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Angiotensin converting enzyme inhibitors (ACE-I) are able to reduce the formation of the potent vasoconstrictor endothelin-1
and increase nitric oxide bioavailability in human vascular endothelial cells (HUVECs). We tested the effects of two sulfhydryl-
containing ACE-I, zofenoprilat, and captopril, and two nonsulfhydryl containing ACE-I, enalaprilat and lisinopril, on endothelin-
1/nitric oxide balance and oxidative stress in HUVECs. All the four tested ACE-I reduced endothelin-1 secretion and increased
nitric oxide metabolite production by HUVECs. However, zofenoprilat (−42% after 8 hours of incubation) was more effective
(P < .05) than enalaprilat (−25%), lisinopril (−21%), and captopril (−30%) in reducing endothelin-1 secretion. Similarly,
zofenoprilat (+110% after 8 hours of incubation) was more effective (P < .05) than enalaprilat (+64%), lisinopril (+63%), and
captopril (+65%) in increasing nitric oxide metabolite production. The effect of ACE-I on endothelin-1 and nitric oxide metabolite
production is mediated by the activation of bradykinin B2 receptor being counteracted, at least in part, by a specific antagonist.
Zofenoprilat and, to a lesser extent, captopril also reduced oxidative stress in HUVECs. In conclusion, among the four tested
ACE-I, zofenoprilat was more effective in improving endothelin-1/nitric oxide balance in HUVECs likely because of its greater
antioxidant properties.

Copyright © 2008 Giovambattista Desideri et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Angiotensin converting enzyme (ACE), also known as kin-
inase II, is a bivalent dipeptidyl carboxyl metallopeptidase
present both as a membrane-bound form in epithelial,
neuroepithelial, and endothelial cells, including the vascu-
lar ones, and as a soluble form in different body fluid,
including blood [1]. Due to its ability to cleave the C-
terminal dipeptide from a number of peptides, ACE can
either convert the inactive decapeptide angiotensin I to the
active octapeptide angiotensin II or inactivate kinins [1].
Thus, ACE strategically modulates the balance between the
vasoconstrictive and salt-retentive renin-angiotensin system
and the vasodilatory and natriuretic kallikrein-kinin one [1].
As a consequence, after the initial use as antihypertensive
drugs [2], ACE-inhibitors (ACE-I) rapidly became a fun-
damental tool also in treating congestive heart failure, left

ventricular dysfunction after myocardial infarction, diabetic
and nondiabetic nephropathies [2–4].

Despite of the successful use in all of the above
conditions, the mechanisms responsible for the vascular
benefits exerted by ACE-I are not fully understood. ACE-
I are able to improve both endothelium-dependent [5] and
endothelium-independent [6] vascular relaxation. However,
the endothelial effects of ACE-I are not only dependent
on decrease of angiotensin II formation and increase of
bradykinin bioavailability [2, 5, 6]. In this regard, it has been
suggested that the vascular action of ACE-I could be also
related to their ability to reduce production of endothelin-
1 (ET-1) [7], one of the most potent vasoconstrictor [8],
through an increased nitric oxide (NO) production [7, 9]
leading to a down-regulation of ET-1 gene expression [7].

In this regard, sulfhydryl containing ACE-I can act as
antioxidants by scavenging superoxide anion [10] as well as
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nonsuperoxide radicals [11]. Since unscavenged superoxide
anion quenches NO to give the pro-oxidant compound
peroxynitrite [12], which is unable to down-regulate (or even
up-regulates) ET-1 gene expression, sulfhydryl containing
ACE-I could be particularly effective to decrease ET-1
secretion in cultured HUVECs by increasing NO production
[13].

To address this topic, we compared the effects of zofeno-
prilat and captopril, that are two sulfhydryl containing ACE-
I, with those of enalaprilat and lisinopril, two nonsulfhydryl
containing ACE-I, on ET-1 secretion and NO production
by human vascular endothelial cells (HUVECs). In addition,
to assess the ACE-I antioxidant properties, their effects on
intracellular content of the endogenous free radical scavenger
reduced glutathione (GSH) [14, 15] and the generation of
reactive oxygen species were also evaluated.

2. MATERIALS AND METHODS

2.1. Cells

HUVECs were harvested from fresh human umbilical cord
veins cultured until the third passage as previously described
[7, 16, 17]. The purity of the endothelial cell monolayer
was confirmed by their cobblestone morphological pattern
and by cell staining with a monoclonal antibody specific
for von Willebrand factor [17]. Newly confluent cells in
culture medium were lifted with trypsinization; the trypsin
was inhibited with 20% foetal calf serum, and cells were
washed in culture medium. After 10 minutes of centrifuga-
tion (1100 rpm, 20◦C), the supernatant was removed and
HUVECs were resuspended in culture medium (3 mL) and
then used for the experiments.

HUVECs were incubated either with zofenoprilat (the
active form of zofenopril), or enalaprilat (the active
form of enalapril), or lisinopril or captopril for var-
ious times up to 24 hours. The above experiments
were repeated in the presence of either bradykinin, or
Des-Arg9-[Leu8]-BK, that is, a bradykinin B1 receptor
antagonist, or D-Arg-[Hyp3, Thi5,8, D-phe7]-BK, that is, a
bradykinin B2 receptor antagonist. Finally, experiments were
also repeated in the presence of the NO synthase competitive
inhibitor Nω-nitro-L-arginine methyl ester (L-NA).

Zofenoprilat was obtained from Menarini Ricerche SpA,
Firenze, Italy. Angiotensin II was purchased by Clinalfa
(Laufelfingen, Switzerland). The other reagents were pur-
chased by Sigma (St Louis, Mo, US). If it is not otherwise
specified, all the tested substances have been added to culture
medium to a final concentration of 10−8 M, a concentration
that fully inhibited the human recombinant ACE for all the
antagonists under study [18].

2.2. Endothelin-1

The peptide was assayed as previously described [16]. In
brief, the culture medium derived from each well was
centrifuged at 3.000 rpm for 10 minutes. The supernatant
was subsequently freeze-dried, reconstituted in starting
high performance liquid chromatography buffer, injected

onto C18 columns (Pharmacia, Uppsala, Sweden), and
eluted over 70 minutes using a linear gradient of 15–75%
acetonitrile/0.1% trifluoroacetic acid in water. Fractions were
collected each minute and evaporated before reconstitution
in assay buffer (50 mmol/L phosphate buffer, pH 7.4, con-
taining 0.9% NaCl, 0.05%NaN3, and 0.5% bovine serum
albumin). Endothelin-1 immunoreactivity was then assayed
on reconstituted samples by a sensitive radioimmunoassay
(Peninsula Laboratories, Belmont, Calif, USA). Interassay
and intra-assay variations were <10%. Cross-reactivity of the
ET-1 antibody with endothelin-2 and endothelin-3 was <7%,
according to the supplier.

2.3. Nitric oxide

NO production by HUVECs was assessed by evaluating
the concentration of NO metabolite (NOx), that is, nitrite
plus nitrate, in culture medium. Briefly, NOx concentrations
were evaluated by colorimetric detection of nitrite after
conversion of all sample nitrate to nitrite (Assay Design Inc.,
Ann Arbor, Mich, USA) as previously described [9].

2.4. Measurements of intracellular glutathione redox
status and oxidative stress

Intracellular glutathione (GSH) concentration was measured
according to the method previously described by our group
[15]. In brief, 2 × 106 HUVECs were firstly diluted in
1 mL isotonic saline + HCl (10 mmol/L) and then lysed
in acetone, thawed four times, and centrifuged for 15
minutes at 4◦C. Supernatants were deproteinized with 10%
5-sulfosalicylic acid and used for total GSH determination,
that is, glutathione (GSH) + GSH disulphide (GSSG), by
the enzymatic method described by Anderson [19]. For
GSSG determination, 0.1 mL deproteinized supernatants
were treated with 2 μL 2-vinylpyridine, neutralized with
triethanolamine at a final pH of 6.5 and assayed after 1
hour incubation. Then, endothelial cell GSH content was
calculated by subtracting GSSG from total intracellular GSH
concentrations.

Intracellular oxidative stress was measured at baseline
and after incubation with tumor necrosis factor (TNF)α
according to Wu and Juurlink’s method [14]. In brief,
cultured HUVECs were loaded with the permeable agent 5-
(6)-carboxy-2′-7′-dichlorodihydrofluorescein (DCHF) ester
for 60 minutes. In the presence of intracellular esterases
permeable DCHF ester is converted to its impermeable
counterpart. This latter is oxidized to the fluorescent DCF
by strong oxidants such as hydroxyl radicals [15, 20]. Then,
intracellular oxidative stress was quantified by monitoring
DCF content in HUVECs with fluorimeter with excitation
at 495 nm and emission at 525 and expressed as percent of
control.

2.5. Statistical analysis

Changes of the assessed parameters were analyzed by paired
t-test. Multiple comparisons were analyzed by ANOVA
followed by post hoc analysis with Bonferroni test. Statistical
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significance was considered as P < .05. Data are given as the
mean ± SD of four experiments.

3. RESULTS

3.1. ACE-I counteracts endothelin-1 secretion in
HUVECs: evidence of different pathway

All tested ACE-I at 10−8 M reduced spontaneous ET-
1 secretion by HUVECs to a level which was similar
to that induced by bradykinin (see Figure 1(a)). Prein-
cubation with the bradykinin B2 receptor antagonist
D-Arg-[Hyp3, Thi5,8, D-phe7]-BK but not the bradykinin B1

receptor antagonist Des-Arg9-[Leu8]-BK both at 10−6 M
abolished the inhibitory effect of ACE-I on ET-1 secretion by
HUVECs. These data suggested that bradykinin B2 receptor
stimulation was involved in the inhibitory effect of the four
tested ACE-I on ET-1 secretion. Although all the four tested
drugs counteracted spontaneous ET-1 secretion by HUVECs,
zofenoprilat was more effective than the other ACE-I in this
setting. In addition, the inhibitory effect of zofenoprilat on
ET-1 secretion was only partially counteracted by bradykinin
B2 receptor inhibition (see Figure 1(c)). This finding indi-
cated that bradykinin B2 receptor stimulation does not
represent the only pathway involved in the inhibitory effect
of zofenoprilat on ET-1 production by HUVECs.

3.2. Increased NO availability is responsible for
the inhibitory effect of ACE-I on endothelin-1
secretion by HUVECs

All tested ACE-I at 10−8 M and bradykinin at 10−8 M
significantly increased spontaneous NOx concentrations in
culture medium (see Figure 2(a)). ACE-I and bradykinin
related changes in NOx concentrations were counteracted
by previous incubation of HUVECs with the bradykinin
B2 receptor antagonist D-Arg-[Hyp3, Thi5,8, D-phe7]-BK at
10−6 M (see Figures 2(b)–2(f)) while the bradykinin B1

receptor antagonist Des-Arg9-[Leu8]-BK at 10−6 M was com-
pletely ineffective in this setting (see Figures 2(b)–2(f)). The
preincubation of HUVECs with the NO synthase inhibitor
L-NA at 3× 10−3 M completely abolished the effects of ACE-
I and bradykinin on NOx production (see Figures 2(b)–
2(f)). In addition, L-NA also counteracted the inhibitory
effect of ACE-I on ET-1 production (see Figures 1(b)–1(f)).
These data suggest that increased NO production plays a
pivotal role in the inhibitory effect of ACE-I on endothelin-
1 secretion by HUVECs. Although all four tested ACE-I
were effective in increasing NOx concentrations in culture
medium, this effect was more evident in the presence of
zofenoprilat (see Figure 2(a)). In addition, bradykinin B2

receptor inhibition was only partially effective in counteract-
ing zofenoprilat-induced increment of NOx concentrations
in culture medium (see Figure 2(c)).

3.3. ACE-I reduces intracellular oxidative stress and
increases GSH content

HUVECs preincubation with 10−8 M of zofenoprilat and
captopril, but not with enalaprilat and lisinopril, was resulted

in a significant decrease of TNFα-stimulated generation
of reactive oxygen species (see Figure 3(a)). Although
both sulfhydryl containing ACE-I reduced TNFα-stimulated
reactive oxygen species generation in cultured HUVECs,
zofenoprilat was more effective than captopril in this setting
(see Figure 3(a)). In keeping with this, zofenoprilat but not
captopril, lisinopril, and enalaprilat significantly protected
HUVECs against the GSH decrease observed after incubation
with TNFα (see Figure 3(b)).

4. DISCUSSION

The ability of ACE-I to counteract ET-1 production by
endothelial cells [7, 9] has been proposed as a relevant
contributor to the well-known vascular protective effects
exerted by ACE-inhibition [7, 21]. Indeed, although tonic
ET-1 production by endothelial cells physiologically con-
tributes to vascular tone [21, 22], this peptide has per
se all the biological potential to contribute to the onset
and progression of atherosclerotic vascular damage [8, 21].
The current report provides evidence that ACE-I, tested at
concentrations that fully inhibited the ACE, do not share in
common similar efficacy in counteracting ET-1 release from
vascular endothelial cells. Indeed, we found that zofenoprilat
was more effective than captopril, lisinopril, and enalaprilat
in reducing ET-1 secretion from cultured HUVECs. In
addition, our data demonstrate that different intracellular
pathways are involved in the inhibitory effects of the four
tested ACE-I on ET-1 secretion. In this context, it has been
previously demonstrated that the inhibitory effect of ACE-I
on ET-1 production by HUVECs is due to a bradykinin B2

receptor-mediated increase in NO production by HUVECs
[7, 9].

As known, oxygen derived free radical can inactivate
NO [12]. In turn, NO represents a barrier against oxidants
such as unscavenged superoxide anion [23]. Thus, it is
reasonable to speculate that the greater effects observed with
zofenoprilat in reducing ET-1 secretion and increasing NO
production by cultured HUVECs might have been due to
its antioxidant properties [11, 24]. In keeping with this,
zofenoprilat and at lesser extent captopril, but not lisinopril
and enalaprilat, were able to decrease generation of reactive
oxygen species induced by TNFα in HUVECs. Further,
zofenoprilat but not the two nonsulfhydryl containing ACE-
I lisinopril and enalaprilat blunted the GSH decrease in
HUVECs induced by TNFα. Since sulfhydryl containing
ACE-I are supposed to act as antioxidants as the endogenous
free radical scavenger GSH [2, 10, 11], both these findings
suggest that the sulfhydryl group can be the responsible for
the effect of zofenoprilat in reducing ET-1 production, that
is, because of sulfhydryl-related scavenging capability and the
consequent decrease in NO inactivation by endogenous oxi-
dants. In agreement with this hypothesis, Cominacini et al.
[24] demonstrated that zofenoprilat, but not enalapril, pro-
tected the intracellular proinflammatory pleiotropic medi-
ator nuclear factor κB against oxidant-induced activation
and was able to spare GSH from consumption induced by
oxLDL. Likewise, sulfhydrylic ACE-I have been reported to
protect cultured endothelial cells against the damage induced
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Figure 1: Effects of 10−8 M captopril (CPT, (a) and (b)), zofenoprilat (ZOF, (a) and (c)), lisinopril (LIS, (a) and (d)), enalaprilat (ENA,
(a) and (e)) and bradykinin (BK, (a) and (f)) on endothelin-1 secretion (expressed as % of control) by vascular endothelial cells derived
from umbilical cord vein after 8 hours of incubation both alone and in the presence of either Des-Arg9-[Leu8]-BK, that is, a bradykinin B1

receptor antagonist (B1ra, 10−6 M), or D-Arg-[Hyp3, Thi5,8, D-phe7]-BK, that is, a bradykinin B2 receptor antagonist (B2ra, 10−6 M), or the
NO synthase competitive inhibitor Nω-nitro-L-arginine methyl ester (L-NA, 3× 10−3 M). (A) P < .0008 or less versus CPT, ZOF, LIS, ENA,
and BK; (B) P < .04 or less versus ZOF; (C) P < .0005 or less versus CPT+B1ra; (D) P < .0003 or less versus ZOF+B1ra, ZOF+B2ra, and
ZOF+L-NA; (E) P < .002 versus ZOF+B1ra; (F) P < .0001 versus LIS+B1ra; (G) P < .0002 or less versus ENA+B1ra; (H) P < .0001 versus
BK+B1ra.
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Figure 2: Effects of 10−8 M captopril (CPT, (a) and (b)), zofenoprilat (ZOF, (a) and (c)), lisinopril (LIS, (a) and (d)), enalaprilat (ENA, (a)
and (e)), and bradykinin (BK, (a) and (f)) on nitric oxide production, as evaluated by nitrite plus nitrate concentrations in culture medium
(expressed as % of control) by vascular endothelial cells derived from umbilical cord vein after 8 hours of incubation both alone and in the
presence of either Des-Arg9-[Leu8]-BK, that is, a bradykinin B1 receptor antagonist (B1ra, 10−6 M), or D-Arg-[Hyp3, Thi5,8, D-phe7]-BK,
that is, a bradykinin B1 receptor antagonist (B2ra, 10−6 M), or the NO synthase competitive inhibitor Nω-nitro-L-arginine methyl ester
(L-NA, 3 × 10−3 M). (A) P < .0001 versus control; (B) P < .02 or less versus CPT, LIS, ENA, and BK and P < .0001 versus control; (C)
P < .0003 or less versus control, CPT+B2ra and CPT+L-NA; (D) P < .0001 versus control and ZOF+L-NA and P < .003 versus ZOF+B2ra;
(E) P < .003 versus control and ZOF+L-NA; (F) P < .0004 or less versus control, LIS+B2ra and LIS+L-NA; (G) P < .0006 or less versus
control, ENA+B2ra and ENA+L-NA; (H) P < .0001 versus control, BK+B2ra and BK+L-NA.



6 Mediators of Inflammation

0
20
40
60
80

100
120
140
160
180
200

D
C

F
(p

er
ce

n
t

of
co

n
tr

ol
)

Control TNF TNF+CPT TNF+ZOF TNF+LIS TNF+ENA

A

B

A A

(a)

0

20

40

60

80

100

120

G
SH

(p
er

ce
n

t
of

co
n

tr
ol

)

Control TNF TNF+CPT TNF+ZOF TNF+LIS TNF+ENA

C
D

(b)

Figure 3: Effects of 10−8 M captopril (CPT), zofenoprilat (ZOF), lisinopril (LIS), and enalaprilat on TNFα-induced intracellular oxidative
stress as evaluated by dichlorofluorescein (DCF, (a)) and glutathione (GSH, (b)) content. (A) P < .01 or less versus control and TNF+ZOF
and P < .002 versus TNF+CPT; (B) P < .0001 versus control and P < .01 versus TNF+ZOF. (C) P < .0001 versus TNF, TNF+CPT, TNF+LIS,
and TNF+ENA and P < .02 versus TNF+ZOF; (D) P < .0004 or less versus TNF, TNF+CPT, TNF+LIS, and TNF+ENA.

by both superoxide and nonsuperoxide radicals [11] and
to decrease LDL susceptibility to oxidation in hypertensive
patients [25, 26].

However, the presence of a sulphydryl group in zofeno-
prilat molecule does not completely explain our findings.
Indeed, the other sulfhydryl containing ACE-I tested in
our study, captopril, was mildly but not significantly more
effective than lisinopril and enalaprilat in our tests. These
data agree with previous findings obtained in leucocytes
and endothelial cells, demonstrating that captopril poorly
scavenged newly generated superoxide anion [27, 28]. In this
regard, zofenoprilat displays higher lipophilicity than capto-
pril, suggesting it could exert more pronounced intracellular
effects [18]. Worth mentioning in this regard, the recent
evidence by Soardo et al. [29] demonstrating a stronger
inhibitory effect of zofenoprilat on alcohol-induced ET-1
production by endothelial cells in comparison to carvedilol,
a beta adrenoceptor blocker with known antioxidant activity
[30].

In conclusion, the sulfhydryl containing ACE-I zofeno-
prilat, that is, the active drug of the prodrug zofenopril
[18], was more effective than the nonsulfhydryl containing
ACE-I lisinopril and enalapril and the sulfhydryl contain-
ing one captopril in reducing ET-1 secretion by cultured
HUVECs and improving NO bioavailability. These findings
likely reflect different antioxidant power between the four
tested ACE-I. Since both increased ET-1 production and
decreased NO bioavailability are deeply involved in the
pathophysiology of atherosclerosis [22], reciprocal changes
in ET-1 and NO production by the vascular endothelium
could contribute to the benefits deriving from clinical
use of ACE inhibitors [2]. The presence of a sulfhydryl
group confers to ACE-I some ancillary properties, such
as greater protection against LDL oxidation [26] and
nuclear factor κB activation [24], scavenging of superox-
ide anion [10] and nonsuperoxide radical [11], and, as
demonstrated in this study, more pronounced favourable
effects on ET-1/NO balance in vascular endothelial cells.
Whether or not these endothelial effects of zofenoprilat
could contribute to the observed cardiovascular benefits
deriving from zofenopril treatment [31] remains to be
elucidated.
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