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Image processing-based artificial intelligence algorithm is a critical task, and the implementation requires a careful examination
for the selection of the algorithm and the processing unit. With the advancement of technology, researchers have developed
many algorithms to achieve high accuracy at minimum processing requirements. On the other hand, cost-effective high-end
graphical processing units (GPUs) are now available to handle complex processing tasks. However, the optimum
configurations of the various deep learning algorithms implemented on GPUs are yet to be investigated. In this proposed work,
we have tested a Convolution Neural Network (CNN) based on You Only Look Once (YOLO) variants on NVIDIA Jetson
Xavier to identify compatibility between the GPU and the YOLO models. Furthermore, the performance of the YOLOv3,
YOLOv3-tiny, YOLOv4, and YOLOv5s models is evaluated during the training using our PowerEdge Dell R740 Server. We
have successfully demonstrated that YOLOV5s is a good benchmark for object detection, classification, and traffic congestion
using the Jetson Xavier GPU board. The YOLOv5s achieved an average precision of 95.9% among all YOLO variants and the
highest success rate achieved is 98.89.

1. Introduction

In recent years, technology has constantly been evolving
with the spread of artificial intelligence techniques such as
deep learning. Various machine learning algorithms have
been developed to solve one of the biggest challenges in
computer vision, namely, object detection and identification
[1]. Object detection is a problem of identification, localiza-
tion, and classification of single or multiple objects in an
image [2]. It is well established that deep learning algorithms
have shown superior results to conventional techniques.
There are two main categories for object detection, identifi-
cation, and tracking. The first is based on a single-stage
neural network with convolutional architecture [3] that gen-
erates a fixed number of predictions on the grid, such as SSD

[4], YOLO [5], and M2Det [6]. The latter is based on two or
more stage networks that take advantage to find regions of
interest that have a high probability of containing an object
and second or higher networks to get the classification score
and spatial offsets, such as FPN [7], YOLOv5 [8], and faster
R-CNN [9]. Object detection techniques have been success-
fully used in many real-time applications ranging from
autonomous driving [10] to robotics and machine vision
[11], video surveillance [12] to traffic monitoring [13], and
medical imaging [14] to the diagnostic system [15].

Despite the unimaginable breakthroughs in machine
learning and deep learning [16], there is plenty of room for
improvement. In the present era, object detection, identifica-
tion, and tracking depend on an efficient algorithm and an
embedded platform running the computationally expensive
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algorithm. The optimal selection of embedded platforms is
critical for real-time applications [17].

Over the last few years, embedded hardware has inten-
sified as platforms with graphical processing units (GPU)
[18]. Embedded platforms based on GPUs provide high
performance and low power consumption and perform
functions in parallel. In addition, the compatibility of the
NVIDIA GPU-based embedded system with the JetPack
SDK [19] and other Open-Source Computer Vision
Library (OpenCV) provides good advantages as they have
libraries for deep computer vision learning and accelerated
computing. However, the performance of an embedded
system based on GPU depends on various parameters
such as GPU and memory usage, temperature, and infer-
ence time [20]. Furthermore, most reported works use off-
line or batch mode where historical or recorded data sets
are analyzed. This article examines the performance of
NVIDIA Jetson Xavier using deep learning algorithms in
real-time environments. The performance of all standard
YOLO variants for YOLOv1, YOLOv2, YOLOv3, YOLOv4,
and YOLOv5 are tested and evaluated in real-time on
NVIDIA Jetson Xavier. The main contributions that have
been made through this research work are as follows:

(1) The performance of YOLO variants with improved
CNN algorithms is evaluated in real-time

(2) The performance parameters of NVIDIA Jetson
Xavier AGX, such as memory, temperature, and

interference time, are also measured and evaluated
with the real-time implementation of YOLO variants

(3) The GPU processing board NVIDIA Jetson Xavier
was evaluated to analyze the real-time road traffic
performance using real-time traffic data

Furthermore, the remaining paper is structured as fol-
lows. Section 2 discusses the literature review on recent
research based on CNN-based object detection algorithms.
Section 3 presents the methodology of the research papers,
and analytical results are then provided in Section 4. Finally,
Section 5 states the conclusions.

2. Literature Review

Table 1 summarizes the literature on various deep learning
algorithms applied to GPUs over the last few years. In
[21], Blair and Robertson used the Histogram of Oriented
Gradients (HOG) and Mixture of Gaussian (MoG) for object
and event detection on-field programming gate array
(FPGA), central processing unit (CPU), and GPU. They
concluded that the detectors using GPUs process faster and
consume more power. However, the setups that perform
processing on FPGA have relatively less power consumption
with less accuracy. In [22], Artamonov et al. implemented
YOLO on mobile graphic processors such as NVIDIA Jetson
for traffic sign recognition. Komasilovs et al. developed a
vehicle detection and tracking system using an outdoor sur-
veillance camera. The pretrained SSD MobileNet V1 model

Table 1: A brief overview of various deep learning algorithms implemented over GPUs or conventional computing devices for a variety of
object detection purposes.

Deep learning algorithms implemented over conventional computing devices
Author and
publication year

Hardware Algorithm Aim

Artamonov et al. [22] NVIDIA Jetson/Tegra YOLO- CNN Traffic sign recognition

Barba-Guaman et al. [26] Jetson Nano
SSD-Mobilenet V1 and V2 (single shot

detector), SSD-inception V2, and
PedNet, multiped

Vehicle and pedestrian detection

Komasilovs et al. [12] Intel i5, 16GB RAM SSD Mobilenet V1 model Traffic sign recognition

Castellano et al. [27]
NVIDIA GeForce MX110

(2GB), RPi3 NVIDIA Jetson
TX2

Lightweight FCN Crowd detection

Zhao et al. [6]
LiDAR(light detection and
ranging) sensors, NVIDIA

GTX 1080i GPU

Spiking convolutional neural network in
YOLOv2

Vehicle and pedestrian detection
and minimize power consumption

of LiDAR

Avramović et al. [25] GeForce GTX 1080 Ti YOLO variants Traffic sign recognition

Khazukov et al. [24]
GPU: GeForce RTX 2080 TI,
CPU: i9 9900k, RAM: 64GB

YOLOv3 Speed detection and classification

Komasilovs et al. [12]
Cameras, CPU Intel i5, 16GB

RAM
SSD Mobilenet V1 model Object detection and tracking

Blair and Robertson [21]
FPGA(field programmable gate

array), GPU, and CPU
HOG, MoG (Histogram of Oriented
Gradient and Mixture of Gaussian)

Object tracking/event detection
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is used for the fine training vehicle detection model. The
real-time tracking was done using a CPU (Intel i5, 16GB
RAM) and achieved an average of 92% vehicle detection
and tracking accuracy. They concluded that the deep learn-
ing detection model is viable only when executed on better
GPU-equipped hardware.

Zhou et al. [23] used automotive light detection and rang-
ing (LiDAR) sensors and NVIDIA GTX 1080i GPU to imple-
ment a spiking convolutional neural network in YOLOv2 for
real-time object detection for autonomous cars. The proposed
networks were compared with various other frameworks.
They concluded better performance in terms of average preci-
sion than other typical models reported in the literature.

Khazukov et al. [24] used the YOLOv3 on a CPU
equipped with a GPU to detect vehicles and monitor traffic
parameters. They use the YOLOv3 neural network architec-
ture and Simple Online and Real-time Tracking (SORT)
open-source tracker. They achieved almost 90% accuracy
of vehicle count in day and night images. In [25], Avramović
et al. used different variants of YOLO implemented on
GeForce GTX 1080 to identify real-time performance for
automotive applications, including driving assistance,
detecting-road objects, autonomous vehicles, and automatic
traffic sign inventory maintenance.

Barba-Guaman et al. [26] used the Jetson Nano and
implemented various algorithms to detect vehicles and
pedestrians’ luggage, namely, single short detection (SSD),
PedNet, multiped, mobile net V1 and V2, and SSD-
inception V2. They used different datasets for the identifica-
tion of vehicles and pedestrians. The maximum accuracy for
vehicle detection was 84.01% for SSD-Mobilenet V1 and

SSD-inception V2. In the case of pedestrian detection, the
maximum obtained accuracy was 90.23% with the PedNet
framework. They also found models that consume less time
in their performance which were SSD-mobilenet-V2, SSD-
mobilenet-V1, and SSD inception-V2.

Castellano et al. [27] used embedded hardware platforms to
detect human crowds for aerial images using CNN. The train-
ing was run offline on the VisDrone dataset [28] using an Intel
Ci5 system with 8GB RAM and NVIDIA 2GB GeForce
MX110 GPU, running Windows 10 Operating system. The
trained networks were deployed on two computational hard-
ware platforms, Raspberry Pi 3, and NVIDIA Jetson TX2,
and TX2 outperformed Raspberry Pi 3 regarding detection
accuracy and processing speed for all implemented models.

Kim et al. [29] used a multistage convolutional neural
network (MSCNN) and variants of YOLOv3 to improve
vehicle detection on conventional Intel i5 CPU. The pro-
posed MSCNN and YOLOv3 apply to three datasets: KITTI
VD [30], AUTTI [31], and crowd AI [32]. The algorithms
were trained using the Pytorch package [33] in Python and
the GTX TITAN X GPU. Tests were performed on Intel
CPU i5-4670 without a dedicated GPU; however, the

Table 2: Compares various Jetson embedded boards in terms of performance features taken from [17] adapted from [39].

Comparison of different NVIDIA Jetson boards
Characteristics Jetson Nano Jetson TX1 Jetson TX2 Jetson Xavier NX Jetson AGX Xavier

CPU (central
processing unit)

Quad-core
ARM A57,
1.43GHz

Quad-core A57
processor

Quad-core ARM A57 BD
Dual-core Denver 2 64-bit

CPU

6-core NVIDIA Carmel
ARM 64-bit CPU 6MBL2

+4MBL3

8-Core ARM 64-bit
CPU, 8MBL2
+4MBL3

GPU
128 core
NVIDIA
Maxwell

NVIDIA Maxwell
GPU with 256
CUDA cores

N Pascal with 256
NVIDIA CUDA cores

NVIDIA Volta, 384 CUDA
cores, and 48 tensor cores

512-CUDA cores
and 64 tensor cores

DL accelerator
(deep learning
accelerator)

None None None 2× NVDLA engines
(2×) NVDLA

engine

Memory
2GB 64-bit
LPDDR4

4GB LPDDR4
memory

8GB 128-bit LPDDR4
8GB 128-bit LPDDR4×

59.7GB/s
16GB 256-bit
LPDDR4x

Storage MicroSD 16GB eMMC 5.1 32GB eMMC 5.1 MicroSD 32GB eMMC 5.1

Video encoder
4Kp30-4×

720p30 (H.264/
H.265)

4K at a rate of 30
2 × 4K at a rate of 30

(HEVC)
2 × 4K60 − 4 × 4K30, 20×

1080p30 (H.264)
8 × 4K at a rate of

60 (HEVC)

Video decoder
4Kp60-2×18×
720p30 (H.264/

H.265)
4K rate of 30

2 × 4K at 30, 12-bit
support

2 × 8K30-6× 4K60 1080p
30 (H.265)

22× 1080p30 (H.264)

2 × 4K at a rate of
30 12-bit support

Cost $99 $520 $599 $399 $699

Table 3: Data collection description.

Description of data collection
Dataset Size Object

COCO dataset [41] 330K 80

Our dataset 10K 5
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feasibility of real-time embedded implementation of
MSCNN and YOLOv3 was not discussed.

It is important to note that the previous works are based
on either offline or batch mode, where historical or recorded
datasets are used for object detection, identification, and
tracking. They have been using computationally less expen-
sive algorithms, which provide compromised accuracy in
terms of detection and tracking. Other methods discussed
in the literature can often be considered expensive, given
the real-time requirements, implementation on embedded
platforms, and application’s computational limits.

2.1. Object Detection Algorithms. There are various object
recognition and detection algorithms, such as YOLO [34].
However, YOLO (You Only Look Once) gained significant
importance in the computer vision community due to its
real-time and accurate object detection in wide applications
[35]. YOLOv2 was released in 2017 with several iterative
improvements in the layers, including batch norm. A higher
version added an object score presented in the bounding box
YOLOv2 was released in 2017 with several iterative

improvements in the layers, including batch norm, higher
resolution, and an adequately defined anchor box.

YOLOv3 was released in 2018, and the improvements
applied to this version added an object score presented
in the bounding box prediction and improved backbone
network layers. These predictions are at three stages of
granularity by improving the performance of smaller
objects. YOLOv2 and YOLOv3 have improved and higher
mAP; FPS than the Faster R-CNN and SSD, whereas Gir-
shick first published RCNN [36] and faster R-CNN [37] in
2014 and 2015.

YOLOv4 was released in 2020 from the literature and has
been more accurate than the YOLOv3 algorithm. However,
the accuracy of YOLOv4 has been compared with YOLOv5,
which is still open to question as some researchers have been
claiming that YOLOv4 is the more accurate while others are
claiming that YOLOv5 is more accurate. Jocher et al. released
YOLOv5 in 2020, right a few days after the release of the
YOLOv4 algorithm, with enhanced improvements. The
reported results show that all attributes have different data-
sets and improved hyperparameters, since none of the related
works uses the real-time live streaming processing on

Ziauddin Hospital
Camera 1

Ziauddin University
Camera 2

Ziauddin Hospital
OPD Camera 3

Ziauddin Hospital
Camera 4

(a) Location of the cameras for data collection

Outdoor
circulation fan

Router

Power unit

Outdoor circulation fan

Nvidia Jetson Xavier

PoE switch

(b) Standalone system

Figure 1: Locations of camera and hardware prototype of the proposed system. (a) Top picture shows the dataset collection performed from
different Ziauddin university and hospital locations by placing the cameras. (b) Bottom image shows the processing unit being used in
performing the proposed method.
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NVIDIA Jetson AGX Xavier compared with different YOLO
variants with the specific criteria in this research.

2.2. Mobile Computation Platforms. GPU is characterized by
excellent memory bandwidth and computation power [38].
With the same number of transistors available, the GPU
achieves higher arithmetic intensity due to graphic computa-
tion’s parallel nature. In addition, the GPUs are both
inexpensive and readily available. These features make the
GPU an excellent choice for implementing deep learning
frameworks. With the advent of developer kits like NVIDIA
Jetson developer kits, real-time portable applications have
been made possible. Table 2 presents NVIDIA Jetson devel-
oper boards available as a computation platform.

3. Methodology

This section proposes detecting and counting the vehicles
for traffic congestion monitoring using hardware accelera-

tion. In the present scenarios, different hardware accelera-
tors can solve complex problems through their capabilities.
This research includes the NVIDIA developer kit from the
Jetson family (Jetson Xavier AGX) used for the application
because of its high computation performance, as mentioned
in Table 2, and power consumption efficiency in utilizing a
standalone system. The Xavier AGX hardware accelerator
selection depends on the data characteristics such as size,
quantity, and application. This information provides assis-
tance in selecting the right combination based on the data
Properties in [40].

3.1. Data Selection. The initial step in selecting and imple-
menting the deep learning-based YOLO-variant algorithms
is to select the data. The data process involves converting
videos into images, where resolution must be considered to
accomplish good quality images to train the model and
determine the size of the input of the algorithms. The data
quantity should be observed because if the data is too small

Video data

Extraction of
frames

Feature extraction
from raw data

MS COCO dataset

Region based
object counting

Vehicle
classification

Performance evaluation

Model training (YOLOV5,

YOLOV4, YOLOv3, YOLOv3-tiny)

Figure 2: The system workflow: the video camera records stream, broken down into frames, and extracted features. The algorithm trained
on the COCO dataset then performs region-based detection, counting, and classification. Finally, the performance of the system is evaluated.
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for the training set that will negatively impact the samples
for each class. The COCO dataset [41] is mentioned in
Table 3, from which 20,500 images have been taken of five
classes of traffic vehicles. Our dataset contains one week of
a traffic video sequence at various challenging levels, such
as variations in time duration according to nighttime and
daytime, with different angles on a high-resolution and aug-
mented the dataset with a different rotation, zooming, and
flip into top and bottom. The first step is to divide the data-
set into 80% for training and 20% for testing. The first step is
to consider the color samples from the combined dataset
from the contained information for the feature extraction,
using it for deep learning models.

3.2. Hardware Accelerator. DL methods rely on hardware
accelerators, particularly those that fulfil data needs, and
the application of the model must be chosen, necessitating
assessment to find the best hardware for this processing.
Deep neural networks’ growth has raised the need for
computational complexity and, as a result, their resource
consumption, providing implementation issues for deep
neural networks. As mentioned in Table 2, the NVIDIA
Jetson Xavier AGX has been used, utilizing power consump-
tion efficiency as a standalone system. However, the other
components of the prototype hardware include an ethernet-
supported Hikvision HD camera and a battery backup system
for portability. The camera (model: DS-2CD4A85-IZH and
resolution ultra HD 4K resolution) [46] is communicated
with NVIDIA Jetson Xavier AGX using Real-Time Streaming
Protocol (RTSP) for live data analysis, as shown in Figure 1.
Furthermore, Internet Protocols (IPs) assigned to the camera
and NVIDIA media processor are of the same IP pole,
192.168.1.2 and 192.168.1.3, respectively.

The core part of the proposed AI-enabled object
detection-based traffic monitoring system is developing
and training several YOLO variants. Figure 2 represents
the overall process followed. However, further explanation
regarding the implementation is explained below sections.

3.3. Implementation of YOLO Variants. The You Only Looks
Once (YOLO) deals with object detection, which takes an

image as an example and predicts it by its bounding box coor-
dinates. The YOLO algorithm locates each object and a corre-
sponding class label using a bounding box and has an
advantage in speed and performance compared to other deep
learning algorithms. YOLO uses the convolutional neural net-
work backbone, divided into three layers: input, hidden, and
output. However, Table 4 mentions the total layers of individ-
ual YOLOmodels. The YOLOworks well for multiple objects.
Each object is associated with one grid cell, which helps over-
lap where one grid cell contains the center points of the two
different objects known as anchor boxes. Each bounding box
in the anchor box contains a certain height and width.
Figure 3 illustrates a field test where the YOLO detects multi-
ple objects in the image.

3.3.1. Loss Function.
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b
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From equation (1), the following are:
S refers to the number of grids;
b total number of forecasting boxes in a cell;
x and y different for each cell, center coordinates;
w and h are dimensions of the prediction box;
C confidence of forecasting;
v vehicle detection assurance;
λcoord position loss function weight;
λnovehicle classification loss function weight;

Table 4: Comparison of various convolutional neural network (CNN) frameworks in terms of map, FPS, and layers.

Convolutional neural network (CNN) frameworks Comparision
CNN variants Author mAP(mean average precision) FPS(frame per second) Layers

YOLO Redmon et al. [34] 63.4 45 26

YOLOv2 Redmon et al. [42] 48.1 42 32

YOLOv3 Redmon et al. [4] 51.5 20 106

YOLOv3-tiny Adarsh et al. [43] 33.1 220 24

YOLOv4 Bochkovskiy et al. [44] 43.5 65 137

YOLOv5 Jocher et al. [45] 48.1 264 24

YOLOv5s Jocher et al. [45] 36.8 455 17

Speed up Test time per image (s)

R-CNN Saeidi and Ahmadi [36] 1× 47

Faster R-CNN Ren et al. [37] 146× 0.32
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Figure 3: Detection results from the designed algorithms. Each object has a bounding box drawn over it, and a label is assigned by
classification.
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lvij vehicle object in the jth prediction frame; in case of a
target vehicle, its value is 1, otherwise, 0;

subsequent predicted value = (x, y,w, h, C, Vx, y,w, h,
C, V ).

The general loss function calculates the sum of the total
squared error for position predictions. According to the
root-square value of predictive width and height for the box,
the third and the fourth summing elements utilize the loss
function for certainty. The fifth part adds to the equation
and utilizes the loss function for the likelihood class. In the
YOLO calculation, the Intersection over Union (IOU) loss
function error and the loss function error classification are
determined using multiclass crossentropy classification.

3.3.2. Training and Evaluation. The network has been
trained using MS COCO (Common Objects in Context)
dataset. The dataset has 80 classes of objects with annota-
tions and labels. However, our dataset has combined MS
COCO to improve the algorithm’s performance. For dataset
development, HD cameras were deployed at various loca-
tions (Dr Ziauddin Hospital North Nazimabad, Dr Ziauddin
Hospital OPD North Nazimabad, and Ziauddin Engineering
University) and converted the video stream into frames, and
then those frames were saved into annotations of text file
format by using the label Img tool as demonstrated in
Figure 4. The total images taken were 5000 at this stage.
The dataset has been augmented using the library of aug-
mentor. The purpose was to train the algorithm to face
real-time data challenges like noise, picture brightness varia-
tion, and frame tilting issues. The five classes of images were
considered for training the network: truck, bus, car, bicycle,
and motorbike. The Dell R740 Server combined with NVI-
DIA Tesla T4 GPU is utilized for training the models, as
shown in Figure 2.

For evaluation, trained algorithms YOLOv3, YOLOv3-
tiny, YOLOv4, and YOLOv5s on a high-definition live video
stream of 20 fps have been tested. The research work is eval-
uated using YOLO models, and the performance matrices
are given in. The presented work is performed using the
NVIDIA Jetson AGX Xavier controller. The processing is
evaluated based on the RAM utilization, inference time, tem-
perature, and GPU utilization at a different resolution. The
overall hardware and software packages required for system
training and testing are shown in Table 3.

4. Results and Discussion

The performance of the YOLOv3, YOLOv3-tiny, YOLOv4,
and YOLOv5s models is evaluated during the training, and
the parameters are mentioned in Table 5. A 5000-image
dataset is used for evaluating each algorithm. The models
YOLOv3-tiny, YOLOv3, and YOLOv4 are quite similar,
but the YOLOv5s are adaptive learners and have high pre-
cision and recall compared to other YOLO models. In
Table 5, the first column represents the labels of the
trained objects divided into five classes: car, truck, motor-
bike, bicycle, and bus. The second column represents the
image size of images during the training, and the third
column is for batch size for the model; the fourth and fifth
represent recall and precision. Finally, the sixth and sev-
enth column is average precision for the performance of
the proposed model. The latest variant of the YOLO fam-
ily, defined as YOLOv5s, has high precision, recall, and
reduced weight size, which is the lightest weight character-
istic compared with the other models.

Precision Pð Þ = TP
TP + FP

, ð2Þ

Recall Rð Þ = TP
TP + FN

, ð3Þ

AP = 〠
i=n−1

i=0
R ið Þ − R i + 1ð Þ½ � ∗ Pi, ð4Þ

mAP = 〠
N

i=1

APi
N

: ð5Þ

In Equation (2), The true positive (TP) is used for
correctly detecting any object that represents and exists
in the frame conducted from the video. False-positive
(FP) represents the invalid/incorrect detection (sometimes,
the algorithm detects the incorrect objects in the frame
while detecting an object). In Equation (3), a false negative
(FN) represents the object the algorithm does not detect.
The Intersection over Union (IoU) assesses the overlap
region among the forecasting box and the actual item’s
ground truth bounding box in object detection. It can be
categorized as correct or wrong by comparing the IoU to
a specified threshold using IoU. Equations (4) and (5)
are used for average computing precision (AP) and mean
average precision. AP has been used to show the precision
and recall curve into a numeric value representing the

Figure 4: Image labeling using the labeling tool: labels are created,
and each object is assigned one label.
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overall precision average, where n is defined as the num-
ber of thresholds. The AP is the weighted sum of precision
at each threshold, corresponding to the increase in recall.
However, mAP is calculated with a value between 0 and
1, indicating how much the anticipated and ground truth
bounding boxes overlap. Because each value of the IoU
threshold yields a precise average accuracy (AP) measure,
this value must be specified.

The trends in Figure 5 evaluate the loss graph of
YOLOv5s, YOLOv4, YOLOv3, and YOLOv3-tiny for class,
object, and box. The horizontal axis shows the graph itera-
tions, and the vertical axis represents the loss amplitude. How-
ever, the trend shows that the overall performance of the
individual model is similar, and the loss trend decreases at a
similar rate with each number of iterations (Table 6) exhibits
classification performance by presenting the YOLOv5s,

YOLOv4, YOLOv3, and YOLOv3-tiny model training results.
Table 7 represents the success rate for classifying each object
on the scene and instances of misclassification. The highest
success rate of 98.89% has been obtained for cars, whereas
the algorithm has correctly identified the bus. The lowest
success rate obtained is 89.88% for bicycles. Overall, the
misclassifications are within tolerable limits. Figure 3 below
illustrates the objects detected by the deep learning models
by making bounding boxes around the detected image.

The performance evaluation of the models in terms of
RAM utilization, inference time, GPU utilization, and the
temperature of the on-shelf controller is presented in
Figures 6–9, respectively. For YOLOv3-tiny (in Figure 6),
GPU temperature remains on the lower side, whereas for
YOLOv5s (in red in Figure 6), the higher temperature corre-
sponded to higher image resolutions of 2304 ∗ 1296 and

Table 5: Environments for research implementation.

Implementation of hardware and software in implementing the algorithms
Hardware environment Software environment

Memory in GB 256 Operating system 18.0 Ubuntu

Processing unit (CPU) Intel Xeon Silver 4214 CPU 2.20GHz×48
Environment

Python 3.6

GPU
NVIDIA Jetson Xavier

Pytorch framework
NVIDIA Tesla T4

YOLOV3-TINY Loss
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Figure 5: Results of loss on YOLOv5, YOLOv4, YOLOv3, and YOLOv3-tiny algorithms. Each loss declines over iterations.

9Journal of Sensors



2595 ∗ 1520. YOLOv3 and YOLOv4 (in Figure 6) also had
considerably high temperatures for all resolutions. In
Figure 6, YOLOv5s at lower resolution seem good in keeping
the GPU temperature low. However, the temperature rapidly
increases at higher resolution, which shows that the v5s uti-
lize more GPU. The inference time (in seconds) is one of the
crucial factors in live streaming tasks. However, it is highly
dependent on detection accuracy. As illustrated in Figure 7
below, the inference time increased as the resolution of
images was generally in YOLOv3(in Figure 7), obtaining
the highest inference of 3.13 with 2596 ∗ 1520 resolution.
However, YOLOv3-tiny and YOLOv4 maintain a lower

inference time than others, with the lowest value of 0.46
and 0.6 seconds, respectively. On the other hand, YOLOv5s
take 1.37 and 2.579 seconds at resolutions 1280 ∗ 720 and
2596 ∗ 1520, respectively.

The histogram in Figure 8 illustrates the relation
between the image resolution and GPU utilization.
YOLOv5S (in Figure 8) has been shown to use more GPU
than other models for all image resolutions, whereas
YOLOv3-tiny (in Figure 8) used the lowest GPU for all
image resolutions. Therefore, YOLOv3 tiny seems to be the
most reasonable option for implementing the algorithm on
the Jetson Xavier board if the most significant concern is

Table 6: Training results of the YOLOv5s, YOLOv4, YOLOv3, and YOLOv3-tiny Model.

YOLO training parameters
Model Labels Image size Batch size Size Recall Precision mAP

YOLOv5s

5 640 x 640 16

14MB 0.98 0.987 0.959

YOLOv4 245MB 0.90 0.899 0.886

YOLOv3 236MB 0.91 0.909 0.897

YOLOv3-tiny 33.7MB 0.949 0.932 0.90

Table 7: Classification performance analysis for the proposed system.

% misclassifications
Objects Success rate Car Motorbike Bus Truck Bicycle

Car 98.89% — — — 1 —

Motorbike 95.84% — — — — 2

Bus 93.72% — — — — —

Truck 93.72% 1 — — — —

Bicycle 89.88% — 2 — — —
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keeping the GPU utilization in check. Finally, the lowest
RAM utilization has been achieved by YOLOv5s, as shown
in Figure 9 as a general trend, and RAM utilization exhibits
an ascending trend as image resolution is increased. For

example, YOLOv3-tiny and YOLOv5s utilize 2.8 and
2.4GB of RAM, respectively, out of 16GB at lower resolu-
tion. However, YOLOv3 uses 8.2GB, and YOLOv4 uses
7.1GB of RAM at a resolution of 1280 ∗ 720.
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5. Conclusion and Future Work

The main scientific contribution of the project is developing a
standalone system using Jetson Xavier AGX to perform traffic
surveillance and monitoring. In this research paper, Jetson
Xavier AGX is an excellent choice for implementing complex
CNN-based (YOLOv3, YOLOv3-tiny, YOLOv4, and
YOLOv5s) models with exceptional performance. Further-
more, improving deep learning libraries onNVIDIAplatforms
can result in even better results. The proposed system has been
tested day and night, showing a success rate of 98.895. Traffic
monitoring and management are one of the biggest challenges
for third-world countries like Pakistan. By implementing the
presented systems to detect and count vehicles, traffic prob-
lems can be minimized, such as false parking detection, traffic
management using traffic controlling, and congestion detec-
tion. Finally, the work has successfully demonstrated that the
powerful computational abilities of Jetson Xavier AGX can
be exploited for object detection in live video streams.
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