific structure is shown in Figure 2. Combining
the dense residual connection module, our network can
allow the gradient and feature information propagate more
fluently and further improve the network performance.

The basic block is composed of a residual dense block
(RDB), multipath channel attention (MCA), and pixel atten-
tion (PA) blocks; the attention network adds residual con-
nections after MCA and PA to speed up the propagation
of residual and gradient information, as can be seen in
Figures 2 and 3. Local residual learning and feature attention
modules are part of a basic block structure. Local residual
learning modules enable it to skip through less essential area,
such as low-frequency regions. The backbone network archi-
tecture can focus on more effective critical information
thanks to the various local residual connections.

MCA. In the previous channel connection attention
module [24], average pooling was used to calculate channel
weight. But, average pooling tends to smooth edges and
ignore detailed information. Hence, we added another max-
imum pooling path to our multipath channel attention mod-
ule in order to restore more detailed information. The
convolution and activation layers are appended after the
average and maximum pooling layers. This strategy enables
more efficient detail acquisition and, as a result, increased
learning efficiency.

PA. The pixel attention module uses a convolution and
activation layer in sequence, as well as pixel-wise weighting
and residual multiplication. The network treats distinct fea-
tures and pixels unequally in the attention module, allowing

for more flexibility in processing diverse types of data and
extending the representation potential of convolution neural
networks. The feature weights in the features fusion atten-
tion (FFA) layer of multiple levels of features structure are
automatically learned from the feature attention (FA) mod-
ule, which assign essential features higher weights. This
structure can also store and pass on shallow data to deeper
layers.

2.2. Multipath Channel Attention Module. Based on the
input feature information, the MCAmodule primarily deter-
mines the weights of each channel. Not only global average
weights, but also global maximum pooling weights are pro-
duced in this module. This method allows for the collection
of more specific information. The input and output images
in the attention module have dimensions of C ×H ×W
and C × 1 × 1, respectively. After applying global average
and maximum pooling to the input data, we can obtain

ga =Hap Fcð Þ = 1
H ×W

〠
H

i=1
〠
W

j=1
Xc i, jð Þ, ð1Þ

gm =Hmp Fcð Þ =Max Xc i, jð Þ½ �, ð2Þ

where Hap and Hmp are global average pooling and global
max pooling functions, respectively; Fc is the input; Xc is
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Figure 4: Input and pixel attention channel weight (a). As we can see, the foreground is a desk with higher weight on the output (b).
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the input value; H and W are the height and width dimen-
sions of the input image, respectively. Then, after pooling
and point-wise splicing, it goes to the convolution layer
and activation layer, we get

CAc = σ Conv δ Conv Concat ga, gmð Þð Þ½ �½ �½ �, ð3Þ

where σ and δ are the ReLu and Sigmoid activation func-
tions, respectively; Concat is the pixel-wise splicing, and
Conv is the 1 × 1 convolution. Finally, the weights and the
inputs are multiplied pixel-wise to obtain the final channel-
aware output.

F∗
c = Fc ⊗ CAc, ð4Þ

where ⊗ is the point-wise multiplication, and the detailed
structure is shown in Figure 3.

2.3. Pixel Attention Module. The pixel attention module con-
centrates on the pixel weight. The pixel attention module
detects weight distribution over the entire image and apply
this information to execute targeted weight calculations.
The input-output image shape of the pixel attention module
changes from C ×H ×W to 3 ×H ×W. This output also
contains the RGB per color component weights; when utiliz-
ing the MCA output as the PA input, we get

PA = σ Conv δ Conv F∗
cð Þ½ �½ �½ �, ð5Þ

where F∗
c is the output of the MCA; σ and δ are the ReLu

and Sigmoid activation functions, respectively; Conv is the
1 × 1 convolution. Finally, the output of the final pixel-
aware module is obtained after multiplying the weights with
the input pixel by pixel as follows.

F = F∗ ⊗ PA: ð6Þ

Multipath channel attention weight and pixel attention
weight example are shown in Figures 4 and 5.

2.4. Hybrid Loss Function. RDAN network adopts a hybrid
loss function composed of L1 error and L∞ error, which

improves the instability of L∞ error of the original RDN net-
work. The L∞ error is significantly decreased in addition to
the PSNR/SSIM performance improvement, demonstrating
the evident benefits of the enhanced network. We can refer
to the test comparative analysis for further information.

2.4.1. L1-Norm. L1-norm is one of the most common norms,
which is defined as follows:

xk k =〠
i=1

xij j: ð7Þ

The L1-norm can be used to measure the difference
between two vectors, such as the mean absolute error (MAE)

MAE x1, x2ð Þ = ∑n
i=1 x1i − x2ij j

n
: ð8Þ

2.4.2. L∞-Norm. L∞-norm is mainly used to measure the
maximum value of vectors. It is defined as

xk k∞ =
ffiffiffiffiffiffiffiffiffiffiffiffi
〠
i

x∞i

r
, x = x1, x2,⋯, xnð Þ: ð9Þ

In general, it can be expressed by the following formula:

xk k∞ =max xij jð Þ: ð10Þ

A very good feature of L∞-norm is that it is independent

Input: Input image, block number,kernel size
Output: Output feature image
1. x = conv2dðinputÞ
2. vxi:clearð Þ
3. Fori = 1 to count + 1do
4. vxi:pushðxÞ
5. out put = ConcatðvxiÞ
6. out put = Reluðconv2dðoutputÞÞ
7. End for
8. out put = Reluðconv2dðoutputÞÞ
9. out put = out put ∗ scale rate {residual scaling}
10. out put =MCAðout putÞ {Multi-Channel Channel attention layer}
11. out put = PAðout putÞ {pixel attention layer}
12. out put = Addðx, out putÞ {residual connection}

Algorithm 1: Residual dense attention block.

Table 1: Training platform and related parameters.

Item Parameters

CPU Intel i9 12900K

GPU Nvidia RTX3080

CPU memory 64G, DDR5,4800MHZ

GPU memory GDDR6 12G

Operation system Windows 10

Deep learning platform Keras 2.7 with python 3.7
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of the dimension of the vectors. This feature has certain
advantages in comparing error vectors of different
dimensions.

2.4.3. LH Hybrid Loss Function. The LH hybrid loss function
is defined as

LH = α · L1 + β · L∞
α + β = 1

(
: ð11Þ

In practice, we usually use mean absolute error instead of
summation of absolute error in order to avoid the correlation
between L1-norm and vector dimension. However, the direct
use of L1-norm may reduce the average error, while the abso-
lute error of individual pixels may be still huge. This situation
does occur. Because the L1-norm only reduces the average
error, there is no constrain on the maximum error of a incor-
porating pixel. Therefore, a new loss function that can not
only reflect the overall error, but also effectively reduce the
maximum error of a single pixel is required, so as to further
improve the quality of image recovery.

The L∞-norm just satisfies this requirement, which
allows us to easily compare the max error between a single
pixels, which is independent of the number of vector dimen-
sion. Therefore, we proposed a hybrid error loss function
combining L1-norm and L∞-norm, which cannot only
ensure the overall error of the image but also effectively
reduce the maximum error between individual pixels.
Through our tests and analysis, it is found that the recom-

mended value range of β is [0.002, 0.1]. Too large or too
small will deteriorate the performance of the network.

2.5. Implementation Details. Residual scaling dense block
(RSDB) is composed of RDBs, residual scaling layer, and fea-
ture fusion attention layer through dense connection. The
detailed pseudocode is show in Algorithm 1. One of the pri-
mary modifications from the original RDN model is the uti-
lization of a more effective feature fusion attention layer and
residual scaling layer in order to increase the efficiency of
hardware resource consumption. In addition, it serves as
the fundamental building block of our RDAN method.

Each RSDB module has 6 convolution layers in it. All
additional connections are made by pixel-wise concatena-
tion, with the exception of the residual connection between
the first layer and the last layer, which is done by pixel-wise
concatenation. In dense connection, the activation function
is ReLu, and the convolution kernel size is 3. The RSDBmod-
ule excludes the BN, dropout, pooling, and other structures
and only includes the convolution layer, activation layer,

Table 2: Benchmark tests results, average PSNR/SSIM, bold is the best result, and italic is the second best result.

Method
Set14 BSD100 Urban100

X2 X3 X4 X2 X3 X4 X2 X3 X4

Bicubic
30.240 27.550 26.000 29.560 27.210 25.960 26.880 24.460 23.140

0.869 0.774 0.703 0.843 0.739 0.668 0.840 0.735 0.658

SRCNN
32.450 29.300 27.500 31.360 28.410 26.900 29.500 26.240 24.520

0.907 0.822 0.751 0.888 0.786 0.710 0.895 0.799 0.722

LapSRN
33.080 29.790 28.190 31.800 28.820 27.320 30.410 27.070 25.210

0.913 0.832 0.772 0.895 0.797 0.728 0.910 0.827 0.755

SRDenseNet
— — 28.500 — — 27.530 — — 26.050

— — 0.778 — — 0.734 — — 0.782

CARN
33.520 30.290 28.600 32.090 29.060 27.580 31.920 28.060 26.070

0.917 0.841 0.781 0.898 0.803 0.735 0.926 0.849 0.784

EDSR
33.920 30.520 28.800 32.320 29.250 27.710 32.930 28.800 26.640

0.920 0.846 0.788 0.901 0.809 0.742 0.935 0.865 0.803

RDN
34.010 30.570 28.810 32.340 29.260 27.720 32.890 28.800 26.610

0.921 0.847 0.787 0.902 0.809 0.742 0.935 0.865 0.803

SwinSR
33.070 32.182 31.091 33.345 28.900 31.474 33.856 28.793 24.525

0.891 0.889 0.847 0.933 0.825 0.854 0.959 0.874 0.781

DeFiAN
33.789 33.747 31.087 32.955 29.050 31.448 34.196 28.537 25.050

0.908 0.913 0.847 0.931 0.830 0.870 0.959 0.866 0.797

RDAN
35.815 33.881 31.228 33.281 30.133 29.646 34.289 28.816 26.473

0.923 0.908 0.850 0.939 0.859 0.838 0.958 0.885 0.827

Table 3: Parameter size of different method.

Method Parameters size (M)

SRCNN 16.41

RDN 33.58

SwinIR 36.79

DeFiAN 21.57

Our method 27.96
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residual scaling layer, concat/addition layer, and other essen-
tial calculations in order to increase the network’s overall
computing efficiency.

In addition, PA, MCA, and other feature fusion attention
structures are added to RSDB. In MCA and PA, we reduce
the number of feature maps by 8 through convolution layer.
The size of MCA and PA convolution kernel is set to 1 × 1
and 3 × 3, respectively. In multichannel attention, the pooling
function adopts average pooling and maximum pooling,
respectively. The activation functions are ReLu and Sigmoid,
respectively. InMCA output, the number of final output chan-
nels is 1. In PA, the final output channel is 3, that is, the RGB
component weight of the corresponding color channel.

In the upscale module, the subpixel method is more flex-
ible to realize image scaling, but it is required that the num-
ber of feature images input into the subpixel module must be
a multiple of the square of the magnification, otherwise
integer magnification cannot be achieved. Because this
method is different from the upsampling or downsampling
method, it will not lose or introduce new pixel information.
And the number of feature map can be set through a 1 × 1
convolution layer.

In MCA output, the final output channel number is 1.
But in PA output, it is 3, which represents the RGB compo-
nent weights of the different color channels. During the
training process, the preprocessor crops the input images
to size 64 × 64 for distinct training sets, with no overlap
between images. The training output is the same size as the
original input image.

Input and output: 64 × 64 images are used as input for
networks with varied magnification, while output high-
resolution images vary depending on the magnification
and are 128 × 128, 192 × 192, and 256 × 256, respectively.
The input image has been cropped, and it has been cropped
to various sizes in accordance with the various needs for
magnification.

3. Experiment Results

3.1. Training Platform, Data, and Evaluation Metrics. For SR
task, there are public datasets for this task in test and valida-
tion, mainly include Set5 [40], Set14 [41], BSD100 [42],
Urban 100 [43], DIV2K [44], and DTD [45]. The evaluation
metrics of training performance includes PSNR and SSIM
[46]. PSNR (peak signal to noise ratio) is an objective stan-
dard for evaluating images, which is the most common
and widely used objective measurement method to evaluate
image quality. Therefore, the greater the PSNR value, the less
distortion of the image. SSIM (structural similarity) is not
only a structural similarity but also a full images quality eval-
uation metrics. It measures image similarity in three aspects:
brightness, contrast, and structure. SSIM value range is [0,
1]. The larger the value, the smaller the image distortion.
The training platform and relevant parameters used in this
method are shown in Table 1.

Training settings and results: training optimizer is
ADAM, leaning rate (lr) =0.0001, β1=0.9, and β2=0.999.
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(b) SSIM

Figure 6: Changes in performance metrics of different methods in ablation tests.

Table 4: Comparison of ablation test performance metrics on the
BSD100 dataset (average on last 20 results).

Method PSNR SSIM L∞ loss

RDAN 25.8387 0.7446 0.0261

Margin — — —

RDN 25.6572 0.7407 0.0267

Margin -0.70% -0.52% 2.03%

RDAN with CA 25.6703 0.7385 0.0296

Margin -0.65% -0.82% 13.17%

RDAN with PA 25.5777 0.7378 0.0278

Margin -1.01% -0.91% 6.26%
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The convolution kernel size is 3 × 3, the dataset is set accord-
ing to reference [31], the input image size is 64 × 64, and the
training platform is Keras 2.7. The method proposed by us
has achieved ideal results from different datasets and differ-
ent scaling factor and has better stability compared with the
original RDN method.

3.2. Comparison with Existing Methods. The comparison of
the PSNR/SSIM result with the RDAN method and various
recent significant methods is shown in Table 2. Our method
has achieved excellent results in PSNR/SSIM/on standard
datasets.

Our method achieved 6 best result in both 9 PSNR met-
rics and SSIM results. One PSNR result rank second, and
two SSIM result rank second. The training setting are
according to the literature [31]. The size of different is
shown in Table 3.

3.3. Ablation Experiment. This ablation experiment is
designed to evaluate the impact of feature attention structure
on network performance in our novel technique. The results
of this experiment, which compare the RDN and RDAN
methods with different settings, are displayed in Figure 6
and Table 4. From this result, we can see that the network
performance is improved after adding the attention module.
Compared with the original RDN method, the performance
of PSNR/SSIM/L∞ is improved by 0.70%/0.52%/2.03%,
respectively. The lesser L∞ error is, the better the network
performance is. Compared with adding CA module or PA
module alone, SNR/SSIM/L∞ performance decreases by
0.65%/0.82%/13.17% and 1.01%/0.91%/6.26%, respectively.

Additionally, compared to the original RDN technique,
performance cannot be increased by adding CA or PA mod-
ules alone. Only by combining the two can the performance
be enhanced. The comparison experiments demonstrate that

the addition of the attention structure significantly improved
the PSNR/SSIM/L∞ error and other performance metrics
when compared to the original RDN network.

3.4. Residual Scaling Layer. We developed a residual scaling
layer in the network to further enhance its residual conver-
gence performance. We designed four groups of compara-
tive tests in order to quantitatively assess and compare the
performance of residual scaling layer. They are RDAN1:
RDAN with residual scaling in feature block; RDAN2:
RDAN with residual scaling layer in feature group; RDAN3:
RDAN with residual scaling layer and L∞ error loss func-
tion, in order to quantitatively assess and compare the per-
formance of residual scaling layer. Figure 7 and Table 5
both show the results. These results demonstrate that the
RDAN1 network’s performance is superior to the RDAN2.
The difference between the two networks is that the residual
scaling layer is located in different positions. In RDAN1 net-
work, residual scaling is set in basic block, while residual
scaling is set in RSDB in RDAN2 network. But in contrast,
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Figure 7: Residual scaling ablation comparison test results.

Table 5: Residual scaling ablation comparison test performance
metrics on the BSD100 dataset (average on last 20 results).

Method PSNR SSIM L∞ loss

RDAN0 25.6594 0.7397 0.0316

Margin — — —

RDAN1 25.8699 0.7455 0.0270

Margin 0.82% 0.78% -14.56%

RDAN2 25.7305 0.7415 0.0281

Margin 0.28% 0.24% -11.08%

RDAN31 25.9647 0.7484 0.0271

Margin 1.19% 1.18% -14.24%
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the PSNR/SSIM/L∞ of these two methods has also been
improved compared with the original RDAN0 network with
the residual scaling layer. The PSNR/SSIM/L∞ performance
metrics have been improved by 0.82%/0.78%/14.56% and
0.28%/0.24%/11.08%, respectively. It also shows that the
scaling performance in basic block is better than that in
RSDB.

Besides, the performance improvement is more pro-
nounced when our LH loss function is used, and the perfor-
mance metrics increase by 1.19%, 1.18%, and 14.24%,
respectively. This indicates that residual scaling and LH
hybrid loss function play an important role in promoting
the performance, and these two techniques can be used
simultaneously, with particular benefits for PSNR and SSIM
performance metrics. It can be seen from this comparative
experiment that the position of residual scaling has some
impact on the network’s performance, and that the perfor-
mance of residual scaling in basic block is superior to that
in RSDB. And combined employment of the LH hybrid loss
function and residual scaling can achieve to even better
benefits.

3.5. Influence of β in the Loss Function on the Performance
Metrics. We discovered through the previous two sets of
comparative experiments that the LH loss function can sig-
nificantly boost the network’s performance. Hence, we
designed four groups of ablation experiments to assess the
performance of ablation on network performance in order
to further verify the difference in the loss function. These
four sets of comparative tests include values of 0.0, 0.002,
0.01, and 0.02 successively. Figures 8–9 and Table 6 show
influence on PSNR/SSIM/L∞ error performance of different
β value. The outcomes demonstrate that the network perfor-
mance metrics improves when it is between [0.002, 0.01]
after adopting the new hybrid loss function.
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Figure 8: Influence of different β on the performance metrics PSNR/SSIM.
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Figure 9: The effect of β on the performance metrics L∞ error.

Table 6: Influence of β on performance metrics.

Method PSNR SSIM L∞ loss

RDAN β = 0 25.6594 0.7397 0.0316

Margin — — —

RDAN β = 0:002 25.8006 0.7449 0.0278

Margin 0.55% 0.70% -11.85%

RDAN β = 0:01 25.7415 0.7425 0.0318

Margin 0.32% 0.38% 0.56%

RDAN β = 0:1 25.4075 0.7314 0.0306

Margin -0.98% -1.12% -3.16%
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As can be seen in Figure 9, the network’s L∞ error is
nearly saturated before the adoption of the hybrid loss func-
tion, which means that more training cycles will not signifi-
cantly lower its L∞ error. It is clear that the network’s L∞
error is further decreased when the new hybrid loss function
is used, demonstrating the effectiveness of the hybrid loss
function in decreasing L∞ error. When β = 0:002, PSNR/
SSIM performance is enhanced by 0.55%/0.70%, respec-
tively, while L∞ performance is enhanced by 11.85%, and
the result is quite apparent.

And with β value continues to increase, the PSNR/SSIM
metrics increased by 0.32%/0.38%. Since the increase is not
obvious, the L∞ error decreases by 0.56%. And since β con-
tinue to increase, such as β = 0:02, the PSNR/SSIM metrics
decreased by 0.98%/1.12%, respectively, and the perfor-
mance deteriorated significantly. Therefore, it can be seen
that when β value in range of [0.002, 0.01] can effectively
improve the network performance from the comparison of
this experiment. While when β exceeds this range, the net-
work performance may deteriorate.
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Figure 10: Image 0001 from dataset Div2K.
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Figure 11: Image 0010 from dataset Div2K.
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Figure 12: Image 0055 from dataset DIV2K.
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3.6. Visual Performance Comparison. The visual perfor-
mance of various techniques is further compared using the
performance of the SRCNN, RDN, SwinIR, and DeFiAN
methods, respectively. The results of several methodologies
on the datasets DIV2K are shown in Figures 10–13 together
with the PSNR/SSIM/L∞ error metrics. The PSNR/SSIM/L∞
error metrics of the RDAN approach are outstanding in this
outcome. Where the loss function LH is a hybird loss func-
tion, rs = 0:1 is the residual scaling factor of the RDAN,
and β = 0:002.

From the visual performance, it is clear that the our
approach restored results are better than that of SwinIR
and DeFiAN methods in Figure 10. For example, the L∞
errors of SwinIR and DeFiAN are 0.2784 and 0.2471, respec-
tively, which are significantly bigger than that of the our
method with 0.2314 L∞ error, demonstrating the efficiency
with which the RDAN method can reduce the L∞ error
effectively.

Besides, as show in Figure 11, the PSNR/SSIM of SwinIR
method is 25.0648/0.5559, which is better than that of RDN
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Figure 13: Image 0068 from dataset DIV2K.
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Figure 14: Image monarch from dataset Set14.
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Figure 15: Image 189080 from dataset BSD100.
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method with 24.9222/0.5438, but the L∞ error of SwinIR
method is 0.4902, which is higher than that of RDN method
with 0.4157. The result shows that better PSNR/SSIM result
does ensure better L∞ performance. Similar result could also
be found in Figures 12 and 13.

3.7. Super-Resolution for Real-World Images. The training
data and the test data for the preceding trials come from
the same dataset, and the data from the same dataset have
certain similarities even when there is no overlap between
the training data and the test data. We employ training
and testing on many datasets to further compare the gener-
alization performance of various approaches on unknown
datasets, which can enable quantitative comparison and get
around the previous restriction that real image comparison
could only rely on visual comparison.

In this test, the training dataset is from DIV2K, and the
test dataset is from Set14, BSD100, and DTD. Since such
images also have high-resolution images for comparison,
PSNR, SSIM, and other indicators can be compared quanti-
tatively. As shown in Figures 14–17, the performance of
RDN, SwinIR, and DeFiAN methods are compared,
respectively.

Taking Figure 16 as an example, the PSNR/SSIM/L∞
metrics of SwinIR method and DeFiAN method is
25.5228/0.6711/0.2902 and 26.3475/0.7021/0.2667, respec-
tively, while the performance metrics of our method is

26.6747/0.7099/0.2510, respectively. Compared with SwinIR
method and DeFiAN method, the performance is signifi-
cantly improved.

From this result, we can see that the our method has
achieved the best performance, which not only has better
PSNR/SSIM performance metrics but also has better L∞
error performance. It demonstrates that the RDAN method
has better generalization performance on unfamiliar datasets
because it not only reduces average error but also maximum
error of local pixels.

4. Conclusion

Combining the advantage of residual dense net and feature
attention mechanism, we proposed a more effective residual
dense attention network (RDAN) for image super-resolu-
tion, which primarily consists of pixel attention and channel
attention and residual dense structures. By introducing
attention mechanism, we can focus on the more critical
information in the current task among the many input infor-
mation, reduce the attention to other area, and even filter
out irrelevant information to solve the problem of informa-
tion overload.

Meanwhile, we proposed a hybrid loss function based on
the combination of L1 and L∞ error. The range suggested for
the parameters is also given according to a set of comparison
experiments. Too big or too small may deteriorate the final
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Figure 16: Image 7266 from dataset DTD.
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Figure 17: Image 7272 from dataset DTD.
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performance. The experiment results show that the new
method cannot only obtain better PSNR/SSIM performance
but also better L∞ performance in our proposed RDAN net-
work based on feature attention mechanism, which verifies
that the new network has better performance. Moreover,
performance verification on real-world images shows that
our proposed method has obvious advantages too, which
further illustrates the advantages of our new method. The
experimental result infers that the residual dense connection
equipped with pixel attention and channel attention could
achieve positive influence on the final results. So we can con-
clude that the attention approach together with residual
dense structure could improve the performance of our net-
work if it is properly designed.
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