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Dysfunction of the glial cells, such as astrocytes and microglia, is one of the pathological features in many psychiatric disorders,
including depression, which emphasizes that glial cells driving neuroinflammation is not only an important pathological change
in depression but also a potential therapeutic target. In this review, we summarized a recent update about several signaling
pathways in which glial cells may play their roles in depression through neuroinflammatory reactions. We focused on the basic
knowledge of these signaling pathways by elaborating each of them. This review may provide an updated image about the recent
advances on these signaling pathways that are essential parts of neuroinflammation involved in depression.

1. Introduction

Depression is one of the most common disability diseases
in human beings, affecting approximately 16% of the
world’s population. In addition to major depressive disorder
(MDD) patients, there are many diseases associated with
depression, such as Alzheimer’s disease, epilepsy, cerebrovas-
cular disease, cancer, and Parkinson’s disease [1–3]. So far,
the mechanisms of depression are understood to be serotonin
deficits, stress, and the hypothalamic-pituitary-adrenal axis
theory [4–6]. In recent years, the theory of inflammation is
attracting much more attention. Clinical and basic studies
have revealed that immunological abnormalities and cyto-
kines could significantly affect depressive symptoms, the
neuroendocrine system, neurotransmitters, neurodegenera-
tion, and neurogenesis [7–9].

Microglia and astrocytes are important immune regula-
tory cells in the central nervous system (CNS). Usually,
microglia is named as “resting” cells, with long branching
processes and a small cellular body, which keep monitoring

immune threats while maintaining homeostasis in the CNS
[10]. When activated, ramified microglia could turn into
ameboid morphology, phagocyte-like cell, and secrete
immune-molecules, including a series of cytokines [10].
During this course, the activated microglial cells could be
transformed to either MI type (toxic) or M2 type (protective)
microglia, depending on the variety of external or internal
insults [11]. Astrocytes, key components of the blood-brain
barrier (BBB), serve as a functional barrier that regulates
and restricts CNS inflammation [12]. In addition, astrocytes
could regulate and keep the balance of the glutamate system
and significantly contribute to synaptic plasticity [13].

Patients with MDD showed elevated microglial density in
the frontal cortex, temporal cortex, and hippocampus from a
positron emission tomography (PET) study [14]. In the same
study, the expressions of some genes in astrocytes were
decreased in the prefrontal cortex of MDD patients,
which reflected an astrocytic dysfunction, such as GFAP,
ALDH1L1, SOX9, GLUL, SCL1A3, GJA1, and GJB6 [15].
The findings from human beings are consistent with results
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from animal models of depression [16]. Neuroinflammation
with increased expression of proinflammatory cytokines in
CNS contributes to the etiology of depression. Animals with
proinflammatory cytokines injection exhibit depression-like
behavior [17]. Intraperitoneal injection of lipopolysaccharide
(LPS) that could trigger systemic inflammation led mice
to show obvious depressive-like behaviors, with activated
microglia and astrocytes in the hippocampus and medial
prefrontal cortex (mPFC) [17]. Previous reports also found
that rats under the chronic unpredictable mild stress
(CUMS) model exerted depressive-like behavior with obvi-
ous hippocampus and mPFC microglia activation and
reactive astrogliosis [18, 19]. After maternal deprivation,
the level of glial fibrillary acidic protein (GFAP) immunopo-
sitive cells decreased in the hippocampus of offspring rats in
early developmental phases but increased in late develop-
mental phases [20]. Iba-1 (microglial marker) immunoposi-
tive cells increased in both early and late developmental
phases [20]. These data suggested that microglia and astro-
cytes might play key roles in MDD. Maternal deprivation is
a well-established predisposing factor for the development
of anxiety and depression [21].

Therefore, microglia and astrocytes could be extensively
involved in the pathogenesis of both MDD patients and ani-
mal models. The underlying mechanisms by which these glial
cells trigger the neuroinflammatory response, and how they
are orchestrated and regulated by each other, are quite
important in order to understand the significance of these
events of glial cells during the development of depression.
Therefore, we summarized the recent research findings of
this field and presented the updated profile of the network
of glial cells, neuroinflammation, and depression.

2. Signaling Pathways of
Neuroinflammation in Depression

2.1. Kynurenine Pathway. The kynurenine pathway is
regulated by inflammatory cytokines in CNS diseases [22].
Tryptophan (TRP) is transformed to kynurenine (KYN) by
tryptophan dioxygenase or indoleamine 2, 3-dioxygenase
(IDO). With the help of kynurenine aminotransferase
(KAT), KYN is transformed into kynurenic acid (KYNA),
which is an antagonist of N-methyl-D-aspartic acid (NMDA)
receptor and α7-nicotinic acetylcholine receptor [23]. KYN
can also be transformed into 3-hydroxykynurenine (3-HK)
with the kynurenine monooxygenase (KMO). Then, 3-HK
is transformed to quinolinic acid (QUIN), which is an ago-
nist of the NMDA receptor [24]. Since literatures have shown
kynurenine signaling could significantly impact glutamate,
acetylcholine, and serotonin pathways, the above KYN path-
ways of tryptophan are considered to play important roles in
the pathophysiology of inflammation and depression [25]. A
study showed that IDO and KMO were significantly acti-
vated to produce large amounts of 3-HK and QUIN in
microglial cells exposed to IFN-γ stimulation [26]. Combina-
tion treatment of IFN-γ and LPS in microglial cells leads to
significant IDO upregulation, which was not inhibited by
nitric oxide (NO) [27]. In another study with an animal
model, results suggested that LPS injection induced the

microglial and IDO activation, and the activation could be
exacerbated in CX3CR1 (-/-) deficient mice, which implied
that CX3CR1 could inhibit the activation of IDO [28]. A
previous report also validated that suppression of the KYN
pathway in microglia could significantly reduce the neurite
branching and complexity of cortical neurons [29]. By com-
bination with L-KYN and LPS, L-KYN exerted a significant
inhibitory effect on the microglia response to LPS, which
suggested that the KYN pathway might play a direct role in
regulating microglia activity [30].

While astrocytes have limited expression profiles of the
above enzymes, IDO was activated by IFN-γ in astrocytes,
which only resulted in large amounts of KYN and KYNA,
but not the generation of 3-HK and QUIN [26, 31]. However,
KYN and KYNA in astrocytes could be released and
absorbed by surrounding microglia, which would further
promote the neuroinflammatory response. LPS increased
the expression of IDO-11-FL in both astrocytes and microg-
lia in the mice brains, but IDO-2-v6 was only induced in
astrocytes [32]. The different profiles of this signaling path-
way in astrocytes and microglia should be taken into account
in future studies.

2.2. Inflammasome. The activation of the inflammasome par-
ticipates in the innate immune reaction in depression [33].
The NOD-like receptor (NLR) family pyrin domain contain-
ing 3 (NLRP3) inflammasome, which includes the NLRP3
protein, adapter protein apoptosis-associated speck-like
protein (ASC), and procaspase-1, is the most studied mem-
ber of the inflammasome [34]. In an in vitro study, primary
human microglial cells contained the expression profile of
inflammasome-related genes and the expression of these
genes could be regulated functionally [35]. LPS-induced
activation of NLRP3 and caspase-1 could be detected in
microglia, and this may be correlated to microglia polariza-
tion to the M1 phenotype [36]. In primary cultures of astro-
cytes, oxygen-glucose deprivation and reoxygenation could
induce the upregulation of NLRP3, caspase-1, and the extra-
cellular release of IL-1β and high mobility group box 1
(HMGB1) [37]. Furthermore, the NLRP3 inflammasome
complex could be expressed in astrocytes induced by
HMGB1, and IL-4 could inhibit this effect through a negative
regulation of NF-κB activity and promotion of peroxisome
proliferator-activated receptor γ (PPARγ) activation [38].
In MDD patients and depressive rodents, assembly of the
NLRP3 complex, the subsequent proteolysis, and release of
the proinflammatory cytokines interleukin-1β (IL-1β) and
IL-18 have been widely reported [39]. LPS-injected mice dis-
played elevated expressions of NLRP3, ASC, and caspase-1 in
the hippocampus, and this was correlated with long-term
depression-like behaviors [40]. In the CUMS rat model,
NLRP3 inflammasome was activated in microglial cells
of the PFC area, and subsequently, IL-1β was elevated
as well [41].

2.3. Purinergic Pathway. Purinergic receptors are divided
into ionotropic P2X (for ATP) and metabotropic P1 (for
adenosine) or P2Y. The P2X7 receptor (P2X7R) is increas-
ingly recognized as an important cell surface regulator of
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some key inflammatory molecules, including IL-1β, IL-18,
IL-6, and tumor necrosis factor-alpha (TNF-α). Moreover,
a study has proven that the generation of P2X7R-
dependent cytokines is driven by the activation of NLRP3
inflammasome and antagonists of P2X7R, which is likely to
possess therapeutic potential as novel anti-inflammatory
therapies [42]. In depressive mouse models induced by LPS
or CUMS, the P2X7/NF-κB pathway was activated in the hip-
pocampus or mPFC of the mouse brain, and the expressions
of p-IKKα, p-IKKβ, p-IκBα, p-NF-κB, p65, IL-6, IL-1β, and
TNF-α were elevated as well [43, 44]. The activation of
P2X7R was accompanied by the inflow of Ca2+, followed by
the activation of MAPK kinases (ERK, JNK, p38), transcrip-
tional factors (NF-κB, CREB, AP-1) into the nucleus, and the
boosted expression of series of inflammatory genes (TNF-α,
IL-6, COX-2, iNOS, IL-2, IFN-γ, IL-3, etc.). Likewise, the
activation of P2Y1 receptor (Gq-coupled proteins) could lead
to the activation of PLC and subsequently mobilize intracel-
lular calcium, which could cause the activation of PKC, p38
MAPK, and transcriptional factor CREB, thus regulating
the expression of inflammatory genes [45].

In cultured microglia, the release of IL-6, IL1α, IL1β,
IL18, and chemokine CC motif ligand 2 (CCL2) was
P2X7R-dependent, and benzoyl-benzoyl ATP (Bz-ATP)
could also induce microglial cell death [46, 47]. IL-1β release
was P2X7R-pore-dependent, and IL-1β had trophic effects
on surrounding microglia in terms of their activation and
proliferation [48]. In astrocyte cultures, ATP increased Ser-
727 phosphorylation of signal transducer and activator of
transcription 3 (STAT3), which played an important role in
astrocyte proliferation and reactive astrogliosis [49]. Selective
P2X7R agonist, Bz-ATP, increased monocyte chemoattrac-
tant protein-1 (MCP-1) expression through the activation
of ERK1/2 and p38, which would make leukocyte infiltration
in the CNS after inflammation [50].

2.4. Nicotinic Acetylcholine Pathway. In depression, central
alpha7 nicotinic acetylcholine receptor (α7 nAChR) is a
key player in regulating the cholinergic mediated anti-
inflammatory pathway [51]. The α7 nAChR positive alloste-
ric modulator (PAM), PNU120596, prevented LPS-induced
depression-like behaviors in mice, hindered activation of
microglia and astrocytes, and inhibited the upregulation of
IL-1β and TNF-α in the hippocampus and prefrontal cortex
[52]. The α7 nAChR-signaling pathway was involved in the
process of nicotine regulation of microglia activation with a
neuroprotective role. In cultured microglia, nicotine sup-
pressed LPS-induced TNF-α release via the activation of α7
nAChRs, a signaling process involved the activation of PLC
and Ca2+ release from intracellular Ca2+ stores, and associated
with the suppression of ERK, JNK, and p38 activation [53].
Meanwhile, nicotine enhanced P2X7-receptor-mediated
TNF-α release from microglia [53]. The activation of α7
nAChRs by nicotine caused the upregulated expression of
cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in
microglial cultures [54] and elevated the expression of glutama-
te/aspartate transporter (GLAST) and glutamate uptake [55].

The expression of α7nAChR was detected in human
astrocytes as well. In cultured astrocytes, pretreatment with

nicotine could suppress MPP or LPS-induced TNF-α expres-
sion and activation of ERK1/2 and p38 [56]. After stimula-
tion by IL-1β, nicotine could inhibit the proinflammatory
cytokines, such as IL-6, IL-1β, TNF-α, IL-8, and IL-13, and
the activation of butyrylcholinesterase that was induced
by COX-2 [57]. In addition, α7 nAChR partial agonist
(GTS21) significantly reduced LPS-induced secretion of
inflammatory cytokines (TNF-α and IL-6), inhibited the
NF-κB pathway, and upregulated canonical Nrf2 antioxidant
genes (HO1, TXNRD1, and GCLC) in cultured astrocytes.

2.5. Mitochondria. Evidences has suggested that the dysfunc-
tion of mitochondria may play an important role in the path-
ogenesis of MDD [58]. In depressive rodents, mitochondrial
perturbation and mitochondrial component release were
reported to promote cytokine generation and neuroinflam-
mation. Meanwhile, cytokines were able to influence several
mitochondrial functions, including oxidative phosphoryla-
tion and oxidative stress, and thus facilitate the neuroinflam-
mation [58].

In microglial cells exposed to LPS, mitochondrial fission
regulated mitochondrial ROS production and promoted the
expression of TNF-α, IL-1β, IL-6, IL-23, iNOS, and COX-2
through the activation of NF-κB and MAPK [59]. Rotenone
and tebufenpyrad could induce mitochondrial impairment,
enhance mitochondrial ROS generation, and amplify LPS-
induced upregulation of the NLRP3 inflammasome and the
generation of IL-1β [60]. Since the synthesis of mitochon-
drial DNA (mtDNA) was crucial for NLRP3 signaling in
macrophages, the oxidized mitochondria may facilitate the
microglia-derived inflammation [61]. The activation periph-
eral benzodiazepine receptor (PBR), a component of the
mitochondrial permeability transition pore (PTP), signifi-
cantly inhibited the LPS-induced upregulation of COX-2
and TNF-α [62]. Translocator protein (TSPO), an outer
mitochondrial membrane protein, was upregulated in LPS-
challenged microglial cells. TSPO could reverse the LPS-
triggered production of the proinflammatory mediators
CCL2, IL-6, and iNOS [63]. Mitochondrial uncoupling pro-
tein 2 (UCP2) knockout mice demonstrated depressive-like
behaviors and lost more astrocytes in the hippocampus when
exposed to chronic mild stress. UCP2 decreased ROS, nega-
tively regulated the activation of NLRP3 inflammasome,
and inhibited the production of IL-1β in astrocytes exposed
to LPS in primary cultures [64].

2.6. Steroid Hormone Pathway. Steroid hormones, such as
glucocorticoids (GCs) and estrogens, are well-established
regulators of immune responses. Dysfunction of steroid
hormones has been found in MDD. Usually, stress leads to
the elevation of GCs, the subsequent activation of the
hypothalamus-pituitary-adrenal (HPA) axis, and the activa-
tion of the glucocorticoid receptor (GR) in the brain, which
exerts a negative feedback. However, prolonged exposure to
stress leads to a defective feedback of GR [65, 66]. GR, min-
eralocorticoid receptor (MR), and estrogen receptor alpha
(ERα) were all expressed in microglia. After LPS challenge,
the expressions of GR, MR, and ERα were significantly
downregulated. Corticosterone application inhibited the
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upregulation of TNF-α, IL-6, and NO induced by LPS and
INF-γ, while 17 beta-estradiol had little effect, which
suggested GR and MR were the primary steroid hormone
regulators in microglial inflammatory activity [67]. Cortico-
sterone inhibited the upregulation of excitatory amino acid
transporter, GLT-1, and glutamate uptake capacity in
microglia induced by LPS [68]. Chronic corticosterone expo-
sure increased the gene expression of NLRP3 and NF-κBIα in
microglia, and even chronic corticosterone exposure potenti-
ated the microglial proinflammatory response (TNFα, IL-1β,
IL-6, and NLRP3) to LPS [69]. In microglial cells, the admin-
istration of 17 beta-estradiol (E2) or progesterone (P) damp-
ened IL-1β, ASC, and NLRP3 expression after hypoxia [70].
Glucocorticoids enhanced the release of ATP from astrocytes
by opening the pannexin-1 hemi-channels, which was regulated
by glucocorticoid-inducible kinase-1 (SGK-1) [71]. Glucocorti-
coids decreased the expression of GR and AMP-activated
protein kinase (AMPK) activation in cultured astrocytes. The
activation of AMPK could prevent the dexamethasone-

induced downregulation of GR and depression-like behavior
in rats [72]. Estradiol (E2) could repress astrocyte GFAP protein
expression, reorganize laminin, and enhance neurite outgrowth
[73]. Corticosterone downregulated the biosynthesis of con-
nexin43 (Cx43) but increased the degradation of Cx43 in the
prefrontal cortical and hippocampus astrocyte, suggesting
stress-induced dysfunction of gap junctions [74, 75].

2.7. Connexin in Glial Cells. Connexin (Cx)43, Cx30, Cx26,
Cx40, and Cx45 are expressed in astrocytes [76, 77], while
Cx43 and Cx30 are the most important Cx species contribut-
ing to gap junction channels (GJCs) or hemi-channels (HCs)
[78, 79]. Energetic metabolites can be released by astrocytes
through the gap-junction channels and hemi-channels that
are usually used by neurons to maintain their functions
[80, 81]. Also, Cx plays a role in postnatal BBB maturation
[82] and neural synaptic plasticity [83]. In the gap junc-
tion protein Cx43, its carboxyl-terminal domain could
modulate the function of astrocyte P2Y1 receptors [84].
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Figure 1: A schematic graph demonstrates the role of glial cells and the relevant signaling pathway. The surrounding microglia (upper left)
and astrocyte (upper right) impact the function of neuron (middle) in multiple ways. The nuclear mechanisms of some of the pathways are
graphed at the bottom.
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In vitro, Cx32 and Cx36 are expressed in resting microglia,
while activated microglia express Cx32, Cx36, and Cx43
[85–87]. However, in vivo, there were no GJCs between
microglial cells and other surrounding cells [88]. Excess
glutamate could be released from microglia by Cx32
hemi-channel and caused excite-neurotoxicity [89, 90]. In
rat prefrontal cortices after chronic stress, Cx43 was signif-
icantly decreased, while the use of gap junction blockade
in the prefrontal cortex also induced depressive-like behav-
iors [91]. Cx30 and Cx43 were reduced in the dorsal lat-
eral prefrontal cortex of suicide completers [92]. Acute
stress and chronic stress-induced astrocyte and microglia
hemi-channel opening and caused an increase of ATP
and glutamate release, which contributed to the cognitive
deficits associated with major depression [93]. There were
decreased gap junction channels between Cx30 of astrocyte
and Cx47 of oligodendrocyte bodies and myelinated fibers
in the anterior cingulate of depressed suicides [94].
Improvements in gap junction functionality concurrent
with blockage of hemi-channels might be a potential target
for depression treatments [95].

2.8. Neuropeptide in Glial Cells. Neuropeptides, such as neu-
ropeptide Y (NPY), substance P, and galanin (GAL), were
found to be affected by stress or to be involved in stress
response, in some animal models or human depression
patients [96]. And recently, neuropeptides were reportedly
relevant to the mechanism of action of selective serotonin
reuptake inhibitors [97]. NPY was found to inhibit LPS-
induced NO production in N9 microglial cell line, iNOS
expression, and motility through activation of NPY Y1 recep-
tor by nuclear translocation of NF-κB or inhibition of p38
activation [98, 99]. In human microglial and astrocytic cells
expressing neurokinin 1 receptor (NK-1R), LPS was able to
significantly increase NK-1R expression, and substance P
could augment the production of inflammatory IL-6 in astro-
cytes [100]. GAL increased the migration of cultured microg-
lia and upregulated class II major histocompatibility complex
expression through the activation of protein kinase C [101].

2.9. Glial Cells, Pain, and Depression. The fact that some of
the abovementioned pathways are closely involved in the
pain promote us to discuss the cooccur condition of depres-
sion, pain. Pain could exacerbate the symptom of depression
but the common mechanisms behind them remain to be
identified [102]. Inflammation activated KYN pathway could
potentially modulate neuropathic and inflammatory pain
sensitivity [103]. Meanwhile, inflammasome, NFκB, and
NMDA receptors are known or potential target of pain ther-
apy [104–106]. The crosstalk between pain and depression
could be mediated with these signaling pathways. Further
investigation of how the crosstalk is modulated may decipher
the complex relationship between pain and depression.

3. Conclusions

Taken together, neuroinflammation is a very important
pathological component of depression. There are many
important signaling pathways woven together to form the
network of astrocytes and microglia in the context of depres-
sion. Here, we summarized the recent progress on several
signaling pathways, including the kynurenine pathway, the
inflammasome, the purinergic pathway, the nicotinic
acetylcholine pathway, mitochondria, and steroid hormone
pathways, by focusing on their molecular mechanisms,
respectively (Figure 1). The purpose of this summary is to
update the information on the recent advances in molecular
mechanisms and may provide useful information to further
understand the whole picture of the interactions between
neuroinflammation, glial cells, and depression (Table 1).
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Table 1: Summary of the pathways in depression.

Pathway Reports

Kynurenine KYN pathway
The neurite branching and complexity of cortical neurons was facilitated by the IFNγ

stimulated kynurenine pathway induction in microglia [29].

Inflammasome MDD patients
Assembly of the NLRP3 complex in microglia activated proinflammatory response and

contributed to depression [39].

Purinergic CUMS mouse
Modulation of P2X7/NF-κB pathway in microglia could attenuate the depressive-like

behaviors in mice [43].

Nicotinic acetylcholine In mouse model
Regulating alpha-7 nicotinic receptor in glial cells prevented depression-like behaviors in

mice [52].

Mitochondria UCP2 knockout mouse
Loss of mitochondrial uncoupling protein 2 (UCP2) in astrocytes aggravated

depressive-like behaviors in mice [64].

Connexin Depressed suicides
Decreased gap junction channels in the astrocytes and oligodendrocytes of the anterior

cingulate of suicidal patients [94].

Neuropeptide Neuropeptide Y
Neuropeptide Y inhibited the inflammation in microglia, which was one of key processes

in depression [97].
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