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Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate
allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated
whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway
disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced
allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in
the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after
ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-𝛾) and
regulatory cytokines (IL-10 and TGF-𝛽) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of
IDO, TGF-𝛽, and PGE

2
were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied

by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through
the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-𝛽, and
PGE
2
and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production.

1. Introduction

Allergic rhinitis (AR) and asthma are chronic, reversible
allergic airway diseases that have become a significant global
public health concern [1]. Allergic airway diseases are char-
acterized by Th2-skewed eosinophilic inflammation, mucus
hypersecretion, and airway hyperresponsiveness (AHR) [1,
2]. The excessive activation of Th2 cells is thought to play
a major role in allergic immune reaction, initiating and
propagating inflammation through release of a number of
Th2 cytokines, such as IL-4 and IL-13, that regulate isotype

switching to allergen-specific IgE or IL-5, which recruits and
activates eosinophils [3].

Mesenchymal stem cells (MSCs) represent an important
stem cell population with multipotent capabilities which
may have high utility for translational clinical applications.
MSCs were initially isolated from bone marrow (BM) but
are now shown to reside in almost adult organ and tissues
[4]. Because of their capacity for differentiation, MSCs have
emerged as a promising source for therapeutic applications
in tissue engineering and regenerative medicine [5, 6]. In
addition to their multilineage potential, MSCs derived from
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adipose tissue (ASCs) may share with otherMSCs the unique
ability to suppress immune responses and modulate inflam-
mation [7]. MSCs can inhibit natural killer cell function
[8, 9], modulate dendritic cell maturation [10], and suppress
the allogeneic T cell response [8] by altering the cytokine
secretion profile of dendritic cells and T cells induced by
an allogeneic immune reaction. Although the ability of
MSCs to modulate immune systems has led to increasing
interest in using MSCs as a potential therapeutic modality
for allergic airway diseases, only several studies demonstrated
MSCs can ameliorate allergic airway inflammatory diseases,
including asthma [11–13] and AR [14–17]. Moreover, the
immunomodulatory mechanism of MSCs in allergic airway
disease is not completely understood.

In this study, we evaluated the effects of MSCs on allergic
inflammation, changes of regulatory T cells (Tregs), and
cytokines in ovalbumin (OVA) induced asthmatic mouse
model. Furthermore, we investigated whether Tregs induc-
tion is a potential mechanism in immunomodulatory effects
of MSCs on allergic airway disease and how these induced
Tregs orchestrate allergic inflammation.

2. Materials and Methods

2.1. Animals. Five-week-old female C57BL/6 mice were
purchased from Samtako Co. (Osan, Republic of Korea,
http://www.samtako.com.ipaddress.com/) and bred in a spe-
cific pathogen free animal facility. The animal study protocol
was approved by the Institutional Animal Care and Use
Committee of the Pusan National University School of
Medicine.

2.2. Isolation and Culture of ASCs. Among MSCs, ASCs
were used because of their abundance, relatively easy har-
vesting, and high proliferation potential. Adipose tissue
was obtained from the abdominal fat of C57BL/6 mice.
To isolate homogenous ASCs, adipose tissue was washed
extensively with equal volumes of phosphate-buffered saline
(PBS) and digested with 0.075% collagenase type I (Sigma,
St. Louis, MO) at 37∘C for 30 minutes. Enzyme activity
was neutralized with 𝛼-modified Eagle’s medium (𝛼-MEM)
containing 10% fetal bovine serum (FBS) and the sample was
centrifuged at 1,200×g for 10 minutes to obtain a pellet. The
pellet was filtered through a 100𝜇m nylon mesh to remove
cellular debris and incubated overnight at 37∘C in 5% CO

2

in control medium (𝛼-MEM, 10% FBS, 100 unit/mL peni-
cillin, 100 𝜇g/mL streptomycin). Following incubation, the
plates were washed extensively with PBS to remove residual
nonadherent red blood cells. The resulting cell population
was maintained at 37∘C in 5% CO

2
in control medium.

One week later, when the monolayer of adherent cells had
reached confluence, cells were trypsinized (0.05% trypsin-
EDTA; Sigma), resuspended in 𝛼-MEM containing 10% FBS,
and subcultured at the concentration of 2,000 cells/cm3. For
the experiments, we used the third or fourth passage of ASCs.

Flow cytometric analysis was used to characterize the
phenotypes of the ASCs. At least 50,000 cells (in 100𝜇L
PBS, 0.5% bovine serum albumin (BSA), 2mmol/l EDTA)

were incubated with fluorescein isothiocyanate-labeledmon-
oclonal antibodies against mouse stem cell antigen-1 (Sca-
1), CD44, CD90, CD45, CD 117, and CD11b (BD Biosciences
Clontech, Palo Alto, CA) or with the respective isotype
control. After washing, labeled cells were analyzed by flow
cytometry using FACSCalibur flow cytometer and the Cell
Quest Pro software (BD Biosciences, San Diego, CA).

2.3. MouseModel of Allergic Airways Inflammation. Amouse
model of allergic airways inflammation was induced as
previously reported with minor modification [18]. Briefly,
mice were sensitized by intraperitoneal injection of 75𝜇g of
OVA (Sigma, St. Louis, MO, http://www.sigmaaldrich.com)
in 2mg of aluminum hydroxide (Sigma) in 200𝜇L PBS on
days 0, 1, 7, and 8. On days 14, 15, 21, and 22 after the
initial sensitization, the mice were challenged intranasally
with 50𝜇g of OVA in 50𝜇L PBS (Figure 1(a)).

2.4. Intravenous Transplantation of ASCs. ASCs were washed
with PBS and suspended in PBS at a concentration of 1 × 107
cells/mL. To evaluate the effect of ASCs, 0.1mL of purified
stem cells was injected with a 26-gauge needle via the mouse
tail vein once a day on days 12, 13, 19, and 20 (Figure 1(a)).

Mice were divided into four groups, with fivemice in each
group: (a) PBS group mice were sensitized, pretreated, and
challenged with PBS; (b) PBS+ASC group mice were sensi-
tized and challenged with PBS but pretreated with ASCs; (c)
OVA group mice were sensitized with OVA, pretreated with
PBS, and then challenged with OVA; (d) OVA+ASC group
mice were sensitized with OVA, pretreated with ASCs, and
then challenged with OVA (Figure 1(b)). These experiments
were performed four times according to the same protocol.

2.5. Evaluation of Nasal Symptoms. The frequency of sneez-
ing and nasal rubbing that occurred in the 10-minute time
period after the last OVA challenge was determined in a blind
manner by two observers.

2.6. Measurement of Methacholine AHR. Twenty-four hours
after the last challenge, the AHR was assessed in con-
scious, unrestrained mice using noninvasive whole-body
plethysmography (Allmedicus, Seoul, Republic of Korea) as
previously described [19]. In brief, the mice were placed in
the plethysmography chamber and exposed to increasing
concentrations of aerosolized methacholine at 0, 12.5, 25,
and 50mg/mL for 10min. The enhanced pause (Penh) was
calculated automatically based on the mean pressure gener-
ated in the plethysmography chamber during inspiration and
expiration combined with the time of each phase. The Penh
values calculated during each 3-minute interval were then
averaged.

2.7.Differential Cell Counting in Bronchoalveolar Lavage Fluid.
To obtain bronchoalveolar lavage fluid (BALF), the tracheas
of the anesthetized mice were exposed and cut just below
the larynx. A polyurethane flexible tube (0.4mm in outer
diameter, 4 cm in length, and attached to a blunt 24-gauge
needle (Boin Medical Co., Seoul, Republic of Korea)) was
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Figure 1: The experimental protocol and group. (a) The mice were sensitized on days 0, 1, 7, and 8 by intraperitoneal injection of OVA and
challenged intranasally on days 14, 15, 21, and 22. 1 × 106 purified ASCs were injected via the tail vein on days 12, 13, 19, and 20. (b) The mice
were divided into four different groups in accordance with the different sensitization, challenge, and injection.

placed into the trachea, after which the lung was lavaged once
with the 800mL of sterile warm PBS.The BALF samples were
centrifuged for 5min at 1,500 rpm at 4∘C. The supernatants
were then decanted and immediately frozen at −70∘C. Cell
pellets were resuspended and washed twice in PBS. The
total cell numbers were counted using a hematocytometer.
BALF cell smears were prepared using cytospin apparatus
and stained with Diff-Quik solution (Sysmex Co., Kobe,
Japan) to determine the differential cells counts in accordance
with conventional morphological criteria. At least 500 cells
per slide were evaluated in order to obtain the differential
leukocyte counts.

2.8. Lung Histology and Inflammation Scoring. Lung tissues
were removed after the lavage, fixed in 10% neutral formalin
for 36 hours, and embedded in paraffin. The thin sections
of the embedding tissues were stained with hematoxylin and
eosin (H&E) and periodic acid-Schiff (PAS) for the identi-
fication of eosinophils and counting mucin-secreting cells,
respectively. Lung inflammation was assessed by the degree
of peribronchial and perivascular inflammation, which were
evaluated on a subjective scale of 0–4 as previously described
[20, 21]. The values were given according to the following
inflammatory parameters: 0 when no inflammation was
detectable, 1 was for occasional cuffing with inflammatory
cells, 2 when most bronchi or vessels were surrounded by
the depth of one to three cells, 3 when most bronchi or
vessels were surrounded by the depth of four to five cells,
and 4 when most bronchi or vessels were surrounded by the
depth of more than five cells. For quantifying the goblet cell
hyperplasia, the percentage of PAS-positive cells in epithelial
areas was examined from 8 to 10 tissue sections per mouse.

2.9. Quantitative Real-Time PCR for IDO and TGF-𝛽. RNA
was extracted from the lung by using 1mL of QIAzol (Qiagen
science, Valencia, CA) and RNA extraction was conducted
in accordancewith themanufacturer’s protocols, transcribing

2 𝜇g of RNAusingmoloneymurine leukemia virus (M-MLV)
reverse transcriptase (Promega, Madison, WI). Indoleamine
2,3-dioxygenase (IDO) (forward, 5-GATGAAGAAGTG-
GGCTTTGC-3; reverse, 5-TCCAGTTTGCCAAGACAC-
AG-3) and TGF-𝛽 (forward, 5-CTACCTTTCCTTGGG-
AGACC-3; reverse, 5-CGGGAGTGGGAGCAGAA-3)
RNA levels were quantified, relative to housekeeping gene,
GAPDH, using iCycler (Bio-Rad laboratories Inc., Her-
cules, CA) real-time PCRmachines followingmanufacturer’s
instructions. The relative expression of the gene was then
calculated as the ratio to a housekeeping gene using the gene-
x program (Bio-Rad laboratories Inc.).

2.10. Measurement of Serum Immunoglobulin and PGE
2
.

At 48 hours after last OVA challenge, serum was col-
lected from mice via cardiac puncture. Total and OVA-
specific immunoglobulins (Ig E, IgG1, and IgG2a) and PGE

2

were determined by enzyme-linked immunosorbent assay
(ELISA). All of these were conducted in accordance with
the manufacturer’s instructions (R&D Systems, Minneapolis,
MN). Absorbance (450 nm) was measured with an ELISA
plate reader (Molecular Devices, Sunnyvale, CA).

2.11. Expression of Cytokines in the BALF and Lung Draining
Lymph Nodes. The concentration of mouse IL-4, IL-5, IL-10,
IL-13, interferon- (IFN-) 𝛾, and transforming growth factor-
(TGF-)𝛽 expression in the BALF and in the stimulated super-
natants of lung draining lymph nodes (LLNs) was examined
using commercially available ELISA kits in accordance with
the manufacturer’s instructions (eBioscience, San Diego,
CA). The absorbance of the final reactant was determined at
450 nm with an ELISA plate reader (Molecular Devices).

2.12. Determination of Tregs and Intracellular Cytokine Stain-
ing. To evaluate the recruitment of Treg induced by ASCs
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treatment, the LLN cells were cultured in plate-coated anti-
CD3 for 3 hours from the LLNs of OVA-induced asth-
matic mice and ASC-treated asthmatic mice. The cells were
stained with anti-CD25-APC (0.2mg/mL), anti-CD4-FITC
(0.5mg/mL), and anti-Foxp3 (0.2mg/mL) in accordancewith
the manufacturer’s recommendations (BD Biosciences, San
Jose, CA).

To stain intracellular IFN-𝛾 and IL-4, the LLN cells
were first stained for CD4, subsequently fixed, permeabilized
using Cytofix/CytopermKit (BD Biosciences), and incubated
with PE-cy7-conjugated anti-IFN-𝛾 or PE-conjugated anti-
IL-4. Fluorescence was measured using a FACS CantoII
cytometer (BD Biosciences) equipped with Canto software
(BD Biosciences).

2.13. Statistical Analysis. All experiments were repeated a
minimum of three times. Data are expressed as mean ± SEM.
Statistical significance was assessed by the Student’s 𝑡-test or
ANOVA using the SPSS software package version 18.0 (SPSS
Inc., Chicago, IL). A value of 𝑃 < 0.05 was considered
significant.

3. Results

3.1. Isolation, Immunophenotypic Analysis, and Multilineage
Differentiation of ASCs. The cultured ASCs from adipose
tissue of C57BL/6 mice were negative for CD45, CD117,
and CD11b but were positive for Sca-1, CD44, and CD90
(Figure 2(a)). These putative ASCs had a spindle shaped
fibroblast-like appearance, similar to previously reported
adipose tissue and bonemarrow-derivedMSCs (Figure 2(b)).
Themultilineage capacity of ASCswas demonstrated by incu-
bating the cells in the media that promoted differentiation
into the adipogenic, osteogenic, and chondrogenic lineage
(Figures 2(c), 2(d), and 2(e)).

3.2. Systemic Administration of ASCs Suppresses Allergic Nasal
Symptoms. To investigate whether the administration of
ASCs inhibits the occurrence of nasal symptoms, clinical
parameters were measured. The frequency of sneezing and
nasal rubbing was significantly increased by OVA challenge.
The number of nasal symptoms after the final challenge
was significantly higher in the OVA group than in the PBS
group (𝑃 < 0.001). Interestingly, ASCs treatment before the
challenge phase significantly reduced the number of nasal
symptoms (𝑃 = 0.023) (data not shown).

3.3. Systemic Administration of ASCs Reduces AHR, Lung
Inflammation, and Mucus Production. To identify the effect
of ASCs on lung function, AHR was measured. Penh values
in four groups were increased with increasing concentrations
of methacholine. Penh values in asthmatic mice at 25–
50mg/mLwere significantly higher than those in the PBS and
OVA+ASC group. ASCs treatment significantly decreased at
different concentrations from 25 to 50mg/mL in response to
methacholine in asthmatic mice (𝑃 = 0.002 and 𝑃 < 0.001,
resp.) (Figure 3(a)).

To determine the effect of ASCs on inflammation in
asthmatic mice, inflammatory cells in BALF were stained

and counted. The number of total inflammatory cells and
eosinophils was increased in the BALF of OVA group
compared to PBS group. However, ASCs treatment signifi-
cantly decreased the number of total inflammatory cells and
eosinophils in asthmatic mice (𝑃 = 0.009 and 𝑃 = 0.010,
resp.) (Figure 3(b)).

No obvious infiltration of inflammatory cells was found
in the PBS and PBS+ASC group, but a greater number of
eosinophils around the peribronchial and perivascular area
were seen in the OVA group (𝑃 < 0.001) (Figures 3(c) and
3(e)). Concurrently, PAS-stained goblet cell hyperplasia, as
demonstrated by the increased number and size of goblet
cells, also occurred within the respiratory epithelium in the
OVA group (𝑃 < 0.001) (Figures 3(d) and 3(f)). However,
this hyperplasia was not found in the airways in both the PBS
group and PBS+ASC group. Interestingly, ASCs treatment
induced a significant reduction in the number of eosinophils
(𝑃 = 0.002) (Figures 3(c) and 3(e)) and goblet cell hyperplasia
(𝑃 = 0.02) (Figures 3(d) and 3(f)) in asthmatic mice.

3.4. Systemic Administration of ASCs Decreases IgE and IgG1.
To determine whether injected ASCs affect Th2-specific
immunoglobulin concentrations in the serum, the total and
OVA-specific IgE, IgG1, and IgG2a levels were determined.
Total and OVA-specific IgE and IgG1 levels were significantly
higher in the OVA group than in the PBS group (all 𝑃 <
0.001). However, systemic administration of ASCs resulted in
a significant decrease in total IgE and IgG1 (all𝑃 = 0.033) and
OVA-specific IgE and IgG1 levels (𝑃 = 0.025 and 𝑃 = 0.013,
resp.) in asthmaticmice.Therewere no significant differences
in serum total and OVA-specific IgG2a levels in all groups
(Figure 4).

3.5. Systemic Administration of ASCs Alters Cytokine Levels
in Both the BALF and the LLN. To determine whether the
administration of ASCs affects cytokine production, the
cytokines in both theBALF and the LLNwere analyzed.OVA-
challengedmice showed significantly increased levels of IL-4,
IL-5, and IL-13 in the BALF (all 𝑃 < 0.001). However, ASCs
treatment resulted in a significant decrease in IL-4, IL-5, and
IL-13 in the BALF (𝑃 < 0.001, 𝑃 = 0.020, and 𝑃 < 0.001,
resp.) and LLN (𝑃 < 0.004, 𝑃 = 0.018, and 𝑃 < 0.001,
resp.). In contrast, higher levels of IFN-𝛾 were observed in
both the BALF and the LLN of OVA+ASC group compared
to OVA group (𝑃 = 0.001 and 𝑃 = 0.026, resp.). Interestingly,
ASC treatment significantly increased IL-10 andTGF-𝛽 in the
BALF (all 𝑃 < 0.001) and LLN (all 𝑃 = 0.001) of OVA+ASC
group (Figure 5).

3.6. Systemic Administration of ASCs Enhances Tregs Expan-
sion, Gene Expression of IDO andTGF-𝛽, and PGE

2
. To study

the mechanism underlying the immunomodulatory effects
of ASCs in asthmatic mice, CD4+CD25+ Tregs, IL-4+CD4+
T cells, IFN-𝛾+CD4+ T cells, and gene expression of IDO
and TGF-𝛽 were explored. The population of Tregs in LLN
of asthmatic mice was markedly increased by administration
of ASCs in asthmatic mice (𝑃 = 0.017) (Figure 6(a)).
IL-4+CD4+ T cells in LLNs were significantly decreased
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Figure 2: Characteristics of adipose-derived stem cells (ASCs). ASCs show characteristics of mesenchymal stem cells in the immunopheno-
typic analysis (a), fibroblast-like morphology (b), adipogenesis (c), osteogenesis (d), and chondrogenesis (e) (original magnification ×40).

(𝑃 = 0.003) (Figure 6(b)) and IFN-𝛾+CD4+ T cells in
LLNs were significantly increased (𝑃 = 0.015) (Figure 6(c))
in the OVA+ASC group compared to the OVA group. In
addition, gene expression levels of IDO and TGF-𝛽 of
lung tissue and PGE

2
levels in the serum were significantly

increased in the OVA+ASC group compared to the OVA
group (𝑃 = 0.003, 𝑃 = 0.018, and 𝑃 = 0.005, resp.)
(Figure 6(d)).

4. Discussion

The immunomodulatory function of MSCs makes them
promising candidates for allergic disease therapy. MSCs iso-
lated from the BM and adipose tissues have similar morphol-
ogy, phenotype, and differentiation capability [22]. Further-
more, both BM-MSCs and ASCs have immunosuppressive
properties [23]. Because of their abundance, relatively easy
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Figure 4: Effect of adipose-derived stem cells (ASCs) on serum levels of immunoglobulin. Total (a) and OVA-specific (b) IgE and IgG1 levels
were significantly higher in the OVA group than in the PBS group. Systemic administration of ASCs resulted in a significant decrease in total
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harvesting, and high proliferation potential, ASCs might
be a more useful source for cell therapy of allergic airway
experimental studies [24]. Administration of MSCs can
ameliorate severity of acute lung injury and fibrosis [25–27]
and modulation of proinflammatory and anti-inflammatory
cytokines is considered as the main beneficial effect of
MSCs. Since asthma is characterized as chronic airway
inflammation with eosinophilic infiltration and unbalance
between Th1- and Th2-derived cytokines, we propose that
ASCs-driven immunomodulation contributes to attenuation
of airway inflammation in asthma, consequently improving
lung function.

In this study, OVA challenge induced an infiltration
of inflammatory cells in the airway and BALF as well as
goblet cell hyperplasia in the airway of asthmatic mice. ASCs
administration led to a significant histological and func-
tional improvement in asthmatic mice. ASCs significantly
decreased total cell number and eosinophils in BALF and
improved lung pathology such as lung inflammation scores
and goblet cell hyperplasia.These findings indicate that ASCs
inhibited recruitment of eosinophils and mononuclear cells

into the airway and BALF and reduced AR symptoms and
AHR in asthmatic mice, which is consistent with previous
studies [11, 12, 15, 17]. However the mechanisms underlying
the beneficial effect of ASCs in allergic airway diseases are
unclear.

As expected, ASCs administrations significantly de-
creased total and OVA-specific IgE and IgG1 serum levels.
The levels of Th2 cytokines (IL-4, IL-5, and IL-13) were
significantly decreased after the administration of ASCs,
whereas IFN-𝛾 and regulatory cytokines (IL-10 and TGF-
𝛽) were significantly increased in the BALF and LLN. We
also demonstrated that the ratio of Tregs in ASCs-treated
asthmatic mice was significantly higher than in untreated
mice, which was similar to previous studies that indicate that
BM-MSCs preferentially activate CD4+CD25+ T cell subsets,
which are the main underlying mechanisms for immuno-
suppressive activity of MSCs [8, 28]. BM-MSCs prevented
the occurrence of severe, irreversible damage to bone and
cartilage in murine rheumatoid arthritis model by inducing
production of antigen-specific Tregs [29]. However, the effect
of MSCs on Tregs in allergic airway diseases is still unknown.
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Figure 5: Effect of adipose-derived stem cells (ASCs) on cytokine levels of BALF (a) andLLNs (b). IL-4, IL-5, and IL-13 levels were significantly
higher in the BALF of the OVA group than PBS group. ASCs treatment significantly decreased the levels of IL-4, IL-5, and IL-13 in the BALF
and LLNs but increased the levels of IFN-𝛾, IL-10, and TGF-𝛽 in the BALF and LLNs.
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Figure 6: Effects of adipose-derived stem cells (ASCs) on Tregs, IL-4 or IFN-𝛾 producing T cells, and gene expression of IDO and TGF-𝛽.
(a) ASCs treatment significantly increased the frequency of Tregs. IL-4+CD4+T cells (b) were significantly decreased, but IFN-𝛾+CD4+T cells
(c) were significantly increased by ASCs treatment. (d) The gene expression levels of IDO and TGF-𝛽 and PGE

2
levels were significantly

increased by ASCs treatment.
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Figure 7: Schematic presentation of plausible mechanisms by which ASCs regulate the allergic airway diseases. ASCsmigrated to the lung by
intravenous administration secrete a variety of soluble factors including IDO, TGF-𝛽, and PGE

2
. Through a soluble factor or direct contact

of ASCs with T lymphocytes, ASCs initiate the expansion of Tregs. Tregs secrete IL-10 and TGF-𝛽 which ultimately lead to decrease of lung
eosinophil infiltration, as well as allergy-specific Th2 cytokines and Ig production.

Our study showed that ASCs administration significantly
increased the ratio of Tregs in the LLNs of asthmatic mice.
Furthermore, IL-4+CD4+ T cells were significantly reduced
after ASCs treatment, whereas IFN-𝛾+CD4+ T cells were
significantly increased in the LLNs. Our findings, and those
from other reports, provide evidence that Treg expansion
plays a central role in the immunomodulatory properties of
ASCs.

Tregs are a unique T cell populationwith strong immuno-
suppressive properties. CD4+CD25+ Tregs are impaired
quantitatively and functionally and also play a protective
role in suppressing airway eosinophilic inflammation and the
development of airway hyperreactivity in asthma [30]. The
induction of Tregs by MSCs involves not only direct contact
between MSCs and CD4+ T cells, but also the secretion
of soluble factors such as IDO, TGF-𝛽, and PGE

2
[31].

Treatment with IFN-𝛾 causes MSCs to express the protein
IDO and exhibit functional activity of IDO, which in turn
degrades essential tryptophan and results in kynurenine
synthesis and thereby suppresses lymphocyte proliferation
[32]. Neutralizing antibodies against TGF-𝛽 and BM-MSCs
derived from TGF-𝛽1-KO mice eliminated the beneficial
effect of MSCs, suggesting that the BM-MSCs-derived TGF-
𝛽 is critical in suppressing the allergic responses [33, 34].
Coculturing T cells with MSCs resulted in elevated levels of
PGE
2
, and treatmentwith inhibitors of PGE

2
productionmit-

igated the MSCs-mediated immune modulation [35, 36]. In
this study, we observed that ASCs significantly increased IDO
and TGF-𝛽 expression in lung tissue and PGE

2
levels in the

serum of OVA-sensitized mice, suggesting that IDO, TGF-𝛽,

and PGE
2
might be the major soluble factors responsible for

Treg expansion in LLNs.
Our previous studies demonstrated that lungs are the

primary site of ASCs accumulations following intravenous
administration and developing allergic environment is capa-
ble of attracting and retaining more ASCs than unaffected
lungs [11, 15]. Although it remains unclear whether systemic
administration of ASCs became activated by which signaling
mechanism, we present the supposed schematic drawing for
themechanism of ASCs effect on the basis of previous studies
[11, 15, 32–36] and data of this study. ASCs migrated to
the lung by intravenous administration secrete a variety of
soluble factors including IDO, TGF-𝛽, and PGE

2
. Through a

soluble factor or direct contact of ASCs with T lymphocytes,
ASCs induce the expansion of Tregs. Tregs secrete anti-
inflammatory cytokines (IL-10, TGF-𝛽), which ultimately
lead to decrease of lung eosinophil infiltration, as well as
allergy-specific Th2 cytokines and Ig production (Figure 7).

The present study demonstrates that intravenous treat-
ment with ASCs in asthmatic mice provides a significant
reduction of allergic airway inflammation and improvement
of lung function. These immunomodulatory effects might be
mediated by upregulating Tregs and partly involve increasing
soluble factors such as IDO, TGF-𝛽, and PGE

2
.
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