
BACKGROUND : Interleukin-1 (IL-1), an inflammatory
cytokine whose levels are elevated in inflamed mu-
cosa, causes part of its effect on intestinal epithelial
cells (IEC) through inducing ceramide production.
Aim : To study the role of nuclear factor-kB (NF-kB), a
pro-inflammatory and anti-apoptotic factor, in IL-1-
treated IEC.
Methods : NF-kB activity and levels of apoptotic
proteins were assessed by electrophoretic mobility
shift assay and RNA-protection assay, respectively.
Results : IL-1 and ceramide, which have been shown
to partially mediate IL-l effects on IEC, activated NF-
kB levels significantly. This activation was due to a
decrease in IkB-a and IkB-b protein levels. Moreover,
the ratio of mRNA levels of anti-apoptotic to pro-
apoptotic proteins was significantly increased in IL-1-
treated IEC.
Conclusion : NF-kB may play a key role in the
regulation of the expression of pro-inflammatory
and/or apoptotic genes in inflammatory bowel dis-
ease, making this protein an attractive target for
therapeutic intervention.
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Introduction

Transcriptional factors of the nuclear factor (NF)-kB/
Rel family regulate the expression of genes involved
in inflammation, cell proliferation and apoptosis.1,2

NF-kB is rapidly activated in response to a wide
variety of stimuli such as viral and bacterial infections
or the interaction of the inflammatory cytokines with
their receptors.3 It is a heterodimer of the p50 (NF-
kB-l) and p65 (Rel-A) subunits; however, proteins
that constitute the NF-kB family form a variety of
functional homodimers and heterodimers.4�6 Under
resting conditions, the complex is present in the
cytoplasm sequestered in an inactive form due to its
association with an inhibitory protein belonging to
the IkB family. Activation of NF-kB involves the
dissociation of the Rel-A subunit from the inhibitory
proteins, such as IkB-a, and the translocation of Rel-A
from the cytoplasm to the nucleus, where it dimerizes
with the p50 or c-Rel subunits and interacts with
specific target genes.7 The dissociation of Rel-A from
IkB occurs following a cascade of intracellular events
that leads to specific phosphorylation of the inhibi-
tory subunit7 on serine or tyrosine residues.8,9 This
phosphorylation is follwed by ubiquitination and
proteolysis of the inhibitory protein via a non-
lysosomal, adenosine triphosphate (ATP)-dependent
proteolytic proteasome. Inflammatory cytokines such
as tumor necrosis factor (TNF)-a and interleukin-1

(IL-1) have been shown to be elevated in the mucosa
of patients with inflammatory bowel disease. These
cytokines possess diverse biological functions that
include cell proliferation, inflammation and apopto-
sis. They contribute to activation of intestinal epithe-
lial cells (IEC) activation as well as the activation of
immune cells that get recruited after the inflammatory
insult. We have shown that in IEC, IL-1 activates
sphingomyelinase, an enzyme that catalyzes the
hydrolysis of sphingomyelin to ceramide.10 In con-
trast to what has been observed in many cell types,
however, ceramide did not induce apoptosis in IEC,
neither did IL-l, but rather induced the synthesis of
cyclooxygenase-2 (COX-2) leading to increased le-
vels of pro-inflammatory mediators such as prosta-
glandin E2.

11 NF-kB consensus regions have been
shown to be present on the COX-2 promoter region
and these regions have been shown to be involved in
COX-2 mRNA induction by cytokines.12 Moreover,
NF-kB seems to possess a significant anti-apoptotic
role.13,14 Indeed, some known pro-apoptotic extra-
cellular signals can induce NF-kB that in turn induces
the expression of genes that are anti-apoptotic.14

Mediators that can induce NF-kB could therefore
protect against apoptotic elimination of affected cells.
Interestingly, this anti-apoptotic role of NF-kB has
only been described for Rel-A but not for c-Rel or
p50, which possess pro-apoptotic and anti-prolifera-
tive properties.14,15
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In this study we investigate the effects and
mechanism of action of IL-1 and/or ceramide in
regulating NF-kB in IEC. Activation of NF-kB by IL-1
may be responsible for the lack of apoptosis ob-
served in cells treated with IL-1 and/or ceramide.11

Materials and methods

Materials

Human recombinant IL-1a was obtained from Im-
munex (Seattle, Washington, USA). Bromophenol
blue, coomassie blue R-250, alkaline phosphatase-
conjugated goat anti-rabbit IgG, polyvinylidene di-
fluoride (PVDF) membrane, sodium dodecyl sulfate
(SDS), glycine tris, glycerol, 2-b-mercaptoethanol,
and g-32P ATP were from Amersham Pharmacia
Biotech (UK). Fetal bovine serum albumin and
bovine serum albumin, penicillin and streptomycin,
Dulbecco’s Modified Eagle’s Medium (DMEM), pyr-
uvate, non-essential amino acids, goat serum and
Earl’s balanced salt solution were from Gibco La-
boratories (Invitrogen, Carlsbad, California, USA).
Acrylamide and N? , N? -bis-methylene-acrylamide
were from BioRad (California, USA), ammonium
persulfate, N,N,N?,N?, Tetramethylethylenediamine
(TEMED), chloroform, ethylenediamine tetraacetic
acid (EDTA), Ethylene glycol-bis-(2-aminoethyl)-
N,N,N?,N? -tetraacetic acid (EGTA), methanol, acetic
acid, isopropanol, dithiothreitol, imidazole, LiCl, and
etoposide were from Sigma (St Louis, Missouri, USA).
N -acetyl sphingosine (C2 ceramide) and ZLL (Z-leu-
leu-leu-CHO), a proteasome inhibitor, were pur-
chased from BioMol (Plymouth Meeting, Pennsylva-
nia, USA). RNA protection Kits and templates were
obtained from BD Pharminegen (San Diego, Califor-
nia, USA). The multi-probe RPA template mapo-2
was used and it contained probes for the following
mRNA: anti-apoptotic proteins bcl-2, bcl-w and
bcl-xl, and pro-apoptotic proteins bad, bax, bak
and bfl-1, and the housekeeping genes L-32 and
GAPDH.

Antisera

Rabbit polyclonal antisera to IkB-a, IkB-b, c-Rel, Rel-
A, NF-kB p50, NF-kB consensus oligonucleotide,
luminol reagents, ECL marker and anti-rabbit 1gG
horseradish peroxidase (HRP)-conjugate subunit
were purchased from Santa Cruz Biotechnology
(Santa Cruz, California, USA).

Methods

Cell culture

Murine intestinal epithelial cell 1ine Mode-K16 was
obtained from Dr P.B. Ernst (University of Texas,

Medical Branch, Galveston, Texas, USA). Mode-K
cells were maintained in DMEM (low glucose)
containing 10% fetal bovine serum (FBS), 10 mM
sodium pyruvate, and non-essential amino acids. T-
84 cells, human colonic cell line, were grown in
DMEM/F-12 medium supplemented with 10% FBS.
Cell viability was measured using the trypan blue
exclusion assay.

Preparation of homogenate. Cells were trypsi-
nized, centrifuged at 200 g , and washed in phos-
phate-buffered saline (PBS) twice. The cells were
then resuspended in PBS: 2�/electrophoresis sample
buffer (SB), ratio 1:1. The sample buffer consisted of
0.25 M Tris�/HCl (pH 6.8), 4% w/v SDS, 20% v/v
glycerol and 0.1% bromophenol blue. Samples were
then boiled for 5 min and stored at �/808C.

Nuclear extract preparation

Cells were harvested and collected by centrifugation
at 200 g for 10 min and washed once with PBS. Cells
were lysed by rapid freezing in ethanol/dry ice and
thawed by resuspension in a hypotonic ice-cold
buffer containing 10 mM KCl, 1.5 mM MgCl2, 1 mM
dithiothreitol (DTT), and 10 mM Hepes. The nuclei
were centrifuged at 1250 g for 10 min at 48C and the
nuclear pellets were gently extracted in a hypertonic
solution containing 0.4 mM NaCl, 1.5 mM MgCl2, 0.2
mM EDTA, 1 mM DTT, 0.5 mM PMSF, 20 mM Hepes
and 25% glycerol, for 30 min at 48C, and then
centrifuged for 20 min at 20,000 g to collect the
nuclear proteins in the supernatant. The supernatant
was diluted with 30 ml of buffer containing: 50 mM
KCl, 20% (v/v) glycerol, 0.2 mM EDTA, 1 mM DTT,
0.5 mM PMSF and 20 mM Hepes, and stored at
�/708C. Protein concentrations were determined
using the Bio-Rad assay.

Western blotting

Total protein extracts were run on a 12% SDS-
polyacrylamide gels. Gels were transferred to PVDF
membranes overnight at 48C. Following transfer,
membranes were washed with PBS containing 0.1%
Tween 20 (TPBS) and blocked with 5% non-fat dry
milk for 1 h at room temperature. Antibodies were
then added in TPBS and incubated for 2 h at room
temperature. Unbound antibodies were washed three
times with TPBS and the anti-rabbit IgG HRP-
conjugate was added at 1:5000 dilution for 1 h at
room temperature. The membranes were washed
and incubated with luminol reagents and then
exposed to autoradiography.

Electrophoretic mobility shift assay

NF-kB consensus oligonucleotide was end-labeled
with g-32P ATP using T4 polynucleotide kinase. The
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hybridization reaction was performed using 10�/20

mg of nuclear extract, 1 mg of poly(dI.dC), 1 mg of

poly(dN6) as a non-specific competitor, and 10 mg of

bovine serum albumin in 20 mM Hepes, 50 mM KCl,

1 mM EDTA and 5 mM DTT. The reaction was diluted

with water to a v/v ratio of 1:20 of the labeled probe.

The mixture was incubated for 30 min, then stopped

by adding 6 ml of 15% Ficoll solution containing the

indicator dyes bromophenol blue and xylene cyanol.

The reaction mixture (20 ml of each sample) was

electrophorized on a 5% non-denaturating polyacry-

lamide gel. The gel was transferred to Whatman filter

paper, dried at 808C under vacuum for 2 h and

processed for autoradiography at �/808C overnight.

The specific NF-kB band was determined by compe-

tition experiments using a mutant oligonucleotide

that has lost its ability to bind to the transcription

factor. Subunit specificity was determined using

specific antibodies to the NF-kB components (anti

Rel-A, p50 and c-Rel) in the incubation step, which

results in a supershift of the specific band due to the

bound antibody.

RNase protection assay

Radioactive RNA probes were synthesized from DNA

templates using T7 RNA polymerase and radioactive

UTP as a substrate. The reaction was terminated after

1 h incubation at room temperature by the addition

of DNase. The labeled RNA probes were extracted

once with phenol:chloroform-isoamyl alcohol and

once with chloroform-isoamyl alcohol. The probes

were then precipitated in equal volume of 4 M

ammonium acetate and 5 volumes of ice-cold abso-

lute ethanol, incubated at �/808C for 30 min,

centrifuged at full speed for 15 min at 48C in a

microcentrifuge, washed once with 90% ethanol,

allowed to air-dry and then solubilized in hybridiza-

tion buffer and quantified using a scintillation

counter. RNA samples (2�/20 mg) were dried

under vacuum and hybridized with the probe over-

night.
Unhybridized RNA were digested using RNase A

and the reaction was terminated by the addition of

Proteinase K. Hybridized RNA were then extracted

using phenol:chloroform-isoamyl alcohol, precipi-

tated in ammonium acetate and absolute ethanol,

washed once with 90% ethanol and then air-dried.

The pellets were solubilized in loading buffer (sup-

plied by the manufacturer) and were ran on a 5%

acrylamide-urea gel using 0.5�/tris borate�/EDTA

buffer (containing 45 mM tris-borate, and 1 mM

EDTA, pH 8.0) as a running buffer, dried and exposed

to autoradiography. Yeast tRNA was used as a

negative control.

Results

IL-1 targets the NF-kB pathway

To establish whether IEC are functionally coupled to
biological signals that lead to the activation of NF-kB
by IL-1, cells were treated with IL-1 at different
concentrations and time periods, and the NF-kB
DNA binding activity was measured in nuclear
extracts by eletrophoretic mobility shift assay using
a NF-kB consensus oligonucleotide. We first con-
firmed the constitutive expression of NF-kB in Mode-
K cells. Two positive complexes were detected by the
radiolabeled NF-kB consensus oligonucleotide (Fig.
1). These complexes were not changed in the
presence of a mutant oligonucleotide (data not
shown).

IL-1 has been shown to activate the sphingomyelin
metabolic pathway, which will cause increased
accumulation of ceramide in IEC.10 Ceramide acts
as a second messenger in IEC and seems to mediate,
at least in part, the effects of IL-l observed on IEC
function. Thus the effect of ceramide on NF-kB in the
presence or absence of IL-l was tested. Treatment of
IEC by IL-l and/or ceramide caused a significant
increase in NF-kB levels in Mode-K cells (Fig. 2).
Supershift assays using anti-p50 and c-Rel-specific
antibodies showed little variation in the amount of
the DNA-bound proteins with the various treatments,
while Rel-A-containing heterodimers (activated NF-
kB state) were supershifted, indicating that Rel-A is
the major subunit that is translocated to the nucleus
after cell activation by IL-1.

Regulation of IkB subunits by IL-1

Effect of IL-1 and ceramide on IkBa protein
levels

We next examined the effect of IL-1 on the activation
of IkB to determine which subunit is responsible for

FIG. 1. Constitutive expression of NF-kB in Mode-K cells. In
the second and third lane, as indicated, are shown increased
expression of NF-kB in IL-1-treated cells (10 ng/ml and 30 ng/
ml, respectively) for 24 h. In the last two lanes are shown
increased expression of NF-kB in ceramide-treated cells (10
and 30 mM, respectively) for 24h. Equivalent amounts of
nuclear extract from IEC were prepared and analyzed for NF-
kB binding activity with a 32P-labeled oligonucleotide probe
containing NF-kB binding sites. This experiment is repre-
sentative of six.

Regulation of NF-kB by IL-1 and ceramide
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binding and sequestering NF-kB in the cytoplasm in

different IEC lines, Mode-K and T-84 (Figs. 3 and 4,
respectively). The decrease in IkB levels releases Rel-
A and allows its translocation. IL-1 and ceramide
caused a significant decrease in IkBa levels (both

time and concentration dependent) with a significant
decrease occurring at around 4 h with both treat-
ments.

Effect of IL-1 and ceramide on IkBb protein
levels

IL-1 and ceramide also induced a decrease in the

levels of IkBb levels in T-84 cells. The decrease,

which was time (Fig. 5) and concentration dependent

(data not shown), was maximal around 1 h with both

treatments. The decrease observed in the levels of

IkBa that was maximal at 4 h for IL-1 (10 ng/nl) and

ceramide (10 mM) was much greater than that

observed with Ik-Bb for the same treatment (80%

decrease at 4 h versus 40% at 1 h in ceramide-treated

cells, for example). This suggests that both IkBa and

IkBb may be involved in releasing NF-kB from the

cytosolic complex to translocate into the nucleus;

however, the effect of treatment on IkBb proceeds

that of IkBa. Similar results were obtained in Mode-K

cells (data not shown).

Effects of IL-1 and ceramide on IkBo protein
levels

The effect of ceramide and/or IL-1 on IkBo were also

investigated. Neither treatment had any significant

effect on the levels of IkBo (for Mode-K cells tested

up to 24 h; Fig. 6) in either IEC line used, suggesting

that it is not involved in the action of IL-1 on NF-kB

activation.

FIG. 2. Regulation of NF-kB activity by IL-1 and ceramide in
IEC. Treatment of IEC by IL-1 and ceramide individually or in
combination caused a significant increase in NF-kB levels in
Mode-K cells. Supershift analysis of nuclear extract from
cells incubated with rabbit antibody directed towards the p65
subunit (lane 10) or p50 subunit (lane 11) of NF-kB.
Equivalent amounts of nuclear extract from IEC were
prepared and analyzed for NF-kB binding activity with a
32P-labeled oligonucleotide probe containing NF-kB binding
sites. Supershift assays using anti-p50-specific antibodies
showed little but significant variation in the amount of the
DNA-bound proteins, while Rel-A containing heterodimers
(activated NF-kB state) were greatly supershifted, indicating
that Rel-A is the major subunit that is translocated to the
nucleus after cell activation by IL-1.

FIG. 3. Inhibition of IkBa levels by IL-1 (30 ng/ml) treatment
for different time periods in Mode-K cells using western blot
analysis of cytoplasmic extracts from IL-1-treated IEC. Ex-
pression of IkBa was visualized using IkB-a-specific poly-
clonal antibody. To confirm equal protein loading the
membrane was stripped and reprobed with actin antibody.
The bands were quantified using the Molecular Dynamics
Storm 860 System (Molecular Dynamics, Sunnyvale, Cali-
fornia, USA) using ImageQuant software. The density of the
band equivalent to IkBa levels in control untreated cells was
set at 100% and the rest of the bands were calculated as a
percentage of the control. *pB/0.05, **pB/0.005; p value
represents the comparison of the effect of IL-1 on IkBa levels
as compared with untreated control (n�/4).

FIG. 4. Inhibition of IkBa levels by IL-1 (30 ng/ml) and
ceramide (10 mM) treatment for different time periods in T-
84 cells using western blot analysis of cytoplasmic extracts
from IL-1-treated and/or ceramide-treated IEC. Expression of
IkBa was visualized using IkBa-specific polyclonal antibody.
To confirm equal protein loading the membrane was
stripped and reprobed with actin antibody. The bands were
quantified using the Molecular Dynamics Storm 860 System
(Molecular Dynamics) using ImageQuant software. The
density of the band equivalent to IkBa levels in control
untreated cells was set at 100% and the rest of the bands
were calculated as a percentage of the control. *pB/0.05,
**pB/0.005; p value represents the comparison of the effect
of IL-1 on IkBb levels as compared with untreated control
(n�/4).
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Effects of IL-1 and ceramide on IkBa and IkBb
protein levels in the presence of ZLL

ZLL is a potent and selective reversible proteasome

inhibitor. It inhibits NF-kB activation by preventing

IkB degradation. Cells were treated with ZLL for

different time periods before IL-1 or ceramide treat-

ment, and the levels of IkBa and IkBb were

measured (Fig. 6). ZLL reversed the effect induced

by IL-1 or ceramide on both IkB levels, thus

preventing their degradation, and subsequently no

translocation of NF-kB was observed. These data

suggest therefore that translocation of NF-kB is
dependent on the activation of proteasome that leads
to the degradation of IkBa and IkBb, thus freeing NF-
kB to translocate to the nucleus for its action on
activating different genes.

Regulation of mRNA levels of apoptotic proteins
by IL-1 treatment

Using the RNA protection assay, the mRNA levels of
apoptotic proteins were shown to be regulated by IL-
1 treatment. The mRNA levels of the anti-apoptotic
proteins bcl-x and blc-w were increased while bcl-2
was unchanged; and the levels of the pro-apoptotic
proteins bax, bak and bad were significantly reduced
(Fig. 7). Similar results were obtained when cells
were treated with ceramide. These data provide
supportive evidence that IL-1 and/or ceramide do
not induce apoptosis in intestinal epithelial cells and,
rather, they feed into the prostanoid synthetic path-
way through the induction of COX-2.11

Discussion

Apoptosis is a highly conserved evolutionary event
crucial for normal development and homeostasis.
Deregulated cell death has been associated with
disease entities such as cancer17 and cardiovascular
disease.18 Cells defective for NF-kB signaling were
found to be more sensitive to apoptotic-inducing
signals than normal wild-type cells,19,20 suggesting an
anti-apoptotic role for NF-kB. NF-kB is a transcription
factor involved in the regulation of many genes and is
activated in response to a wide variety of stimuli
including inflammation, viral and bacterial infections

FIG. 5. Inhibition of IL-1 on IkBb levels by IL-1 (30 ng/ml) and
ceramide (10 mM) treatment in T-84 cells. Westem blot
analysis of cytoplasmic extracts from IL-1-treated and/or
ceramide-treated IEC. Expression of IkBb was visualized
using IkBb-specific polyclonal antibody. To confirm equal
protein loading the membrane was stripped and reprobed
with actin antibody. The bands were quantified using the
Molecular Dynamics Storm 860 System (Molecular Dy-
namics) using ImageQuant software. The density of the
band equivalent to IkBa levels in control untreated cells
was set at 100% and the rest of the bands were calculated as
a percentage of the control. *pB/0.05, **pB/0.005; p value
represents the comparison of the effect of IL-1 on IkBb levels
as compared with untreated control (n�/4).

FIG. 6. Western blot analysis of cytoplasmic extracts show-
ing the effects of IL-1 treatment (30 ng/ml) on the different
IkB. Inhibition of IkBa and/or IkBb ubiquitination by ZLL
reverses the effects of IL-1. There was no effect of IL-1 on
IkBo levels in Mode-K cells. Expression of IkB was visualized
using specific polyclonal antibodies. To confirm equal
protein loading the membrane was stripped and reprobed
with actin antibody.

FIG. 7. mRNA levels of the anti-apoptotic proteins bcl-w, bcl-
x, bcl-2 and of pro-apoptotic proteins bak, bax and bad were
measured in IL-1-treated Mode-K cells using the RNA
protection assay.
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and stress factors.21 In particular, NF-kB has been
shown to modulate the expression of pro-inflamma-
tory cytokines, chemokines, immune receptors, ad-
hesion molecules, and enzymes that generate
mediators of inflammation.2 Activation of NF-kB
involves the dissociation of the Rel-A (p65) subunit
from inhibitory proteins, mainly IkBa, and its trans-
location from the cytoplasm to the nucleus, where it
dimerizes with the p50 or c-Rel subunits and interacts
with specific target genes. Activation of Rel-A or c-Rel
containing NF-kB dimers results in the transcriptional
stimulation of genes that are important for cell
proliferation. NF-kB also possesses a significant
anti-apoptotic role.13,14 Indeed, the pro-apoptotic
extracellular signals can also induce NF-kB that in
turn induces the expression of genes that are anti-
apoptotic.14 We have previously shown that IL-1 and
ceramide did not cause any increase in apoptosis in
Mode-K intestinal epithelial cells.11 In this report, we
show that treatment of cells with IL-1 caused activa-
tion of NF-kB and that this activation was completely
dependent on its dissociation from the inhibitory
proteins IkBa and IkBb. The release of NF-kB from
IkBb proceeds its dissociation from IkBa.

The increase in the ratio of anti-apoptotic to pro-
apoptotic mRNA provides an explanation for the lack
of induction of apoptosis in IL-1-treated and/or
ceramide-treated IEC. Both stimulators feed into the
prostanoid synthetic pathway through the induction
of COX-2,11 whhich is thought to be due to activating
NF-kB and translocation Rel-A to the nucleus where it
can then bind on the COX-2 gene and induce its
synthesis.

Mediators that can induce NF-kB could therefore
protect against apoptotic elimination of affected cells.
Interestingly, this anti-apoptotic role of NF-kB has
only been described for Rel-A but not for c-Rel or
p50, which possess pro-apoptotic and anti-prolifera-
tive properties.14,15 This study shows that, upon
activation of NF-kB, Rel-A was the subunit that was
translocated preferentially from the cytoplasm to the
nucleus, where it is capable of dimerizing with the
p50 or c-Rel subunits and interacts with specific target
genes, some of which are apoptotic proteins. Using
the RNA protection assay we were able to show that
in IL-1-treated or ceramide-treated IEC, the message
levels of anti-apoptotic proteins were significantly
increased while those of the pro-apoptotic proteins
levels were significantly decreased. This correlated
well with what we have observed earlier in IL-1-
treated IEC where it was shown that the protein
levels of bcl-x were increased while protein levels of
bax were significantly reduced.11 Inhibition of NF-kB
activation and subsequent translocation have been
shown to promote apoptosis in tumor cells such as
multiple myeloma cells.22 This was achieved using a
proteasome inhibitor PS-341, which prevents the
degradation of IkBs by the proteasomes and hence

the release of NF-kB from the IkB complex. PS-341
has also been recently used in clinical trials to resolve
different types of malignancies.23,24

Activation of NF-kB is an important event in
numerous inflammatory processes of the gastroin-
testinal tract. Induction of this transcription factor has
been reported in Helicobacter pylori gastritis,25

inflammatory bowel disease,26 and pancreatitis.27

Recently, it has been shown that protein kinase C,
intracellular calcium and activation of NF-kB are
crucial for the induction of the COX-2 gene in the
parietal cells in response to carbachol stimulation.28

Earlier reports have stated that ceramide is a major
second messenger for TNF-a-induced NF-kB activa-
tion,29,30 while others have not observed any role for
ceramide in IkBa degradation.31 Ceramide was cap-
able of activating NF-kB to the same extent as IL-1,
providing more evidence that IL-1 causes some of its
effects through the activation of the sphingomyelin
pathway.10,11 Neither IL-1 nor ceramide induced
apoptosis in IEC but both induced COX-2 synthesis
leading to increased levels of prostaglandin E2.

10,11

The COX-2 gene contains consensus regions for NF-
kB that have been shown to be important for the
induction of COX-2 mRNA levels by cytokines.12 In
human alveolar epithelial cells,32 activation of mito-
gen-activated protein kinases by ceramide contri-
butes to the TNF-a signaling that occurs downstream
of neutral sphingomyelinase activation and results in
the stimulation of IkB kinase (IKK1/2) and NF-kB in
the COX-2 promotor, followed by initiation of COX-2
expression. Pro-inflammatory cytokines activate the
IKK complex that phosphorylates the NF-kB inhibi-
tors, triggering their conjugation with ubiquitin and
subsequent degradation33,34 via a non-lysosomal,
ATP-dependent proteolytic proteasome. Freed NF-
kB dimers translocate to the nucleus and induce
target genes, such as COX-2, which catalyzes the
synthesis of pro-inflammatory prostaglandins, in
particular prostaglandin E2. At late stages of inflam-
matory episodes, however, COX-2 directs the synth-
esis of anti-inflammatory cyclopentenone prosta-
glandins, suggesting a role for these molecules in
the resolution of inflammation.
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