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Remote sensing images are widely distributed, small in object size, and complex in background, resulting in low accuracy and slow
speed of remote sensing image detection. Existing remote sensing object detection is generally based on the detector with anchors.
With the proposal of a feature pyramid network (FPN) and focal loss, an anchorless detector emerges, however, the accuracy of
anchorless detection is often low. First, this study analyzes the differences and characteristics of the intersection of union (IoU)
and shape matchings based on anchors in mainstream algorithms and indicates that in dense or complex scenes, some labels
are not easily assigned to positive samples, which leads to detection failure. Subsequently, we proposean one-anchor-based
(OAB) object detection algorithm based on the idea of central point sampling in the anchor-free detector. The positive samples
and negative samples are defined according to the central point sampling and distance constraint, and an anchor box is preset
for each positive sample to accelerate its convergence. It reduces the complexity of the anchor-based detector, improves the
inference speed, and reduces the setting of hyperparameters in the traditional matching strategy, rendering the model more
flexible. Finally, in order to suppress background noise in remote sensing images, the vision transformer (ViT) is adopted to
connect the neck and head, making it easier for the network to pay attention to key information. Thus, it is not easy to lose in
the training process. Experiments on challenging public dataset—DOTA dataset- verified the effectiveness of the proposed
algorithm. The experimental results show that the mAP of the optimized OAB-YOLOvV5 method is improved by 2.79%, the

number of parameters is reduced by 13.2%, and the inference time is reduced by 11% compared with the YOLOV5 baseline.

1. Introduction

Object detection plays an important role in the field of com-
puter vision. Remote sensing images have high resolution
and optional observation range. Remote sensing object detec-
tion provides a new detection method for object detection,
which is of significant value in military and national defense
security fields. In recent years, object detection has been based
on anchored detectors, which can be generally categorized into
one-stage detection [1-6] and two-stage detection methods
[7-10]. The one-stage method usually places numerous
preset-anchor points on the image. Generally, various anchor
points with different proportions are preset by clustering, and
the coordinates and categories of each anchor box are refined
many times. Finally, the screened anchor boxes are considered
as the detection results. Compared to the one-stage methods,

the two-stage methods refine the anchor boxes with a higher
degree and achieve promising results in terms of accuracy,
while the one-stage methods maintain faster detection speed.
With the emergence of feature pyramid networks (FPN)
[11], the accuracy gap between the one-stage and two-stage
methods has been narrowed to some extent.

In consideration of numerous preset-anchor boxes by
anchor-based detectors, the relevant academic research has
gradually shifted from anchor-based detectors to anchor-
free detectors. One approach is to locate several predefined
or self-learned keypoints and bind the spatial scope of the
object, which is called keypoint method [12]. Another
approach is to define the positive sample using the center-
based or region of the object and predict the four distances
(up, down, left, and right) from the positive samples to the
object boundary. This type of anchor-free detection is called
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a center-based method [13]. It eliminates the hyperpara-
meters related to anchors and has a generalization ability.

However, the performance of anchor-free detectors
cannot catch up with anchor-based ones at present. There
are two main differences between anchor-based and
anchor-free detectors. We take RetinaNet [14], YOLOv3
[6], and FCOS [13] as examples to illustrate the differences
between anchor-based and anchor-free detectors. (1) Allo-
cation strategy of positive samples was as follows: Retina-
Net based on IoU filter strategy takes positive samples if
the IoU value of default anchors and ground truth (GT)
IoU is greater than the threshold. YOLOv3 compares the
ratio of the width and height of the anchors to that of
GT. If the ratio is less than the set hyperparameters of
width and height ratio, it is a positive sample. FCOS takes
all points in a ground truth bounding box as positive sam-
ples. (2) Targets for regression, RetinaNet, and YOLOv3
algorithms are regression of the offset of the border rela-
tive to the anchors, while FCOS is to regress the distance
of the upper left corner point and the lower right corner
point relative to the anchor point. For the moment,
anchor-based detectors achieve high performance.

Most anchor-based detectors densely preset anchors at
each location of the feature map with three different scales.
Particularly, additional anchors are set according to different
angle intervals for oriented arbitrary objects with additional
angle settings. Numerous preset anchors lead to an extreme
imbalance between positive and negative samples. The most
common solution is to control the candidate ratio through a
specific sampling strategy [15, 16]. Both of them have the
problem of uneven positive and negative samples. Some
scholars have made some researches on this problem. For
example, ATSS [17] and dynamic R-CNN [18] adaptively
select high-quality positive samples. However, the study
above only considers the noise of positive samples and
ignores the potential localization ability of numerous nega-
tive samples and the credibility of IoU. HAMBox [19] shows
that low-quality negative samples can achieve high-quality
positioning. ATSS [17], DAL [20], and FCOS [13] show that
adding high-quality positive sample anchors significantly
accelerates convergence.

In aerial image scenes, the shooting angle of the image is
generally a top-view angle. In contrast, the objects of inter-
est, such as cars, planes, and ships, are usually relatively
small and occupy only a few pixels of the image. According
to DOTA [21], remote sensing images have the following
challenges. (1) Complex background: aerial images usually
contain complex scenes, and the target is easily surrounded
by scenes, resulting in missed or false detections; (2) huge
scale variations: the scale of the target varies greatly; (3)
dense arrangement: the detected objects are sometimes
densely or sparsely arranged; and (4) small objects. We
referred to the MS COCO [11] definition of large, medium,
and small targets; approximately 60% of the targets in
DOTA have less than 50 pixels.

Due to the complex background and the huge variation
in the orientation, scale, and appearance of the object
instances in remote sensing images, it is difficult to apply
the horizontal detection algorithms to rotated object detec-
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tion. In order to predict the location and orientation of the
rotated objects in remote sensing images, previous rotation
detection algorithms [22-29] use preset rotation anchors
and additional angle prediction. Owing to changes in orien-
tation, numerous anchors should be preset on the feature
map making them spatially aligned with GT boxes. Other
methods use horizontal anchor points to detect rotating
objects. For example, Rol transformer [23] uses horizontal
anchor points but learning the Rol of rotation through
spatial transformations reduces the number of predefined
anchors to some extent. Rotate-YOLOV5 [29] uses CloU as
the loss function of the bounding box and mosaic data
enhancements to improve the detection accuracy on the
basis of ensuring the detection speed. R3Det [30] recodes
modules using cascading regression and redefinition boxes
to achieve high performance. Although this method achieves
high performance, it must lay numerous anchor frames on
the feature graph. However, there is significant redundancy
in the distribution of anchor frames in the rotation scenario.

In this study, the DOTA dataset is representative and
challenging, and we discuss the proposed method based on
that dataset. The problem discussed is universal in detection
algorithms. Inspired by FCOS [13], YOLO [4], ATSS [17],
and Rotate-YOLOVS5 [29], we analyze not only the character-
istics of the existing mainstream algorithms for positive and
negative sample sampling strategies but also the advantages
of anchor-based and anchor-free methods. Meanwhile, we
propose a remote sensing object detection algorithm based
on a one anchor-based method. It optimizes the problems
of IoU or shape-matching strategy and reduces the design
of hyperparameters. Experiments were performed on the
DOTA dataset to support the analysis and conclusions.
The main contributions of this study are as follows:

(i) The characteristics of the matching strategy based
on IoU and shape are analyzed, and it is not neces-
sary to set the anchor frame with multiple propor-
tions on the same anchor point

(ii) Combining the idea of anchor-based and anchor-
free methods, a screening strategy for positive and
negative samples based on the one anchor-based
(OAB) method is proposed

(iii) The self-attention mechanism of the vision trans-
former is introduced to weaken the complex back-
ground information in remote sensing scenes,
strengthen the extraction of useful information,
and increase the overall detection performance

2. Proposed Methods

2.1. Network. The object detection of remote sensing images
must consider both efficiency and accuracy, and the algo-
rithm has good portability. As an improved version of
YOLOV3 [6] and YOLOv4 [1], YOLOV5 has similar basic
architecture and good algorithm portability. The YOLOv5
method was chosen as the baseline to meet both the detec-
tion performance and speed. The pipeline of the network
structure is illustrated in Figure 1. We used cross-stage
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FiGUure 1: The network architecture of OAB-YOLOV5.

partial connections (CSP) [1] as backbone. At the top of the
backbone network, we added a vision transformer (ViT) [31]
module to connect to the top of the neck. This allows the
network to focus on key information and better learn spe-
cific target features. For the detection head part of the net-
work, we added a point-spacing branch to each layer to
suppress the regression box far from the center point of
GT and improve the detection accuracy. This is similar to
the centerness of FCOS [13].

2.2. One-Anchor-Based Method for YOLOv5. One of the
important parts of anchor-based target detector is the sam-
pling strategy of positive and negative samples. Currently,
there are two mainstream sampling strategies to collect and
distinguish it, one is the sampling strategy based on IOU,
and the other is the sampling strategy based on shape. The
sampling strategy based on IOU sets the IOU threshold
and combines the sampling step. When the IOU value of
anchor and GT is greater than the set threshold, it is consid-
ered to collect a positive sample. The sampling step can con-
trol the number of anchors. The smaller the step, the more
anchors will be generated, and the more positive samples
will be matched, but at the same time, the more redundant
negative samples will be collected. The number of positive
and negative samples is also smaller, so, the sampling thresh-
old of positive and negative samples based on IOU matching
need to be set reasonably. It is hard to do and easy to lead to
the loss of small targets, and an imbalance of positive and
negative samples exists, especially in remote sensing images.
The sampling strategy based on shape matching is relatively
simple, but this method is more flexible and has fewer
hyperparameters. Due to the unreasonable anchors setting
by the sampling strategy based on IOU, a certain GT has
no anchor to correspond to and becomes the one that
ignores the region. It can be seen that this allocation system
will lead to relatively few positive samples. It is guaranteed
that each GT box must have a unique anchor by the sam-
pling strategy based on shape. The threshold is not fully con-
sidered. By comparing the anchor aspect ratio and threshold,
the sample is positive within the maximum IOU value. Even
if the maximum IoU is less than ignore threshold, it will not
affect the prediction box to be a positive sample. Otherwise,
it is negative. However, more anchor frames need to be pre-

set to match targets of different scales. Due to the different
sizes of targets in the real environment, a large number of
anchor aspect ratios will be set in advance to be more appro-
priate and real, which will increase the large amount of cal-
culation and result in low calculation efficiency. In this
section, we analyze the differences between the IoU and
shape label collection methods. Subsequently, we solve the
problem of IoU and shape label collection using the OAB
method. Finally, we introduce the self-attention mechanism
of ViT [31] to enhance the global reasoning ability of the
network to the feature map to detect the accuracy.

2.2.1. Label Assignment Based on IoU and Shape Strategy

(1) Based on the IoU Strategy. As shown in Figure 2, red rep-
resents GT box, yellow represents grid of feature graph
divided according to different sampling stride, and stride
represents sampling stride. The FPN generates feature maps
of large, medium, and small scales; each scale feature map
can predict the target of the corresponding scale. In the sam-
pling process, the sampling step of the anchor frame
expands with a decrease in the resolution of the feature
graph. Generally, for feature maps of large, medium, and
small targets, the sampling step size is set to 8, 16, and 32.
This study takes stride=8 and 16 as examples to analyze
the influence of different sampling step sizes on different
scale targets. Specifically, when stride = 16 or 8, the preset-
anchor frames of different proportions are laid at the center
point of each yellow grid, and the IoU between these preset
anchors and GT box is calculated. The positive and negative
samples are obtained for boundary box regression and clas-
sification by setting the IoU threshold to divide the positive
and negative samples. The division of positive and negative
samples involves two hyperparameters: positive sample
IoU threshold (pos_iou_thres) and negative sample IoU
threshold (neg_iou_thres). Assume pos_iou_thres=0.5 and
neg_iou_thres = 0.3. In Figure 2(a), most of the IoUs gener-
ated by the anchor frame are smaller than (neg iou_thres)
and are regarded as negative samples. In Figure 2(b), the
entire graph is divided into denser grids by reducing the sam-
pling step size. When the generated anchor frame is matched
with the GT box, more positive samples are matched. How-
ever, the number of redundant positive samples increases.
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(b) Stride=8

F1GURE 2: Diagram of matching based on IoU strategy.

Therefore, the setting of IoU hyperparameters significantly
affects the number of positive and negative samples. Addi-
tionally, with a decrease in the resolution of the feature
map, an increase in the sampling step size leads to the loss
of small targets, and an imbalance of positive and negative
samples exists, especially in remote sensing images.

(2) Based on the Shape Strategy. As shown in Figure 3, two
GT boxes with large-scale differences are listed to illustrate
the problems existing in the shape-based matching strategy.
Red represents GT box. Based on the shape matching strat-
egy, the ratio between the width and height of the preset-
anchor frame and that of the GT box is calculated. Subse-
quently, the hyperparameter threshold (anchor_ratio_thres)
is set according to this ratio to divide the positive and nega-
tive samples. If the aspect ratio between the preset-anchor
frame and GT box is between (1/anchor_ratio_thres,
anchor_ratio_thres), this part of the sample is positive. The
GT box in the upper left corner is a small target, whereas
the lower right corner is a large target. Red represents the
default anchor frame. It is discovered that the aspect ratio
of the default anchor frame is very different from the red
GT box in the upper left corner. Therefore, such small tar-
gets are likely to be ignored, resulting in no positive sample
to predict them, while the aircraft in the lower right corner is
well matched. The shape-based matching strategy matches
more positive samples by setting a larger range of aspect
ratios. Compared with the IoU-based matching strategy, this
method is more flexible and has fewer hyperparameters.
However, more anchor frames need to be preset to match
targets of different scales. In the real world, especially in
aerial images, the target scale varies significantly, and there
are targets that are very large or small. Therefore, once the
range of the aspect ratio is set improperly, some objects lose
positive samples, resulting in poor detection performance of
the corresponding categories.

2.2.2. One-Anchor-Based Sampling Strategy. During data
preprocessing, the coordinates of the GT were normalized.
We counted the distribution of the coordinates after normal-

FIGURE 3: Diagram of matching based on shape strategy.

ization and filled them into grid points of 1 x 1. The results
are shown in Figure 4(a). We found that most objects were
located in the center of the grid. According to this finding,
we chose the intersection of grids around each GT center
point as the center of the positive sample, instead of the
center of each grid, to speed up the convergence rate of
regression. As shown in Figure 4(b), the stride size of each
layer was set to 1. The feature map of each layer of the
FPN was divided into grids N x N grids, and the center point
(9.> g,) of each lattice point in the grid was calculated. For
the center point (c,,c,) of each real label, a rectangle with
(fixed value) radius r = 1 was generated around it, which is
defined as grid box. Furthermore, if the location (g,, g,) falls

within the range of the grid box, the location is regarded as a
positive sample, and the category label of the location is obj
(foreground class). Otherwise, it is a negative sample and
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obj=0 (background class). In addition to classification,
there is a 5-dimensional real vector ¢ = (t,,t,,t,, t;, obj) as
the regression target for this position. Notably, the coordi-
nate regression range of bounding box (bbox) in YOLOv5
is —0.5 ~ 1.5, which was used for sample expansion. In the
proposed method, by changing the sampling method, the
regression range of (x, y) coordinates is —1 ~ 1.

As shown in Figure 5, the regression of width and height
follows for YOLOV3 [6]. If the cell is offset from the top-left
corner of the image by (cx, cy) and the bounding box prior
has p,.p,, then the inference regression targets for the loca-
tion can be formulated as

b,=20(t,)-1.0+g,,

X

b,=20(t,) - 1.0+g,,

bw = pwetw’
bh = pweth .

2.3. Vision Transformer. Generally, the background of aerial
datasets is complex, which reduces the localization ability of
the model. The self-attention mechanism of ViT [31]
enables the network to perform global reasoning on the
image and on the predicted specific target. The model is used
to observe other areas of the image to help determine the
target in the bounding box. On the contrary, traditional
detection models can only predict each target in isolation.
Therefore, we introduce ViT [31] to suppress background
noise and strengthen the positioning ability of the model.

2.4. Loss Function

2.4.1. Regression Loss. In DOTA [21] dataset, most targets
belong to small targets, and they are arranged intensively.
While the IoU evaluates the predicted box as a unit of mea-
surement for the whole, the traditional IoU method only

w
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FIGUure 5: Bounding boxes with dimension priors and location
prediction.

TABLE 1: Parameter settings.

Parameter name Parameter value

Initial learning rate 0.01
Epoch 150
Batch size 8
Optimizer SGD
Momentum 0.937
weight_decay 0.0005
warmup_epochs 3.0
warmup_momentum 0.8
warmup_bias_Ir 0.1
Ir_factor 0.2
Nms 0.35
Mosaic 1.0
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TaBLE 4: Inference time evaluation for the three components on
DOTA-v1.5 test Results from RTX 3090.

Method Image size Inference NMS Total
YOLOv5m 1024 x 1024 12.4 123 24.7ms
OAB-YOLOv5m (ours) 1024 x 1024 124 9.6 22.0ms

considers the overlap area. According to the characteristics
of the DOTA [21] dataset, the overlap area, central point
distance, and aspect ratio of the bounding boxes are consid-
ered comprehensively. Therefore, CIoU loss [32] is adopted
to perform the regression of the boundary boxes, and the
loss function can be defined as follows.

P(bb)

Loy =1-1oU + 2

+av. (2)

And the trade-off parameter « is defined as

14

R — (3)

(1-IoU)+v’

2.4.2. Angle Loss. Angle regression is a difficult problem in
rotation tasks. Therefore, we introduce CSL [33] as the angle
regression method and apply it to the baseline YOLOV5 and
the proposed method. The CSL [33] method cleverly trans-
forms the angle prediction task from a regression problem
to a classification problem to solve the discontinuous bound-
ary problem in a rotating detector. Please refer to [33] for
further details. Finally, the expression of the angle regression
is as follows:

t=(6'-0,) % (4)

Variables 0, 0,, and t, are for the ground truth angle,
anchor angle, and predicted angle, respectively.

3. Experiment Results and Discussion

This section is divided into subheadings. It provides a con-
cise and precise description and interpretation of the exper-
imental results.

3.1. DOTA Dataset and Parameter Settings

3.1.1. DOTA-v1.5. DOTA [21] is a large-scale dataset for
object detection in remote sensing images. DOTA-v1.0 con-
tains 2806 large aerial images with the size ranges from
800 x 800 to 4000 x 4000 and 188,282 instances among 15
common categories. DOTA-v1.5 uses the same images as
DOTA-v1.0 and more extremely small instances (less than
10 pixels). Moreover, a new category “container crane” is
added. DOTA-v1.5 contains 403,318 instances in total.
Thus, DOTA-v1.5 is more challenging than DOTA-v1.0.
The version of DOTA dataset used in this experiment is
DOTA-v1.5. The proportion of the training set, validation
set, and test set in DOTA-v1.5 is 1/2, 1/6, and 1/3, respec-
tively. Meanwhile, we crop a series of 1024 x 1024 patches

Journal of Sensors

from the original images with an overlap of 200 pixels by
DOTA development kit. Subsequently, the subimages that
do not contain the targets are ignored.

3.1.2. Implementation Details. The DOTA-v1.5 is trained by
120 epochs in total with YOLOv5m as the pretraining
model. The initial learning rate is 0.01, and the cosine
annealing learning rate schedule is utilized to update learn-
ing rate. The weight decay is set to 0.0005. The SGD
momentum is set to 0.937. Besides, the warm-up strategy
is adopted to find a suitable learning rate in the third epoch
during training. And other experimental parameters were set
as shown in Table 1. The patches of training and test patches
were 1024 x 1024. During inference, we first send patches
(the same settings as training) to obtain the detection results
before merging, then map the detected results from patch
coordinates to the original image coordinates, and perform
nonmaximum suppression (NMS) on these results through
the original image coordinates. Referring to benchmarks
[34, 35], we set different NMS thresholds for each class,
“roundabout” is set to 0.1, “tennis-court” is set to 0.3,
“swimming-pool” is set to 0.1, “storage-tank” is set to 0.2,
“soccer-ball-field” is set to 0.3, “small-vehicle’ is set to 0.2,
“ship” is set to 0.2, “plane” is set to 0.3, “large-vehicle” is
set to 0.1, “helicopter” is set to 0.2,harbor” is set to
0.0001, “ground-track-field” is set to 0.3, “bridge” is set to
0.0001, “basketball-court” is set to 0.3, “baseball-diamond”
is set to 0.3, “container-crane” is set to 0.05, and limit the
maximum number of predicted targets for the experiment
to 1000. After interference, the detection results are submit-
ted to the DOTA official website at https://captain-whu
.github.io/DOTA/evaluation.htmlfor online evaluation of
the test dataset and compare with the mainstream SOTA
methods. The evaluation index is the average value of each
category of average precision (mean average precision,
mAP). And the expression of mAP is as follows:

1
AP = J PR(r)dr, (5)
0
i=1
mAp = 2K APi. (6)
K

where AP is the average accuracy of each category, obtained
by integrating PR(r)curves which is combined with preci-
sion and recall, AP, represents the average precision in class
i, and K represents the number of classes.

3.2. Experiment Result. In this section, we present the train-
ing and evaluation of the proposed model using the DOTA-
v1.5 dataset. It was deployed in the PyTorchl.7 framework.
All experiments were implemented with Intel (R) Xeon (R)
Silver 4114 CPU@ 2.20GHz, one NVIDIA GeForce RTX
3090, and 64 GB of memory.

3.2.1. Result on DOTA-v1.5. The YOLOv5 model with an
improved sampling strategy is compared with the mainstream
SOTA methods. Table 2 lists the detection performance of the
improved YOLOv5 method and the mainstream SOTA
method on the DOTA dataset (both one-stage algorithms
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(a) Baseline method

(b) Proposal method

FIGURE 6: Visualization of the results on DOTA-v1.5 between baseline and proposal method.

and two-stage algorithms are included), and the evaluation
index is the average value of each category of AP (mAP).
We compare the ten peer techniques, including DCL [36],
RSDet [23], GWD [37], KLD [38], R2-CNN [39], Rotate-
YOLOvV5 [29], RetinaNet [14], MR [40], CMR [41], and
FR OBB [21] on DOTA-vl.5. Specifically, Zhuang et al.
[29] proposed Rotate-YOLOv5 which is one of our most
relevant work. We proposed one-anchor-based method as
new sampling strategy that can better balance the positive
and negative samples of small targets. At the same time,
we add a ViT between backbone and neck to reduce back-
ground interference and increase the focus on the target,
while they used the mosaic data enhancement to enrich
the dataset and improve the detection accuracy of small tar-
gets. And then, they used the long-edge definition method
based on circular smoothing labels to achieve a rotatable
bounding box, which solved the effect of angle periodicity
on training by converting the regression problem into a
classification problem. Finally, they used the CIoU loss as
the loss function of the bounding box to improve the detec-
tion accuracy on the basis of ensuring the detection speed.
In this work, we also care about rotate object detection that
is based on the DOTA-v1.5 dataset and evaluated on the offi-
cial website to ensure the reliability of the experimental results.
In addition, the results in Table 2 show the effectiveness and
superiority of our proposed method. In contrast, class CC

has the lowest number of instances in DOTA-v1.5, where
the mAP of the “CC” class for all but the KLD method is very
low, near to 0%. We believe that this is because of the imbal-
ance of the positive and negative samples caused by the sam-
pling strategy. The OAB method proposed in this study
ensures that the sample ratio of each label is stable and does
not cause the instability of the positive and negative sample
ratios owing to the setting of the IoU threshold and the object
size, thus mitigating the long-tail effect caused by imbalanced
sample sizes between categories. As shown in Table 2, OAB-
YOLOVS5 achieves the highest mAP of 28.15% of the “CC”
class. The experimental results show that OAB-YOLOVS5 has
very excellent performances in the field of oriented object
detection.

3.2.2. Ablation Study. To further demonstrate the effective-
ness of the proposed sampling strategy and the influence of
the ViT [31] module on the overall performance, we com-
pared the influence of the proposed sampling method on
the detection performance. Without using the ViT [31] mod-
ule, the sampling method in this study achieved comparable
performance to the baseline and achieved a 5.45% improve-
ment for category “CC.” In all, the maps for the 16 categories
were the same. In all, the maps for the 16 categories were the
same. Thus, we reduced the number of parameters by 1M
and did not need to set additional hyperparameters during
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the sampling phase. Therefore, we achieved results similar to
that of the baseline method with less complexity, which
proves the effectiveness of the proposed sampling method.
Finally, we introduce the ViT [31] to reduce the interference
of background factors in the remote sensing images, enable
the network to study the overall image, and strengthen the
ability of the model. The precision of the algorithm is further
tested to prove the effectiveness of the overall approach.
Table 3 shows the experimental results.

Finally, we retrospectively evaluated the speed of the
baseline method and the proposed method. The test resolu-
tion was 1024 x 1024, and the batch size was 8. The results
are shown in Table 4; in terms of reasoning time and NMS
time, the method in this study reduces the number design
of the anchors. Therefore, the reasoning time on NMS is
reduced by approximately 11% compared with the baseline
method. In conclusion, the proposed method achieves a bet-
ter balance in speed and accuracy than the baseline method.

4. Detection Effect and Analysis

The detection effect of some categories is visualized at the
end of this study. The detection confidence and IoU thresh-
old are set to 0.1 and 0.6, respectively. The specific results are
shown in Figures 6(a) and 6(b). Test effect diagram of the
proposed method in the right column shows that the test
results are clearer and better than the baseline method. In
the detection result graph obtained using the baseline
method, there are many disorderly anchor frames because
each label presets a variety of anchors of different scales.
Therefore, there are some redundant detection anchor
frames. However, the method in this study is simpler and
more efficient.

5. Conclusions

In this study, we proposed a screening strategy based on a
single anchor frame to achieve high-performance arbitrary
direction remote sensing object detection. Specifically, the
characteristics of the two matching methods based on IoU
and shape are analyzed, and their shortcomings are identi-
fied. Therefore, it is unnecessary to preset multiple anchors.
It presets one-anchor-based (OAB) by combining the two
ideas of anchor-based and anchor-free and adopts the
central point method for sampling. To obtain high-quality
samples, the grid points around each real label were calcu-
lated as the sampling benchmark, which reduced the hyper-
parameter design of the matching part and ensured that each
GT had a corresponding positive sample for prediction. The
validity of this idea was verified using the challenging DOTA
dataset.

Data Availability

Datasets are available from https://captain-whu.github.io/
DOTA/dataset.html.
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