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Long-wave infrared (LWIR) and visible (VIS) cameras can image information at different dimensions, but the way to calibrate
these two types of cameras while registering and fusing the acquired images is difficult. We propose a calibration plate and a
calibration method for thermal imaging and visible imaging to solve three problems: (1) the inability of the existing calibration
plates to address LWIR and VIS cameras simultaneously; (2) severe heat interference in the calibration images of LWIR
cameras; (3) difficulty in finding feature points for registration due to the different imaging spectra between thermal imaging
and visible imaging. Simulation tests and error analysis show the error of outline central point computation is less than 0.1
pixel. Average errors of Euclidean distances from the margin outline scattered point sets of the closed circle and closed ellipse
to the outline central points decrease by 10% and 9.9%, respectively. The Mean Reprojection Error in the calibration of LWIR
and VIS cameras are 0.1 and 0.227 pixels, respectively. Through image registration design and fusion experiments, the FMI,
MS-SSIM, Q,.p SCD, and SSIM of the images fused after distortion correction are all higher than those of the images fused
before distortion correction, with the highest increases being 4.6%, 0.3%, 3.1%, 7.2%, and 1.4%. These results prove the

effectiveness and feasibility of our method.

1. Introduction

Camera calibration is the first step in the application of
cameras in machine vision. This step determines the inter-
nal and external parameters of the visual imaging system.
The intrinsic and extrinsic parameters of a camera decide
the internal geometric shape and optical properties of its
sensors, and its position and direction relative to the world
coordinate system, respectively. These parameters ensure
the image fusion and collaboration of multiple cameras
among machinery visual systems. The existing studies on
camera calibration are mostly based on visible (VIS) cam-
eras. Zhang proposed a camera calibration method based
on a high-precision calibration plate [1]. As the demand
for substance detection in a complex environment is rising,
long-wave infrared (LWIR) cameras, which can acquire infor-
mation regardless of the light source and can detect subsurface

information, have attracted wide attention. VIS cameras are
often calibrated using black-white chessboard calibration
plates or solid circle array calibration plates. Chessboard cali-
bration plates are effective only when a camera is sensitive to
visible bands. LWIR and VIS cameras have different spectral
bands, and thermal imaging does not show the color features
of objects, and its contrast is caused by the specific absorption
band within the thermal spectrum. As a result, the variation
between the feature space and the nonfeature space of a rou-
tine calibration plate is invisible to LWIR cameras at a normal
temperature [2, 3]. The calibration methods of VIS cameras
are inapplicable to LWIR cameras, indicating specific technol-
ogy is needed to calibrate LWIR cameras.

The existing calibration methods for LWIR cameras are
mostly heatable chessboard calibration plates based on the
traditional calibration algorithm. For instance, some
researchers used calibration plates consisting of floodlight
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heating circuit plates, printing chessboard calibration plates,
emissivity-specific materials, and bulbs, but the differences
in color emissivity led to differences in temperature absorp-
tion [4-8]. Large differences in thermal radiance and tem-
perature induced by building a chessboard from two
different materials will allow infrared cameras to acquire
chessboard patterns [9]. Floodlights cannot uniformly
lighten and thus cannot heat uniformly calibration plates.
Moreover, the very severe heat interference between adja-
cent checkers leads to a small temperature-changing gradi-
ent and low image contrast between adjacent checkers,
which will largely reduce the accuracy of corner detection.
Yiu-Ming et al. designed a calibration plate in which metal
meshes can be heated in front of plastic plates and used
heatgun-heated air as the medium to transfer heat to the cal-
ibration plate consisting of plastic plates and metal meshes
[10]. But the deformation of metal meshes will reduce the
accuracy of corner detection. Hilsenstein made a calibration
plate by milling chessboards into copper-foil-pressed plates,
in which copper foils had different heating characteristics
from glass fibers [11]. The direct contact between copper
foils and glass fibers still caused severe heat interference
between the two materials, which made the boundary
between adjacent checkers blur on infrared images, leading
to corner detection inaccuracy.

In this study, a new calibration plate design scheme was
proposed. This calibration plate mainly consisted of a black
heating plate, a circular hollow white calibration plate, a
temperature controller, and baffles. Based on this design
scheme, a corresponding calibration method feasible for
LWIR and VIS cameras simultaneously was put forward.

The remaining parts of this study are as follows: Section
2 presents an introduction to the overall scheme of calibrat-
ing LWIR and VIS cameras, Section 3 elaborates on the cal-
ibration plate design scheme, Section 4 presents the
calibration method, Section 5 demonstrates an experimental
validation, and Section 6 concludes.

2. Overall Scheme

The overall scheme of the calibration method for LWIR and
VIS cameras is illustrated in Figure 1 with the calibration of
an LWIR camera as an example. The steps are:

(1) calibration images are acquired by adjusting the pose
of the calibration plate or the camera

(2) from the calibration images, feature points for cam-
era calibration computation are extracted, which
are exactly the central points of circular hollow pores

(3) the feature points as extracted are applied to camera
calibration, and the intrinsic and extrinsic parame-
ters as well as the distortion coefficient of the camera
are calculated, so camera calibration is finished

(4) the distortion coefficient is used to correct distor-
tions in the images collected by the camera thereafter
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The LWIR and the VIS camera can both be calibrated
following these steps.

The images collected by the LWIR and the VIS camera
are registered and fused. After the camera poses are fixed,
images of the calibration plate are collected, and feature
points are extracted. The feature points of thermal imaging
and visible images are matched one-to-one for matrix trans-
formation. The subsequent images are registered using this
transformation matrix, and the registered images are fused.

3. Calibration Plate Design

The new calibration plate mainly consists of a black heating
plate (Figure 2(a)), a temperature controller (Figure 2(b)), a
circular hollow white calibration plate (9 x 12) (Figure 2(c)),
and a baffle. The heating plate is regulated by the tempera-
ture controller and can heat uniformly. The calibration plate
is made from a heat-insulating material, and the heat of the
heating plate can only pass the hollow parts of circular pores,
but not the solid part of the calibration plate. To solve heat
interference, a 25mm gap is left between the calibration
plate and the heating plate, and a layer of heat-reflecting
materials is smeared at the back of the calibration plate.
The structural schematic of the calibration plate is shown
in Figure 2. To meet the demands for camera calibration
with different parameters, we design hollow heat-insulating
baffles in the same size as the calibration plate, and made
the 9x12 calibration plate into the size of 5x6
(Figure 2(d)). The LWIR camera capture the heat distribu-
tion map passing through the circular hollow array, and
the VIS camera directly photograph the calibration plate.
In this way, the calibration images can be acquired by differ-
ent spectral cameras.

4. Calibration Method

The overall flowchart of the calibration method is shown in
Figure 3. First, a region of interest (ROI) is chosen to rapidly
detect the calibration plate. Then with the outline fitting
method based on least squares, the coordinates in the central
points of circular pores are calculated and sorted. The cam-
eras are calibrated according to the sorted coordinates.

4.1. Identification of the Calibration Plate. Before camera cal-
ibration, the pose of the calibration plate in the cameras-
collected calibration images shall be accurately identified.
The traditional calibration method shall traverse the whole
image to identify the photographed calibration plate, but
the irrelevant background in the image will largely reduce
the identification effect. For high-resolution images, whole
image traversing will largely waste computation resources.
Thus, we create an ROI in the image where the calibration
plate pattern is located. The subsequent detection and com-
putation are conducted in the ROI. In this way, the patterns
of the calibration plate in the image can be precisely identi-
fied and located.

4.2. Detection of the Central Point in the Solid Circle. The cir-
cular perspective projection under the camera’s view is often
imaged as ellipses, owing to lens distortion, perspective
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FiGure 1: Overall scheme of the LWIR camera and VIS camera calibration method.

transformation, perspective deviation, and photographing
view. Among the existing detection algorithms, the Hough
circle detection algorithm requires a high quality of shooting
circular patterns in the image [12], and the radius range of the
circle needs to be known. Moreover, all the points detected by
the edges are detected by drawing circles, and the point where
all the drawn circles cross the most is defined as the center of
the circle. Then a circle is drawn with this point and the input
radius. In the Hough circle transformation, all marginal points
are involved in the circle drawing to find out the circle center
with the largest weight, indicating the amount of calculation is
huge. Thus, this algorithm is inapplicable to the images col-
lected by LWIR cameras.

The central point detection algorithm proposed here is
elaborated below.

4.2.1. Edge Extraction and Screening

(i) A filtering operation is used to denoise the calibra-
tion image

(ii) The adaptive Canny edge detection operator is used
to detect circular contours and track the region
boundaries in the image. The connected objects with

too large or too small pixels in the ROI are
eliminated

4.2.2. Calculation of the Central Point of the Solid Circle.
During central point computation, the coordinates of the
extracted outline points are fitted into a circle (ellipse)
through the least squares method, and then the central point
of the circle is determined. After that, the distance from each
point to the central point in the circle (ellipse) above is cal-
culated. With the difference between the longest distance
and the shortest distance, a threshold is set. If the difference
is smaller than the threshold, the coordinates of the central
point of the circle fitted from least squares are used; other-
wise, the coordinates of the central point of the ellipse as-
fitted are chosen.

The rationale of the least squares method for circle fit-
ting is shown below.

The constraint of the circular curve equation is;

P +y P +ax+by+c=0. (1)

The difference in the squared sum of square radius R in
the distance from the extracted outline point (x;,y;)i € (1,
2,3,--,N) to the circle center (x,,y,) is;
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FIGURE 2: Structural schematic of the calibration plate (a) heating plate; (b) temperature controller; (c) 9 x 12 calibration plate; (d) 5x 6

calibration plate.

8;=x] +yr +ax; + by, +c. (2)

Let the objective function Q(a, b, c) to be fitted be the
sum of squares of §;;

(x} +y; +axi+byi+c)2. (3)

™M=

I
—_

N
Q(a,byc)=) & =
i=1

The minimum value of Q(a, b, ¢) can be found when the
following equation is met.

The coordinates (x,, y.) = (-a/2,-b/2) of the circle cen-
ter can be obtained by solving the parameters a,b in the
above equation.

The rationale of the least squares method for ellipse
fitting is shown below.

The constraint function of an elliptic curve is;

x> +axy +by? + cx + dy + e = 0. (5)

Similar to the least squares method of fitting circular
contours, the extracted contour points (x;, ;) i€ (1,2,3,
,N) are based on the rationale of the least squares method,
and the objective function to be fitted is;

Q(a,b,c,d,e) =

™M=

I
—

(x} + ax,y; + by +cx; + dy, + e)z. (6)

The objective function is optimized to find its minimum
value.
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The coordinates (x.,y,) = ((2bc — ad/a* — 4b), (2d — ac/
a? — 4b)) of the ellipse center can be obtained by solving
the parameters a4, b, ¢, d in the above equation.

4.3. Coordinate Sorting of the Central Points. Since the out-
line extraction from the images and the central point detec-
tion are both conducted line by line, when the calibration
patterns in the images are revolved, the order of detected
central points will mismatch with the actual row and column
coordinates of the central points in the calibration images.
For the convenience of solving, the feature points as
extracted shall be sorted according to rows and columns.

4.3.1. Building Linear Equation. As shown in Figure 4, when
ROI in the calibration plate is chosen, a quadrangle (the
frame surrounded by the red lines) is needed, and a linear

equation of boundaries in the tips P, (x;,y,), Py(xy, y,) of
the ROI was built. If x; =x,, no straight slope exists. This
straight line is perpendicular to the x-axis (Figure 4(a)),
and the linear equation is x = x;. If x; # x,, a straight slope
exists (Figure 4(b)), and the equation is y = kx + b, with slope
k=y, —y,x, —x, and intercept b=y, — kx;.

4.3.2. Sorting

(i) x-direction sorting. The distance §; from each central
point (x.,y,), (i=1,2,---,mn) to the x-direction of
the left side straight line is computed and sorted from
small to large, forming an mn x 1 matrix. Given the
distributive characteristics of the origin, it is unneces-
sary to calculate the distance from any point to the
straight line. This distance can be replaced with the
x-direction distance, which improves the algorithmic
efficiency

(ii) y-direction sorting. The number # of points in each
row is sorted by y from small to large, and finally,
an m X n central point matrix is formed
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FiGURE 5: The relative space position relationship between the camera and the calibration plate.

4.4. Camera Calibration. In a machinery visual system, to
determine the relationship between the three-dimensional
coordinates of a certain point on the surface of a real-
world object, and its two-dimensional coordinates in the
camera-acquired image, we shall build a geometric model
of camera imaging (the common camera imaging models
are mostly pinhole imaging models). The parameters of the
geometric model are exactly the camera parameters, and
the process of solving these parameters is called camera
calibration.

A point in the three-dimensional space of the world
coordinate system (real world) can be expressed as M=
[Xy-YurZ,)"s and a two-dimensional pixel in the image
coordinate system can be expressed as m = [u, v]”. The cor-
responding augmented vectors are: M =[X,,Y,,Z,,1]"
and 71 = [u, v, 1]". As stated above, an ideal camera geomet-
ric model can be regarded as a pinhole imaging model. The
relationship between the three-dimensional point M in the
world coordinate system and the two-dimensional point m
in the corresponding space coordinate system can be
expressed as:

t|M, 9)

where

fx S Uy
a=lo f, vl (10)
0 0 1

is called the intrinsic parameter matrix of a camera; (u, v;)
is its optical center, namely the main point, in unit of pixels;
[R 1] is called the extrinsic parameter matrix of the camera
(R is a 3 x 3 rotating matrix, and ¢ is a 3 x 1 translation vec-
tor [1]). When the x-axis and y-axis are fully perpendicular
to each other, the value of the inclination parameter s in A
is 0; f, and f,, are the proportion factors on the u-axis and

v-axis in the coordinate system of the image. The relative
space position relationship between the camera and the cal-
ibration plate is illustrated in Figure 5.

Camera distortion refers to the drift of lens-to-line pro-
jection. Simply, one straight line in the real world cannot
be reserved straight after projection by the camera lens to
the image. Camera distortions mainly include radial distor-
tion and tangential distortion. Radial distortion, which
includes barrel distortion and pincushion distortion, occurs
because the rays farther away from the center of the camera
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F1GURE 6: Schematic of radial distortion.
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lens are more bent than rays closer to the center (Figure 6).
Tangential distortion occurs because the lens cannot be
assembled in strictly parallel to the camera sensors
(Figure 7).

The above camera matrix does not consider lens distor-
tion, since an ideal pinhole model does not have a lens.
The real camera lens will inevitably cause distortion, which
can be corrected as follows [13]:

u/ u

= (1+ k7 + kyr* + kyr°)
v v
2p uv +p, (r* +2u7)
+ b
2p,uv +py (r* +2v7)

where(u, v) are the coordinates in the ideal image coordinate
system (the m stated above); (u',v') are the coordinates in
the real coordinate system of an image; k;, k,, k; and p,, p,
are the radial and tangential distortion coefficients of the
camera, respectively; r* = u? + v,

Distortion and intrinsic parameters are inherent charac-
teristics of a camera and can be always used once calibrated.
Since a camera is not an ideal pinhole imaging model and
owing to computational errors, the results obtained when

(d) Tangentially distorted image
of tangential distortion.

calibrating using different images will vary. Generally, the
calibration results are acceptable if the reprojection error is
low.

As for calibration of a binocular camera, according to the
above-calculated results, the positional relationship between
the coordinate system of an LWIR or VIS camera and the
world coordinate system can be expressed as:

My = RirM + tir

, (12)
My = RvisM + tvis

where m;. and M are the nonhomogeneous coordinates of a
point in the coordinate system of the LWIR camera and the
world coordinate system, respectively; R;. and f; are the
rotation matrix and translation vector from the LWIR cam-
era coordinate system to the world coordinate system,
respectively; m;, and M are the nonhomogeneous coordi-
nates of the corresponding point m;, in the coordinate sys-
tem of the VIS camera and the world coordinate system,
respectively; R ;; and ¢, are the rotation matrix and transla-
tion vector from the VIS camera coordinate system to the
world coordinate system, respectively. Subtraction of the
two equations can discard M and yield the positional rela-
tionship from the LWIR camera to the VIS camera:
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where R, R} and t, — R R}t are the rotating matrix R

and translation vector ¢ of this binocular system. Then the

relative position from the LWIR camera to the VIS camera
can be expressed as:

m, = Rm; +t (14)

The relative position of the VIS camera to the LWIR

camera can be determined in the same way. On this basis,

binocular calibration of the LWIR and the VIS camera can

be achieved [14-16].

5. Experimental

5.1. Detection of the Central Point in a Circle (Ellipse). The
circle (ellipse) central point detection algorithm was vali-
dated through simulation experiments (Figure 8). For the
sets of ideal closed-circle or closed-ellipse marginal outline
scattered points, the outlines fitted from this algorithm are
consistent with the real outlines, and the estimated central
points overlap with the real central points (Figures 8(al)
and 8(b1)). For sets of isolate arc-like circle or ellipse mar-
ginal outline points, the outlines fitted from this algorithm
are consistent with the real outlines, and the estimated cen-
tral points overlap with the real central points (Figures 8(a2)
and 8(b2)). During camera calibration, when an edge detec-
tion operator was used to find the margin outline, the iden-
tified margin outline points were not uniformly distributed
as in the ideal situation, because margin diffusion occurred.
To test the fitting effect under such diffusion, we introduced
some random interfering noise to both the circle and ellipse
margin outline point sets (Figures 8(a3) and 8(b3)). After the
random interfering noise at weight 0.1 was introduced, from
the sets of closed-circle and closed-ellipse margin outline
scattered points, this algorithm yielded low errors (less than
0.1 pixels) in the estimated central point from the real cen-
tral point. After the random interfering noise at weight 0.1
was introduced, from the sets of isolate arc-like circle and

arc-like ellipse margin outline points, this algorithm yielded
low errors (less than 0.1 pixels) in the estimated central
point from the real central point.

Fifteen groups of random interfering noises with the
weight from 0.01 to 0.15 at the step length of 0.01 were
divided. Under different degrees of noise interference, the
x-direction errors, y-direction errors, and Euclidean distance
errors between the algorithm-estimated central point and
the real central point in the circle or ellipse margin outlines
were estimated (Figure 9). As the noise interference degree
was intensified gradually, the x-direction error, y-direction
error, and Euclidean distance error between the algorithm-
estimated central point and the real central point all gradu-
ally increased but were all less than 0.1 pixels. These results
indicate the new algorithm has high antinoise ability and
excellent performance. Figure 10 compares the Euclidean
distance errors of the outline central point computed with
the proposed algorithm and a clustering algorithm applied
to the sets of closed-circle and closed-ellipse margin outline
scattered points. The Euclidean distance errors of the outline
central points calculated by the proposed algorithm are
smaller. The average errors in the Euclidean distance in the
outline central points in the sets of closed-circle and
closed-ellipse margin outline scattered points decreased by
10% and 9.9%, respectively. Thus, the above simulation
results suggest this algorithm can accurately fit circular or
elliptical margin outlines and estimate the coordinates in
the centers of circular hollow pores.

5.2. Camera Calibration Test. The types and parameters of
the LWIR camera and the VIS camera are listed in Table 1.

The LWIR and the VIS camera were used to collect cal-
ibration images from the calibration plate. With the LWIR
camera, the heating plate was heated to 40°C before image
collection. Twenty groups of correction images at different
positions were chosen, and the calculated intrinsic and
extrinsic parameters, and distortion coeflicients were listed
in Tables 2-4.

The Mean Reprojection Error is a commonly-used indi-
cator of camera calibration precision. Reprojection error
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TaBLE 1: The parameters of the LWIR camera and VIS camera.

Parameters LWIR camera VIS camera
Model IR-CAM100-A-20G A3200CG000
Resolution 384 x 288 1920 x 1080
Wavelength range 8 um~14 ym 380 nm ~1060 nm

TaBLE 2: The extrinsic parameters of the LWIR camera and VIS
camera.

R() t(mm)

B Y ty t, t,
LWIR camera -0.0476 0.0427 0.0372 -134.32 -7.9486 505.81
0.0119 0.0605 0.0306 16.815 -37.216 447.55

Parameters

VIS camera

TaBLE 3: The intrinsic matrix of the LWIR camera and VIS camera
(pixel).

Parameters s I 1y Uy 2
LWIR camera  0.0523  444.58 44443 199.07 144.93
VIS camera 1.4084  1433.0 14333  960.21  480.49

TaBLE 4: The distortion coefficients of the LWIR camera and VIS
camera.

Parameters Radial distortion E?;iizgil

ky k, ks P 123
LWIR camera -0.5007 -0.4043 -0.2648 0.0006  0.0007
VIS camera -0.0811  0.1216 -0.0780 -0.0003 -0.0009

refers to the difference between the projection (the pixel
point on the image) and reprojection (the calculated virtual
pixel) of a real three-dimensional point on the image plane.
The mean reprojection error refers to the average value of
reprojection errors. Figure 11 shows the mean reprojection
error of each of the 20 calibration images at different posi-
tions acquired by the LWIR and the VIS camera. The aver-
age reprojection error of this method during correction of
the LWIR camera is 0.1 pixel, and the largest reprojection
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errors of single images are all below 0.12 pixels (Figure 11).
The mean reprojection error during calibration of the VIS
camera is 0.227 pixels, and the largest reprojection errors
of single images are all below 0.26 pixel. From the images
collected by the LWIR camera, the infrared images from
the calibration plate show the calibration plate was imaged
well with low heat interference (Figures 4 and 12), which
was because the calibration plate was preset with a gap and
a separation structure. Results indicate the proposed method
has excellent performance and can meet the requirements of
machine vision for the correction of LWIR and VIS cameras.

5.3. Image Registration and Fusion Test. Based on the above
experiments, the geometrical imaging parameters of the LWIR
and the VIS camera were both computed, and the results of
camera calibration were proved accurate. The binocular imag-
ing system involving the LWIR and the VIS camera can pro-
vide complementary features among different spectra.

Since infrared images and visible images are different in
both imaging spectra and resolutions, it is difficult to effi-
ciently match these images, which inhibits further data com-
parison and fusion. Algorithms for registration among
visible images can find the feature points between floating
images and the reference image and thereby transform the
space. But infrared images and visible images are imaging
under different spectra, it is difficult to find the feature
points between the images. For this reason, based on the cal-
ibration plate and circle (ellipse) fitting method proposed
here, we can use the following method to register the images
collected by the LWIR and the VIS camera from the
machine vision system.

In the machine vision detection system, the camera posi-
tion, and the camera-object relative position are usually
fixed, so the camera can be fixed and then used to collect
images from the calibration plate. Herein, the proposed
algorithm was used to fit each central point in the circular
hollow array and sort the central points. The sorted points
from the infrared images and visible images were used as
feature points for image registration, and the one-to-one
relationship was established (Figure 12). After that, these fea-
ture points were used to calculate the image transformation
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FIGURE 12: Schematic of feature matching between infrared images and visible images.
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TaBLE 5: Evaluation of image fusion effect before and after camera distortion correction.

1 2 3 4
Before After Before After Before After Before After
correction correction correction correction correction correction correction correction
FMI 0.498104 0.499094 0.477767 0.495393 0.427917 0.447684 0.408745 0.420147
MS_SSIM 0.882667 0.884139 0.871488 0.873515 0.943244 0.944278 0.960691 0.963508
(O3 0.544447 0.548419 0.533291 0.54118 0.429151 0.430044 0.424123 0.437275
SCD 1.261511 1.323108 1.243683 1.299857 1.278889 1.371077 1.316363 1.323539
SD 9.453258 9.442074 9.648106 9.731943 11.13835 11.0921 8.137514 8.351743
SSIM 0.665431 0.673338 0.630626 0.639704 0.692999 0.695696 0.748205 0.749022

matrix. As long as the camera positions and target placement
positions were unchanged, these feature points can still be
used to compute the image transformation matrix, even if
the target substance was not the calibration plate.

The infrared images and visible images were registered.
Then the infrared and visible fusing algorithm based on deep
features and zero-phase component analysis (ZCA) [17] was
used to fuse each group of infrared images and visible
images that were matched without or with distortion correc-
tion. The specific method is as follows:

(1) ResNet is used to extract depth features from visible
and infrared images

(2) Use ZCA to map deep features to sparse domains

(3) The L1 norm is used to obtain the initial weight map.
The initial weight is mapped to the size of the source
image by bicubic interpolation, and the final weight
map is obtained by using softmax associated with
the initial weight map

(4) The weighted average strategy is used to reconstruct
the fused image by processing the source image and
the final weighted image

To quantitatively compare the image fusing effects
before and after distortion correction, we used six image
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fusing objective evaluation indices. These include disperse
cosine mutual information FMI, [18], multiscale structural
similarity index MS-SSIM [19], gradient-based fusing per-
formance Q¢ [20], the sum of differential correlations
SCD [21], standard deviation SD [22], and structural simi-
larity index SSIM [23]. A larger value indicates a better
performance.

Image fusion experiments were conducted using the
example of the hot-melt image and the charger image. The
LWIR and the VIS camera were used to collect images of
hot-melt temperatures, and the contours and background
of the box, respectively. The infrared image and the visible
image were fused both before and after distortion correction
(Figures 13-1, 2). The LWIR and the VIS camera were used
to collect images of charging temperatures, and the contours
and background of the charger, respectively. The infrared
image and the visible image were fused both before and after
distortion correction (Figures 13-3, 4). The image fusion
objective evaluation indices were listed in Table 5. The mean
FMI, , MS-SSIM, Q.. SCD, and SSIM of the images fused
after distortion correction increased by 4.6%, 0.3%, 3.1%,
7.2%, and 1.4%, respectively, compared with the images
fused before distortion correction. The effects of all groups
fused after distortion correction was improved in compari-
son with those fused before distortion correction, except
for SD in the first and third groups. The infrared image
and visible image fused after distortion correction outper-
formed the infrared image and visible image fused before
distortion correction.

6. Conclusions

A multispectral camera calibration plate for both LWIR and
VIS cameras was designed. Based on this correction plate, a
camera calibration method was put forward. Specifically, the
calibration patterns of infrared images and visible images
were detected by selecting ROIL Then the center of circular
holes was fitted using the least squares method, and its coor-
dinates were calculated. Even under noise interference, the
coordinate error was still less than 0.1 pixel. The average
errors of Euclidean distance from the outline central points
to the margin outline scattered point sets of the closed circle
and closed ellipse decreased by 10% and 9.9%, respectively.
An algorithm that sorted the center point coordinates
according to the tip of ROI was proposed and used in subse-
quent camera calibration computation. The coordinates at
the center of circular hollow pores were calculated and
sorted, and then the intrinsic and extrinsic parameters and
distortion coefficients of cameras were computed, which
thereby achieved camera calibration. LWIR and VIS camera
correction experiments were conducted to validate the cali-
bration plate and the camera calibration method proposed
here. The Mean Reprojection Errors in the 20 calibration
images collected by the LWIR and the VIS camera were
0.1 and 0.227 pixels, respectively. To further validate the
camera calibration results, we designed image registration
and fusion experiments based on the LWIR camera system
and the VIS camera system. The FMI;_, MS-SSIM, Q.6
SCD, and SSIM of infrared images and visible images fused
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after distortion correction increased by 4.6%, 0.3%, 3.1%,
7.2%, and 1.4%, respectively, compared with the images
fused before distortion correction. Hence, the calibration
plate and the camera calibration method proposed here are
effective and efficient.
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