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ProstaGLANDINS (PGs) have numerous cardiovascular
and inflammatory effects. Cyclooxygenase (COX),
which exists as COX-1 and COX-2 isoforms, is the first
enzyme in the pathway in which arachidonic acid is
converted to PGs. Prostaglandin E, (PGE,) exerts a
variety of biological activities for the maintenance of
local homeostasis in the body. Elucidation of PGE,
involvement in the signalling molecules such as COX
could lead to potential therapeutic interventions.
Here, we have investigated the effects of PGE, on the
induction of COX-2 in human umbilical vein endothe-
lial cells (HUVEC) treated with interleukin-13 (IL-13
1ng/ml). COX activity was measured by the produc-
tion of 6-keto-PGF,, PGE,, PGF,, and thromboxane
B, (TXB,) in the presence of exogenous arachidonic
acids (10 UM for 10 min) using enzyme immunoassay
(EIA). COX-1 and COX-2 protein was measured by
immunoblotting using specific antibody. Untreated
HUVEC contained only COX-1 protein while IL-13
treated HUVEC contained COX-1 and COX-2 protein.
PGE, (3 UM for 24h) did not affect on COX activity
and protein in untreated HUVEC. Interestingly, PGE,
(3 UM for 24h) can inhibit COX-2 protein, but not
COX-1 protein, expressed in HUVEC treated with IL-
1P3. This inhibition was reversed by coincubation with
forskolin (100 pM). The increased COX activity in
HUVEC treated with IL-13 was also inhibited by PGE,
(0.03, 0.3 and 3 UM for 24h) in a dose-dependent
manner. Similarly, forskolin (10, 50 or 100 pM) can
also reverse the inhibition of PGE, on increased COX
activity in IL-1{3 treated HUVEC. The results suggested
that (i) PGE, can initiate negative feedback regulation
in the induction of COX-2 elicited by IL-1f3 in endothe-
lial cells, (ii) the inhibition of PGE, on COX-2 protein
and activity in IL-1P3 treated HUVEC is mediated by
cAMP and (iii) the therapeutic use of PGE, in the
condition which COX-2 has been involved may have
different roles.
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Introduction

Prostaglandins (PGs) have numerous cardiovascular
and inflammatory effects.! Cyclooxygenase (COX) is
the first enzyme in the pathway in which arachidonic
acid is converted to PGs.?? COX exists in at least two
isoforms. One is the constitutive enzyme, COX-1,
producing regulatory prostanoids under physiological
conditions,* whereas the other, COX-2, is induced by
mitogens,”® and proinflammatory cytokines’® during
pathological states such as inflammation.

The main PGs produced in the body are prostacy-
clin (PGIL,), PGE,, PGF,,, Thromboxane A, (TXA,)
and PGD,. Each PGs has different characters and
functions. Among the PGs, PGE, is a potent lipid
molecule with complex proinflammatory and immu-
noregulatory properties.” PGE, is considered a major

contributor to the production and maintenance of
immunosuppression after overwhelming injury.'”
PGE, is believed to modulate biochemical and immu-
nological events leading to parturition.'' PGE, also
exerts a variety of biological activities for the main-
tenance of local homeostasis in the body.'” Inter-
estingly, we have shown in previous studies that the
induction of COX-2 elicited by endotoxin (lipopoly-
saccharide, IPS) in endothelial cells is inhibited by
PGE, and 13,14-dihydro PGE,."? Elucidation of the
effects of PGE, on the signalling molecule such as
COX could lead to potential therapeutic interventions
and understanding of the feedback regulation of COX
in endothelial cells. Here, we have investigated the
effects of PGE, on the induction of COX-2 in human
umbilical vein endothelial cells (HUVEC) treated with
interleukin-1p (IL-1B) (1 ng/ml).
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Material and methods
Cell culture

Human umbilical vein endothelial cells (HUVEC)
were obtained from babies born to normal pregnant
women as previously described'® and cultured in
96-well plates with Human EndothelialSFM Basal
Growth Medium (Gibco) containing 10% fetal calf
serum (Gibco), 100 units/ml penicillin G sodium and
100 pg/ml streptomycin. Cells were incubated at
37°C in a humidified incubator and grown to con-
fluence before use.

Measurement of COX activity

Confluent HUVEC were gently washed two times with
phosphate-buffered saline (PBS) and replaced with
fresh medium (200 pl/well) before use. Cells were
treated with no addition, IL-1B (1 ng/ml), IL-1B (1 ng/
ml) plus PGE, (0.03, 0.3 or 3 pM) or PGE, (3 pM) alone
for 24 h, after which time the medium was removed
and washed twice with PBS. COX activity was
measured by the production of four COX metabolites,
e.g. 6keto-PGF,, (a stable metabolite of PGL,), PGE,,
Prostaglandin F,, (PGF,,) and thromoboxane B,
(TXB,; a stable metabolite of TXA;) in the replaced
fresh medium containing exogenous arachidonic acid
(10 uM for 10 min) using enzyme immunoassay (EIA).
Briefly, 50 pl of standard PGs or samples were added to
pre<oated mouse anti-rabbit IgG microtitre plates
(96-well). Then, PGs acetylcholinesterase tracer (Clay-
man; 50 ul) and rabbit antiserum of PGs were added.
The plate was covered with plastic film and incubated
for 18 h at 4°C, after which time the wells were
emptied and rinsed five times with wash buffer (PBS
containing 0.05%Tween). Ellman’s reagent (Cayman;
200 pl) was added to each well and the plates were
shaken on a microtitre plate shaker. The duration of the
reaction was about 90 min. A yellow colour develops
which can be read using a microplate reader (BIORAD;
OD 415 nm).

Immunoblot (Western blot) analysis

HUVEC which were untreated, treated with IL-1B
(1ng/ml), IL-1B (1 ng/ml) plus PGE, (0.03, 0.3 and
3 uM) or PGE, (3 uM) alone were cultured in six-well
culture plates (37°C; for 24 h). After 24 h incubation,
cells were extracted and analysed by immunoblotting
using specific antibodies for COX-1 and COX-2
protein (a generous gift from Dr Gary O’ Neill, Merck
Frosst, Canada) as previously described."’

The other experiment was performed to study the
signalling molecule in the effects of PGE, on COX
expression by using forskolin (cAMP activator).
HUVEC were treated with no addition, IL-1B (1 ng/
ml), IL-1B (1 ng/ml) plus PGE, (3 uM), IL-1B (1 ng/ml)
plus PGE, (3 pM) with forskolin (10, 50 and 100 pM),
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IL-1B (1 ng/ml) plus forskolin (100 M), PGE, (3 uM)
plus forskolin (100 pM), forskolin (100 pM) alone or
PGE, (3 uM) alone for 24 h, after which time, the
medium was removed and replaced with fresh
medium containing exogenous arachidonic acid
(10 uMfor 10 min). The medium was then removed to
measure COX activity by 6keto-PGF,, production.
The remained cells were extracted and analysed by
immunoblotting using specific antibodies for COX-1
and COX-2 protein.

Measurement of cell viability

Cell respiration, an indicator of cell viability, was
assessed by the mitochondrial-dependent reduction
of 3(4,5dimethylthiazol-2-yl)-2,5diphenyltetrazolium
bromide (MTT) to formazan.!® At the end of each
experiment, cells in 96-well plates were incubated
(37°G; 1h) with MIT (0.2 mg/ml) dissolved in culture
medium, after which time, the medium was removed
by aspiration and cells were solubilized in DMSO
(200 pl each well). The extent of reduction of MIT to
formazan within cells was quantitated by the meas-
urement of optical density at 650 nm (ODys4) using a
microplate reader (BIORAD, USA).

Statistical analysis

The results are shown as mean standard error of the
mean (SEM) of wiplicate determinations (wells) from
at least four separate experimental days (n=12).
Student’s paired or unpaired rtests, as appropriate,
were used for the determination of significance of
differences between means and a P value of less than
0.05 was taken as statistically significant.

Materials

DMSO, phosphate buffered saline (PBS; pH 7.4),
Trizma base, EDTA, triton X-100, phenylmethylsul-
phonyl fluoride (PMSF), pepstatin A, leupeptin, glyc-
erol, bromphenol blue, 2-mercaptoethanol, sodium
dodecyl sulphate (SDS), forskolin, anti-rabbit IgG
antibody, goat IgG, premixed BCIP/NBT solution,
3-(4,5-dimethylthiazol-2y])-2,5diphenyltetrazolium
bromide (MIT), penicillin G sodium and streptomy-
cin were supplied by Sigma Chemical Company (St
Louis, MO, USA). PGs (6-keto-PGF, ,, PGE,, PGF,, and
TXB,) and their respective acetylcholinesterase tracer
and rabbit antiserum, pre-coated mouse anti-rabbit
IgG microtitre plates (96-well) and Ellman’s reagent
were purchased from Cayman (Sapphire Bioscience,
Australia). Human Endotheliall SFM Basal Growth
Medium and fetal calf serum was obtained from
GibThai (Thailand). Recombinant human IL-1B, were
purchased from Genzyme (USA). Pure nitrocellulose
membrane (0.45 micron) and filter paper were
purchased from BIO-RAD (USA).
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Results

The effect of PGE, on COX activity as
measured by the production of 6-keto-PGF,,
PGE,, PGF,, and TXB, in HUVEC treated with
IL-1B (1 ng/ml)

Untreated HUVEC in the presence of arachidonic
acid (10 uM for 10min) release lower amounts of
6%keto-PGF,, (3.36 + 0.1ng/ml), PGE, (0.4 =
0.04 ng/ml), PGF,, (0.78 = 0.01 ng/ml) and TXB,
(0.04 = 0.01 ng/ml). In IL-1B (0.01, 0.1 and 1 ng/ml)
treated HUVEG; the production of 6keto-PGF,,
PGE, and PGF,, was increased but not TXB, (Fig. 1).
The production of 6keto-PGF,, in HUVEC treated
with IL-1B (0.01, 0.1 and 1ng/ml) was increased
significantly in a dose-dependent manner (Fig. 1A).
This increase was significantly at 0.01 ng/ml of IL-1pB.
The others, PGE, but not PGF,, was only increased
significantly in HUVEC treated with IL-1B 1 ng/ml
(Fig. 1B). In HUVEC treated with PGE, (3 pM) alone,
COX metabolites did not change significantly when
compared to untreated HUVEC (Fig. 2). Interestingly,
the increased 6-keto-PGF,, and PGE, in IL-1B (1 ng/
ml) treated HUVEC was significantly inhibited by
PGE, (0.03, 0.3 or 3puM) in a dose-dependent
manner (Fig. 2). This inhibition was significant at
0.03 uM of PGE,.

I1-1p alone, PGE, alone and IL-1B plus PGE, did not
affect on cells viabilicy (97 + 2, 98 + 1 and 98 + 1%,
respectively) when compare to the control untreated
cells over a 24-h incubation period.

The stability of PGE, (3 uM) in cultured medium
upto 24h was also tested and has not changed
significantly between 3 (2.97 £ 0.2), 6 ( 2.98 = 0.1),
12 (2.95 + 0.2) and 24 (2.97 + 0.2) hours incubation
of PGE,.

The effect of PGE, on COX isoform expressed
in HUVEC treated with IL-18

Untreated HUVEC contained no COX-2 protein (Fig.
3). COX-2 protein was expressed in HUVEC treated
with IL-1B (1 ng/ml; Fig. 3) for 24 h. Interestingly, this
induction of COX-2 in HUVEC treated by IL-1p (1 ng/
ml) was inhibited by PGE, (0.03, 0.3 or 3 uM) in a
dose-dependent manner (Fig. 3). The amount of COX-
1 protein expressed in HUVEC treated with IL-1B
(1 ng/ml), IL-1B (1 ng/ml) plus PGE, (3 uM) or PGE,
(3 uM) alone was not changed when compared to
untreated HUVEC (Fig. 4).

The effect of forskolin on 6-keto-PGF,
production in HUVEC treated with IL-1B plus
PGE,

The COX activity (as measured by 6-keto-PGF,,
production) in HUVEC teated with forskolin
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FIG. 1. Dose-dependent effects of IL-18 (1 ng/ml) on COX
activity in HUVEC. COX activity was measured by the
formation of 6-keto-PGF,, (panel A), PGE, (panel B), PGF,,
(panel B) and TXB, (panel B) in the presence of exogenous
arachidonic acid (10uM; 10min). Data are expressed as
mean+SEM of 12 determinations from at least four separate
experimental days. ¥*P<0.05 when compared to untreated
HUVEC at 24h (C).

(100 uM) plus PGE, (3 uM) or forskolin (100 pM)
alone was not changed in comparison with untrea-
ted HUVEC (Fig. 5; white bar). Interestingly, the
inhibition of increased COX activity in II-1B (1 ng/
ml) treated HUVEC by PGE, was reversed in a dose-
dependent manner when cells were coincubated
with forskolin (10, 50 or 100 uM; Fig. 5; black and
hatch bar). Moreover, the increased COX activity in
IL-1B (1 ng/ml) treated HUVEC was synergised when
cells were coincubated with forskolin (100 uM; Fig.
5; black bar).
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FIG. 2. The effects of PGE, (0.003, 0.03, 0.3 or 3uM) on COX activity in IL-18 (1ng/ml) treated HUVEC. COX activity was
measured by the formation of 6-keto-PGF,, (panel A), PGE, (panel B), PGF,, (panel B) and TXB, (panel B) in the presence of
exogenous arachidonic acid (10 uM; 10 min). Data are expressed as mean+SEM of 12 determinations from at least four
separate experimental days. *P<0.05 when compared to IL-1B treated HUVEC at 24 h.
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FIG. 3. The effects of PGE, on COX-2 protein expressed in IL-
18 (1 ng/ml) treated HUVEC. COX-2 protein was detected by
Western blots using polyclonal antibodies to COX-2 in cell
extracts of HUVEC treated with no addition (lane 1), PGE,
(3uM) alone (lane 2), IL-1B (1 ng/ml) alone (lane 3) or IL-1B
(1ng/ml) plus PGE, (0.03, 0.3 or 3uM; lane 4 to 6) for 24 h.
Equal amounts of protein (20 ug/lane) were loaded in each
lane. Similar results were obtained with cell extracts from
three separate batches of cells. The significant differences
between each band were compared by scanner densito-
metry using image 1D program (densitometry unit).

Forskolin alone, forskolin plus IL-1B, forskolin plus
PGE, and forskolin plus IL-1B with PGE, did not affect
on cells viability (98 + 2,95 + 1,96 + 3 and 94 = 3%,
respectively) when compared to the control untrea-
ted cells over a 24-h incubation period.
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FIG. 4. The effects of PGE, on COX-1 protein expressed in IL-
18 (1 ng/ml) treated HUVEC. COX-1 protein was detected by
Western blots using polyclonal antibodies to COX-2 in cell
extracts of HUVEC treated with no addition (lane 1), PGE,
(3uM) alone (lane 2), IL-1B (1 ng/ml) alone (lane 3) or IL-1B
(1ng/ml) plus PGE, (0.03, 0.3 or 3uM; lanes 4-6) for 24 h.
Equal amounts of protein (20 ug/lane) were loaded in each
lane. Similar results were obtained with cell extracts from
three separate batches of cells. The significant differences
between each band were compared by scanner densito-
metry using image 1D program (densitometry unit).
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The effect of forskolin on COX isoform expressed
in HUVEC treated with IL-1B plus PGE,

HUVEC treated with forskolin (100 uM) alone or
forskolin (100 pM) plus PGE, (3 pM) contain no COX-2
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FIG. 5. The effects of forskolin (10, 50 or 100 uM) on COX activity in IL-18 (1 ng/ml) plus PGE, (3 uM) treated HUVEC. COX
activity was measured by the formation of 6-keto-PGF,, in the presence of exogenous arachidonic acid (10 nM; 10 min). Data
are expressed as mean+SEM of 12 determinations from at least four separate experimental days. *P<0.05 when compared to
IL-18 plus PGE, treated HUVEC at 24 h. **P<0.05 when compared to IL-1p treated HUVEC at 24 h.
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was detected by Western blots using polyclonal antibodies to COX-2 in cell extracts of HUVEC treated with no addition (lane
1), PGE, (3 uM; lane 2) alone, forskolin (100 pM; lane 3) alone, IL-1B (1 ng/ml; lane 4) alone, IL-18 (1 ng/ml) plus PGE, (3 uM; lane
5), IL-18 (1 ng/ml) plus PGE, (3 pM) with forskolin (100 uM; lane 6), IL-18 (1 ng/ml) plus forskolin (100 nM; lane 7) or PGE, (3 pM)
plus forskolin (100 uM; lane 8) for 24 h. Equal amounts of protein (20 ng/lane) were loaded in each lane. Similar results were
obtained with cell extracts from three separate batches of cells. The significant differences between each band were compared
by scanner densitometry using image 1D program (densitometry unit).

protein (Fig. 6; lanes 3 and 8, respectively). Similarly in
COX activity, the inhibition of COX-2 induced in IL-1$
(1 ng/ml) treated HUVEC by PGE, was also reversed
when cells were coincubated with forskolin (100 uM;
Fig. 6; lanes 4 to 6). However, unlike COX activity, the
amounts of COX-2 protein induced in IL-1B (1 ng/ml)
treated HUVEC was slightly increased when cells were
coincubated with forskolin (100 pM; Fig. 6; lane 7).
The amount of COX-1 protein expressed in HUVEC
treated with foskolin (100 uM) alone, IL-13 (1 ng/ml)
plus PGE, (3 uM), II-1B (1 ng/ml) plus PGE, (3 uM)
with forskolin (100 pM), IL-1B (1 ng/ml) plus forskolin
(100 uM) or PGE, (3 uM) plus forskolin (100 pM) was
not changed when compared to untreated HUVEC
(Fig. 7).

Discussion

Here, we showed that the induction of COX-2 elicited
by IL-1B in HUVEC can be inhibited by PGE, in a dose-
dependent manner. Moreover, PGE, had no affect on
either COX-1 protein or activity. Interestingly, for-
skolin (cAMP activator) can reverse this inhibition of
PGE, on COX-2 protein and activity in IL-1B treated
HUVEC. The results suggested that (i) PGE, is a
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negative feedback regulator through c¢AMP in the
induction of COX-2 elicited by IL-1B in endothelial
cells and (ii) the uses of PGE, in the condition in
which COX-22 has been involved may be
therapeutic.

PGs induce a wide range of biological actions that
are mediated by specific membrane-bound receptors.
Among the PGs, PGE, is considered to exert a variety
of biological activities such as the maintenance of
local homeostasis in the body'* it is a major
contributor to the production and maintenance of
immunosuppression after overwhelming injury'® and
an important factor for implantation and decidualiza-
tion.!” Therefore, PGE, is a lipid molecule with
complex inflammatory modulation and immunor-
egulatory properties. Our results have been sup-
ported that PGE, can act as anti-inflammation and
immunosuppression in the induction of COX-2 in
endothelial cells by IL-1P.

The exact mechanisms by which PGE, inhibited
COX-2 induction in endothelial cells activated with IL-
1B are not known. These may involve binding to
specific cell surface receptors and influencing second
messenger systems through G-proteins. Indeed, these
should be complex because the effects of PGE, are
exerted by a variety of PGE receptors which are
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FIG. 7. The effects of forskolin on COX-1 protein expressed in IL-18 (1 ng/ml) plus PGE, (3 pM) treated HUVEC. COX-1 protein
was detected by Western blots using polyclonal antibodies to COX-1 in cell extracts of HUVEC treated with no addition (lane
1), PGE, (3 uM; lane 2) alone, forskolin (100 pM; lane 3) alone, IL-1B (1 ng/ml; lane 4) alone, IL-18 (1 ng/ml) plus PGE, (3 uM; lane
5), IL-18 (1 ng/ml) plus PGE, (3 pM) with forskolin (100 uM; lane 6), IL-18 (1 ng/ml) plus forskolin (100 nM; lane 7) or PGE, (3 pM)
plus forskolin (100 pM; lane 8) for 24 h. Equal amounts of protein (20 ng/lane) were loaded in each lanes. Similar results were
obtained with cell extracts from three separate batches of cells. The significant differences between each band were compared
by scanner densitometry using image 1D program (densitometry unit).

different in their signal transduction properties.'®

There are at least four subtypes of PGE receptors. The
EP1 and EP3 receptors are coupled to Ca** mobiliza-
tion and the inhibition of adenylate cyclase, respec-
tively, and the EP2 and EP4 receptors are coupled to
the same signal transduction pathway, stimulation of
adenylate cyclase.!” However, our studies showed
that forskolin (cAMP activator) can reverse the
inhibiton of PGE, on COX-2 induced in IL-1B treated
HUVEC suggesting PGE, may inhibit COX-2 expressed
in IL-1B treated HUVEC through ¢cAMP inhibition via
EP3 receptors.

PGE, is one of the PGs or COX metabolites, such
as PGI,, PGE,, PGD,, PGF,, and TXA,, synthesized
by COX-1 and COX-2 which are involved in physiol-
ogy and pathology,*® respectively. Fach COX iso-
form can produce different COX metabolites in
different cell types such as PGI, is a major COX-1
and COX-2 metabolite in endothelial cells while
PGE, is a major COX-2 metabolite in macrophages.?’
These differences in COX metabolite production in
different cell types may be resulted from the feed-
back regulation of each COX metabolite produced.
Our results showed that PGE, (0.03 pM) inhibited
PGE, production (30% inhibition; Fig. 2A) more than
PGI, production (20% inhibition; Fig. 2B) in IL-1B

treated endothelial cells. These may explain the COX
metabolites produced in IL-1B treated endothelial
cells that PGI, released in highest amounts and the
lesser extent of PGE,, PGF,, and TXA,, respectively.
Thus, elucidation of the feedback regulation of each
COX metabolite will help us to understand the
variety of COX metabolites produced in different
cells and may lead to potential therapeutic inter-
ventions. In our studies here, we showed that PGE,
is a negative feedback regulator of the induction of
COX-2, but not COX-1, in endothelial cells activated
with IL-1B. These suggested that PGE series may have
negative feedback regulation of COX-2 induction in
endothelial cells, since our previous study showed
that PGE, and PGE, can inhibit the induction of
COX-2 in endothelial cells activated with LPS."* PGE
series have been used in clinical disorders such as

NSAIDs-
24

peripheral vascular occlusive diseases,”’
induced gastric ulcer,”* abortion®? and impotence.
Thus, we proposed that uses of PGE, in the condi-
tion in which COX-2 has been involved may be
therapeutic and the effects of other COX metabolites
such as PGI, or PGF,, on COX2 expressed in
different cells should be elucidated.
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