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Several studies have demonstrated that exercise preconditioning is an effective means of alleviating poststroke cognitive
impairment (PSCI). Mechanisms of regulating cognitive function have not been fully elucidated. Herein, the present study is
aimed at exploring the effect of the microbiota-gut-inflammasome-brain axis in the process of exercise preconditioning
moderating cognitive impairment after ischemic stroke. We observed that exercise preconditioning decreased infarct size,
reduced the degree of neuronal damage, and alleviated cognitive impairment in mice with ischemic stroke. In addition, exercise
preconditioning also reduced the expression of inflammatory cytokines, as well as NLRP3, Caspase-1, IL-18, and IL-1f protein
expressions. Ischemic stroke could downregulate the abundance of Roseburia while increasing the abundance of the
Helicobacter at the level of genus. As a comparison, exercise preconditioning increased the abundance of the Lactobacillus,
which was beneficial for mice at the genus level. In conclusion, exercise preconditioning can improve cognitive dysfunction
after ischemic stroke through alleviating inflammation and regulating the composition and diversity of the gut microbiota,

which might provide a new strategy for the prevention of PSCL

1. Introduction

Ischemic stroke is an emergency situation caused by reduced
blood flow to the brain, which results in impairment to brain
cells [1]. Poststroke cognitive impairment (PSCI) is one of
the common consequences. It also is a major contributor
of long-term disability and reduced quality of life. In a
community-based study in China, the prevalence of PSCI
was shown to be 80.97% [2]. The pathogenesis of PSCI is
complicated, and there is still no effective clinical treatment
[3]. Exercise preconditioning as an effective strategy has
been shown experimentally to be neuroprotective in stroke
survivors [4]. However, the biological mechanisms and
pathways through which exercise preconditioning promotes
cognitive function have not been completely clarified.

Extensive research suggested that exercise may exert a
neuroprotective effect by reducing neuroinflammation [5].
Studies from both humans and animals had demonstrated
that appropriate exercise delays cognitive aging and neuro-
degeneration [6, 7]. A study [8] published in Nature showed
that “runner plasma,” which was collected from voluntarily
running mice and injected into sedentary mice, reduced
baseline neuroinflammatory gene expression and experi-
mentally induced brain inflammation. This finding con-
firmed the presence of anti-inflammatory exercise factors
that are metastable, target the cerebral vasculature, and are
beneficial to the brain. What is more, a population-based
study observed that regular exercise preconditioning was
associated with fewer ischemic stroke complications and bet-
ter long-term function outcomes [9].
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There is substantial evidence that the pathogenesis of PSCI
is also associated with inflammatory response [10]. The
inflammasome is an important multiprotein complex that
functions during inflammatory immune responses. Compo-
nents of the inflammasome contain the NOD-like receptor
pyrin domain-containing 3 (NLRP3), which is a multiprotein
signaling complex containing the NLRP3 scaffold, the adaptor
protein PYCARD/ASC, and Caspase-1. The interaction
between these proteins can flexibly regulate the constitutive
function of inflammasome, ensuring that inflammasome is
activated at appropriate occasions [11]. Overactivation of
inflammation is known to play a pivotal role throughout cere-
bral ischemia, from early injury to postischemic tissue recov-
ery [12]. Specifically, NLRP3 is regarded as one of the
predominant inflammasomes and plentifully expresses in the
brain. It plays a key role in recognizing cellular damage and
modulating inflammatory responses to ischemic stroke [13].
A study [14] showed that cerebral ischemia-reperfusion in
mice was followed by increased infarct area and hydrocepha-
lus content and elevated NLRP3 and Caspase-1 expression.
Systemic inflammation activates the NLRP3 inflammasome,
triggers neuroinflammation, and exacerbates ischemic brain
injury and cognitive impairment.

In recent years, there has been an increasing interest in
the role of the microbiota-gut-brain (MGB) axis in modulat-
ing the brain function [15]. The MGB axis also plays a vital
role in the pathophysiology of PSCI and managing inflam-
matory reaction [16]. It suggests that the gut microbiota
exchanges information with the central nervous system
through immune, neuroendocrine, and vagal “bidirectional
brain-gut signals,” affecting the host’s brain function and
thus its behavior and cognitive function [17]. Furthermore,
systemic low-grade chronic inflammation may be caused
by dysbiosis of gut microbiota in stroke patients, which is a
critical cause in the pathogenesis of PSCI [18]. Regulation
of gut microbiota has been a latent target for treatment
and prevention of some chronic diseases in the future.
Numerous studies have indicated that the gut microbiota
can be harmonized by a variety of factors such as exercise,
antibiotics, infection, and diet [19-21]. Exercise can modu-
late the composition and diversity of gut microbiota [22].
Exercise-induced alterations in the gut microbiome are asso-
ciated with corresponding physiological changes in the host,
including immunity and metabolism [23]. Overgrowth of
hazardous microbiota induces inflammation by altering the
intestinal mucosal barrier, leading to neuroinflammation
and neurodegeneration in the central nervous system [24].
Notably, recent evidence supports that the NLRP3 inflam-
masome has a key role to play in orchestrating host physiol-
ogy and formatting the peripheral and central inflammatory/
immune reactions to central neurological diseases through
the release of IL-18 and IL-1f3 [25, 26]. The gut microbiota
may interact with the NLRP3 inflammasome through a
dynamic interaction, known as the microbiota-gut-inflam-
masome-brain axis [27]. Gut microbiota adopt inflamma-
some signal to regulate peripheral inflammatory pathways,
which in turn helps to maintain brain homeostasis.

Although studies have showed that exercise has a positive
effect on the gut microbiota, it is not known whether the
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microbiota-gut-inflammasome-brain axis plays a role in
exercise preconditioning with ischemic stroke. Therefore,
the aims of the present study are as follows: (1) to inves-
tigate the effects of exercise preconditioning on the cogni-
tive outcome of ischemic stroke and (2) to determine
whether exercise preconditioning can improve cognitive
function after stroke by inhibiting inflammation and regu-
lating gut microbiota.

2. Materials and Methods

2.1. Animals. The Animal Center of Anhui Medical Uni-
versity (Hefei, China) provided us with 40 male C57BL/
6] mice (age: 6-8 weeks; weight: 22-24 g). Mice were kept
in a 12h cycle of light/darkness, and water and food were
available for free. The animal protocols were authorized by
the Laboratory Animal Ethics Committee of Bengbu Med-
ical College and were conducted in keeping with the ethi-
cal standards.

2.2. Experiment Protocol. C57BL/6] mice were evenly ran-
domized into the sham operation group (Sham), the middle
cerebral artery occlusion group (MCAO), the sham opera-
tion with exercise preconditioning group (EP+Sham), and
the MCAO with exercise preconditioning group (EP+
MCAO) (n =12 in each group). Mice in the EP+Sham group
and the EP+MCAO group were kept in cages equipped with
running wheels for rodents and made to exercise autono-
mously for 4 weeks. Mice in the Sham group and the MCAO
group were maintained in conventional cages. Subsequently,
the MCAO group and EP+MCAO were subjected to right
brain ischemia-reperfusion operation, while the Sham group
and EP+Sham group only exposed the right external carotid
artery and common carotid artery via sham operation, with-
out ischemia stroke in the right brain. After 24 h of reperfu-
sion, the mice were stimulated to defecate by lifting their
tails at hourly intervals between 9a.m. and 12a.m., and
approximately 200mg of feces was collected from each
mouse [28]. Considering the effect of circadian rhythms on
intestinal flora, all samples were collected in the same time
period of days [29]. We stored the fecal pellets at -80°C until
turther processing.

2.3. Middle Cerebral Artery Occlusion (MCAO). It was per-
formed to induce an ischemic stroke in mice by occluding
the middle cerebral artery. Mice were given anesthesia by
intraperitoneal injection of sodium pentobarbital (100 mg/
kg). The right common carotid artery, internal carotid
artery, and external carotid artery were separated through
the midline neck incision. A 30 mm long and 0.12 mm thick
nylon monofilament (MSMC21B120PK50, RWD Life Sci-
ence, Shenzhen, China), with its tip rounded by silica gel
(4mm in length and 0.2l mm in diameter), was inserted
and left for 90 min in the internal carotid artery from the
common carotid artery to the beginning of the middle cere-
bral artery. After 90 min, the monofilament was retracted to
restore reperfusion after cerebral ischemia. Mice of the Sham
group and EP+Sham group received the same procedure,
except for monofilament penetration.
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2.4. Neurologic Functional Scoring. The neurological func-
tion of mice was examined after 24 h of reperfusion with a
five-level grading system according to Longa: 0, no deficits;
1, inability to extend the right paw; 2, longitudinal rotation;
3, falling to the right; and 4, inability to walk spontaneously.
Mice that scored between 1 and 3 neurologically were
selected for the following study, while mice that scored equal
to 1 or 4 were considered unsuccessful for MCAO surgery.
Our inclusion criteria were as follows: (1) a neurological
score from 1 to 3 based on Longa’s grading system and (2)
at least 5% loss in body weight at 24 h after ischemic stroke
[30]. The animals that failed to satisty one of these criteria
at 24h poststroke were deemed spontaneously recovered
and excluded.

2.5. Behavior Testing

2.5.1. Novel Object Recognition Task. An assessment of mice’s
nonspatial recognition memory capacity can be made through
the novel object recognition (NOR) task. In this task, the day
before the exact test execution, mice were habituated to the
test space for 30 min to reduce stress responses [31]. In the
training phrase, mice were positioned in an opening field with
two identical objects. For a period of 10 min, mice were asked
to explore the same objects at the same distance on a familiar
arena. After 1h, the mice were set back in the same arena in
front of two objects, one of which was swapped with a new
object, for another 5 min. The time spent by the mice adven-
turing the two objects was marked. And the odor of particular
mouse was removed with spraying ethanol before testing the
next one. N (novel) was the number of times mice probe for
new objects, F (familiar) was the number of times they
explored familiar objects, and discrimination index was calcu-
lated as N/(N + F).

2.5.2. Y-Maze Test (Spontaneous Alternation). The spontane-
ous alternation experiment is used as a method to detect spa-
tial recognition memory capacity in rodents by exploiting
their curiosity for novelty. They prefer to explore areas that
they have never been to before. The test was performed in a
symmetrical white Y-maze with three arms (length 20 cm x
width 10 cm x height 20 cm). The mice were posed at the very
end of one arm of a Y-shaped maze and permitted to move
freely for a period of 8 min. A series of arm entries were
visually evaluated and scored by experimenters who were
blinded to the treatment. One alternation was determined
as entering all three arms consecutively. The maximum
number of alternations was equal to the total number of
arms entered minus 2. The spontaneous alternation rate
was calculated as actual number of alternations/maximum
number of alternations.

2.6. Brain Infarct Volume. After scoring neurological function,
mice were profoundly anesthetized with pentobarbital sodium
(600 mg/kg) to isolate the brain quickly, and the brains were
placed in a -20°C refrigerator for 15 minutes. Subsequently,
the brains from Bregma +4.0 mm to 6.0 mm were sliced into
five 2.0mm thick sections. Then, the sections were stained
with 2,3,5-triphenyl tetrazolium chloride solution (TTC,
Sigma-Aldrich, St. Louis, Missouri, USA) in a 37°C water bath

for 30 minutes and then fixed with 4% formaldehyde for 15
minutes. The infarct area was identified by nonstaining region,
while the live area should turn red. The infarct area was mea-
sured using Image] software. The relative infarct volume was
manually calculated according to the following formula:
infarct percentage = (volume of the contralateral hemisphere
— volume of the noninfarct contralateral hemisphere)/volume
of the contralateral hemisphere x 100%.

2.7. Morphological Examination. The mice were anesthetized
and their brains were taken out after cardiac perfusion with
phosphate-buffered saline (PBS) and 4% paraformaldehyde.
The brains were fixed in 4% paraformaldehyde for over-
night, embedded in paraffin, cut into 5um thick sections,
and stained with hematoxylin-eosin (HE). Histomorphology
changes of the right hippocampus were observed under the
microscope.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA). After
90min of reperfusion, blood samples were gathered from
venous plexus of fundus. The serum was separated by centri-
fugation at 3000 rpm for 15min at 4°C and collected. The
levels of IL-18 and IL-1f were examined using an IL-18
ELISA kit (Calvin Biotechnology, Suzhou, China) and an
IL-1/5 ELISA kit (Calvin Biotechnology, Suzhou, China), fol-
lowing the instructions separately provided by the manufac-
turer. The absorbance of samples was measured at 450 nm.

2.9. Western Blot Analysis. The total proteins were extracted
from the hippocampal region of mice, and the protein con-
centration was determined by BCA assay. Equivalent
amounts of protein samples were sampled on a 10% SDS-
PAGE gel for electrophoretic separation of the proteins,
and then, the PVDF membranes were electrotransformed
by constant current at 280 mA for 90 min. Subsequently,
the membranes were soaked with 5% skim milk powder in
TBST (Tris-buffered saline containing 1% Tween-20) for
2h. Then, the corresponding primary antibody was added
overnight at 4°C. The primary antibodies were NLRP3 (1:
1000, ab263899), Caspase-1(1: 1000, ab179515), IL-15 (1:
1000, ab234437), IL-18 (1: 1000, ab207323), and S-actin (1:
2000, BLO05B) and were purchased from Abcam (Cam-
bridge, UK) except f-actin which was purchased from
Biosharp (Anhui, China). Then, membranes were removed,
rinsed 3x for 10 minutes with TBST, and incubated for 2h
at 37°C with the goat anti-rabbit IgG (1:10000, BLO03A,
from Biosharp, Anhui, China), respectively. TBST was used
to wash the membranes three times before they were sub-
jected to Bio-Rad electrophoresis (Bio-Rad Laboratories,
Hercules, CA, United States). Analyzing all band intensities
was done using Image] software.

2.10. Gut Microbiota Analysis. The 16S rRNA method was
used to detect gut microbiota as follows: genomic DNA
was obtained from mouse feces using the manufacturer’s
designated DNA extraction kit (DNeasy PowerSoil Kit, Mo
Bio, United States) and was quantified using Nanodrop.
The quality of DNA extraction was confirmed by 1.2% aga-
rose gel electrophoresis. PCR was performed using primer
pairs (forward: ACTCCTACGGGAGGCAGCA; reverse:



TCGGACTACHVGGGTWTCTAAT) against the highly
mutated V3-V4 region of the bacterial 16S rRNA gene.
PCR amplification was performed using Pfu high fidelity
DNA polymerase (TransGen Biotech), and the number of
amplification cycles was strictly controlled. Then, 25 ul of
PCR product was purified by adding 0.8x volume of mag-
netic beads (Vazyme VAHTSTM DNA Clean Beads). PCR
amplification recovery products were subjected to fluores-
cence quantification using the Quant-iT PicoGreen dsDNA
assay kit and a microplate reader for quantification (BioTek,
FLx800). Sequencing libraries were prepared using the Illu-
mina TruSeq Nano DNA LT Library Prep Kit. Double-
ended sequencing of community DNA fragments was
performed using the Illumina MiSeq platform. Chimeric
sequences were screened using the DADA2 method. The
Greengenes and Silva databases were selected for taxonomic
annotation of species on the QIIME2 (2019.4) platform.

2.11. Statistical Analysis. The experimental results were pre-
sented as mean * standard error (SEM). One-way ANOVA
after Newman-Keuls test was used to analyze the data
between multiple groups. P < 0.05 was deemed to indicate
a statistically significant difference.

3. Results

3.1. Exercise Preconditioning Ameliorated Neurological Scores
and Reduced Infarction Area in Mice with Ischemic Stroke.
After successful induction of focal cerebral ischemia by the
MCAO method, we assessed the effect of ischemic stroke
and exercise preconditioning on neurological deficits by the
Longa method. The results indicated no symptoms of neuro-
logical impairment in the Sham group and EP+Sham group.
In contrast, the neurological deficit scores were significantly
higher in the MCAO group mice than in the Sham group
(P < 0.01, Figure 1(a)). Yet, four weeks of exercise precondi-
tioning significantly reduced the score compared with the
MCAO group (P <0.05, Figure 1(a)). These results suggest
that exercise preconditioning ameliorated the neurological
damage which occurs after ischemic stroke in mice. Subse-
quently, we evaluated the infarct size. As shown in
Figures 1(b) and 1(c), there were no infarction volume in
the Sham group and EP+Sham group. The infarct area signif-
icantly appeared in the ischemia groups, and a statistically
significant difference was found between the MCAO group
and EP+MCAO group (P <0.01, Figures 1(b) and 1(c)).
Our data pointed to the fact that exercise preconditioning
ameliorates neurological scores and the infarction area due
to ischemic stroke.

3.2. Exercise Preconditioning Improved Cognitive Function in
Mice with Ischemic Stroke

3.2.1. Novel Object Recognition Task. A new object recogni-
tion task was utilized for evaluating nonspatial memory
capacity, which is associated with the hippocampus. When
compared to the Sham group, the mice in the MCAO group
spend less time navigating new objects (P <0.01,
Figure 2(a)). In contrast, this reduced ability was enhanced
by the exercise preconditioning (P <0.05, Figure 2(a)).
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Ischemic stroke affects nonspatial recognition memory
capacity in mice, while exercise preconditioning before
ischemic stroke improves cognitive function.

3.2.2. Y-Maze Test (Spontaneous Alternation Task). Y-maze
test of spontaneous alternation task was used to evaluate
spatial memory capacity which is in connection with the
hippocampus. The experimental results of Y-maze indicated
that the mice in the MCAO model group had significantly
reduced spontaneous alternations rate compared with the
Sham group, and the difference was significant (P <0.01,
Figure 2(b)). While the mice given exercise preconditioning
had increased rate of spontaneous alternations, it was
remarkably higher compared to the MCAO model group
(P <0.05, Figure 2(b)), indicating that exercise precondi-
tioning could improve the cognitive impairment caused by
ischemic stroke and improve spatial memory ability.

3.3. Exercise Preconditioning Improves the Extent of
Neuronal Damage in the Hippocampus of Mice with
Ischemic Stroke. HE staining showed that hippocampal neu-
rons of mice in the Sham groups were arranged neatly, with
intact cell structure and visible nucleus. In contrast, MCAO
mice exhibited significant neuronal damage with irregular
cell shape, concentrated cytoplasm and nuclei, and damaged
hippocampal structures. The damage was improved in the
EP+MCAO group compared with the MCAO group, which
indicated that exercise preconditioning could have a protec-
tive effect on brain tissue (Figure 3).

3.4. Exercise Preconditioning Mitigated the Expression of
Inflammatory Factors Caused by Ischemic Stroke. Since the
inflammatory response is involved in the pathological pro-
cess of ischemic stroke, we used ELISA to observe the alter-
ation of IL-1f and IL-18 after ischemic stroke and if exercise
preconditioning can modulate their excretion. The IL-1p
level was elevated in the MCAO group when compared with
the Sham group, as shown in Figure 4(a). In comparison
with MCAO group, the significant decrease of IL-1j3 was
presented by exercise preconditioning before surgery. Our
data indicated that IL-1f is involved in ischemic stroke
and that exercise preconditioning could reduce its expres-
sion. However, the levels of IL-18 in MCAO and EP+MCAO
had an increasing trend compared with Sham groups, but
not statistically significant (Figure 4(b)).

3.5. Exercise Preconditioning Reduced the Expression of
NLRP3 Inflammasome and Proinflammatory Factors
Induced by Ischemic Stroke. To clarify the differences in
expression of NLRP3 inflammasome and proinflammatory
cytokines at the protein level among the groups, the protein
expression levels of NLRP3, Caspase-1, IL-18, and IL-1 in
ischemic brain tissue were determined (Figure 5). The pro-
tein expression levels of NLRP3, Caspase-1, IL-18, and IL-
13 were significantly higher in the MCAO group compared
with the Sham group. Exercise preconditioning reduced the
expression levels of NLRP3, Caspase-1, IL-18, and IL-1f
effectively. These findings suggested that exercise precondi-
tioning attenuates inflammation in mice with ischemic
stroke.
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Ficure 3: Effects of ischemic stroke and exercise preconditioning on the histopathological morphology of the hippocampal region (400x).
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3.6. Exercise Preconditioning Regulated the Diversity and
Composition of Gut Microbiota. We used 16S rRNA gene
pyrosequencing to examine the differences in gut microbiota
among all groups. The 1520869 clean sequences were gener-
ated through the high-throughput pyrosequencing. Firstly,
we viewed the alpha diversity which includes Chaol and
Faith’s PD indices that independently represent richness
and evolution-based diversity. As illustrated in Figures 6(a)
and 6(b), compared to the Sham group, the MCAO group
had increased the levels of Chaol and Faith’s PD indices,
indicating that ischemic stroke increased the richness and
diversity of the species in mice. The differences in Chaol

and Faith’s PD indices between the MCAO group and the
EP+MCAO group were insignificant, indicating that exercise
preconditioning did not significantly affect the richness and
the alpha diversity of species.

The PCoA plot was subsequently used to analyze the
beta diversity, where different samples exhibited clustering
or scatter distributions, and samples with similar compo-
nents were placed in proximity to each other in the plot.
The results showed that (Figure 6(c)) the distribution of
intestinal microbiota between the Sham and MCAO group
as well as between the Sham and EP+Sham group was clearly
separated, indicating that ischemic stroke can not only
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FIGURE 5: Representative western blots (a) and quantification data of NLRP3 (b), Caspase-1 (c), IL-1f (d), and IL-18 (e) for each group

(n=5). **P <0.01 vs. Sham; “P < 0.05 vs. MCAO.

change the diversity of intestinal microbiota but also change
the distribution structure of microbiota. Meanwhile, exercise
preconditioning can also reshape the distribution of intesti-
nal microbiota in mice.

Through clustering, we derived the religious abundance
of each group of microbial communities at different taxo-
nomic levels. Seventeen different phyla of gut microbiota
were identified, with Firmicutes (71%), Bacteroidetes (16%),
and Proteobacteria (10%) emerging as the most dominant

phyla (Figure 7). About 97% of the overall bacterial abun-
dance was constrained to these three phyla.

Furthermore, the gut microbiota composition at the
genus level was analyzed. Figure 8(a) tells the story. Hierar-
chical clustering analysis using the unweighted pair group
method with arithmetic mean (UPGMA) showed that the
majority of the samples were clustered within their own
groups. Meanwhile, to find the ASV (amplicon sequence
variants) with statistically significant differences between
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groups, we used the metagenomeSeq method to compare the
samples two-by-two, called the fitFeatureModel function to
fit the distribution of each ASV using a zero-inflated log-
normal model, and used the fit results of this model to dis-
criminate the significance of the differences. As shown in
Figure 8(b), compared with the MCAO group, the Helico-
bacter in the Sham group was decreased and the Roseburia
was increased. As shown in Figure 8(c), compared with the
MCAO group, the Ruminococcus in the EP+MCAO group
was decreased and the Lactobacillus and Alistipes were
increased. Other ASV IDs not mentioned are not classified
at the genus level.

In the final analysis, LEfSe was queried for biomarkers of
intergroup differences and species that differed significantly
in the classification of the samples (Figure 9). Among the
three differential biomarkers in terms of genus, Akkermansia
and Faecalibacterium of the Sham group and Lactococcus of
the EP+MCAO group were found.

4. Discussion

In the current study, we investigated the protective effect of
exercise preconditioning against cognitive impairment in
ischemic stroke. We provided direct evidence that exercise
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preconditioning decreased neurological deficits, infarct size
in mice subjected to ischemic stroke. In addition, after exer-
cise preconditioning, the expression of NLRP3 inflamma-
some was reduced, the composition and the beta diversity
of gut microbiota were remodeled, and the impairment of
cognitive function was alleviated in ischemic stroke. These
findings indicated that exercise preconditioning improved
cognitive dysfunction after ischemic stroke through alleviat-
ing inflammation and modulating the composition and
diversity of gut microbiota. According to our study, we
provided a new pathophysiological viewpoint on exercise
preconditioning to cognitive impairment in ischemic stroke.

PSCI is one of the main complications after stroke, and
the prognostic effect of treatment is restricted. Previous
studies have shown that neuroinflammation is considered
to be an important factor in PSCI [31]. Inflammasomes have
been taken as therapeutic targets in human diseases [32].
The NLRP3 inflammasome is an intracellular multiprotein
complexity that induces sets of proinflammatory chemo-
kines, leading to inflammation. In the central nervous sys-
tem, NLRP3 inflammasome was first reported to be
activated in cortical neurons under ischemic conditions,
and the expressions of NLRP3, Caspase-1, and IL-1f were
upregulated in vitro and in vivo [33]. In our study, the levels
of inflammatory factors including NLRP3, Caspase-1, and
IL-15 were elevated in the MCAO group, demonstrating
that the NLRP3 inflammasome was associated with the
development of ischemic stroke. Nevertheless, the expres-
sion of IL-18 was not significantly different in the four
groups. The reason is that the expression of IL-18 exhibits
a delayed induction time process, starting from 24 to 48h
and peaking 6 days after ischemia [34]. Furthermore, we also
observed that the cognitive function was impaired in the
MCAO group of the mice, and the morphology and struc-
ture of neurons in the hippocampal region were abnormal.
These results suggested that cognitive function decline in

MCAO mice is accompanied by increased inflammasome
expression. In contrast, the aforementioned indices were
effectively ameliorated in EP+MCAO group, which indi-
cated that exercise preconditioning could improve the
inflammatory response and cognitive impairment in ische-
mic stroke.

A cross-sectional study indicated that exercise precondi-
tioning was associated with intact cognition in patients [35].
Numerous studies in animals have shown that exercise train-
ing can change the composition and functional capacity of
the gut microbiota [36-40]. Similarly, population studies
found that alpha diversity and relative abundance of 40 dif-
ferent bacterial taxa in the gut microbiota of professional
athletes were significantly greater than that of sedentary con-
trols [41]. Notably, there are few studies on the relationship
between gut microbiota and PSCI. Until 2020, it was first
reported that patients with PSCI had altered microbiota
composition and corresponding metabolites and correlated
with the degree of cognitive impairment, which suggested
that gut microbiota may work essentially in the development
of PSCI [42]. Therefore, we also analyzed the composition of
the gut microbiota in each group. Our data showed that
mice treated with MCAO had an increase in gut microbiota
alpha diversity compared to the Sham group. This finding
was supported by a prospective cohort study [43], showing
that the gut microbiota of poststroke patients has higher
alpha diversity than healthy controls. Conversely, we
observed a decrease in microbial diversity in MCAO mice
pretreated with 4 weeks of voluntary exercise.

We further observed that the Helicobacter was decreased
and the Roseburia was increased in the Sham group com-
pared with the MCAO group. Helicobacter is a member of
the Proteobacteria phylum, which has a proinflammatory
effect and is closely associated with ischemic stroke [44].
Helicobacter is an endotoxin-producing bacteria that can
increase endotoxin and improve intestinal permeability.
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These changes disrupted the intestinal epithelial barrier,
allowing harmful substances to enter the peripheral blood.
However, exercise preconditioning significantly enriched
beneficial bacteria such as the Lactobacillus and Alistipes
and reduced the Ruminococcus. Among these beneficial bac-
teria, Lactobacillus is widely recognized for the role in pre-
serving human health and modifying immune function
[45-47]. In addition, Lactobacillus has been reported to be
protective in a rat model of ischemic stroke by inhibiting
neuronal apoptosis, reducing brain infarct volume, decreas-
ing oxidative stress, and restoring neurobehavioral deficits
[48]. Alistipes is a relatively new genus of bacteria that can
be seen as a potential SCFA (short-chain fatty acid) pro-
ducer [49]. By analyzing SCFAs in the intestinal contents
of rats with PSCI, researchers found that concentrations of
acetic and propionic acids were lower in the early stroke
than in the Sham group, and butyric and valeric acids were
consistently at low level [50]. These results suggest that gut
microbiota SCFA concentration is associated with the occur-
rence and prognosis of cognitive impairment after stroke.
The mechanism behind the treatment of cerebral ischemic
stroke with SCFAs may involve reducing inflammation,
remodeling of the gut microbiota [44]. It has been found that
intestinal SCFA levels decreased after ischemic stroke.
Transplantation of SCFA-rich fecal bacteria and inhibition
of inflammation are effective treatments for ischemic stroke
[51]. Once the inflammatory response can be inhibited, the

progression of neurons death can be alleviated, and cognitive
function can be improved after stroke. In this experiment,
we found that exercise preconditioning improved poststroke
cognitive impairment. We also observed that exercise
preconditioning can improve cognitive dysfunction by inhi-
biting NLRP3 inflammasome as well as enriched Lactobacil-
lus and Alistipes and reduced Ruminococcus. These findings
indicated that exercise preconditioning can significantly
affect the composition of the gut microbiota by adding ben-
eficial bacteria and reducing hazardous bacteria, thereby
inhibiting the activation of inflammasome and attenuating
the inflammatory response in mice.

We acknowledge several important limitations to our
study; firstly, there is no in-depth study of FMT (fecal micro-
biota transplantation) on the basis of gut microbiota. FMT
has become a research hotspot in the field of basic medicine
and clinical medicine and may involve several mechanisms
worthy of further exploration: (1) inhibiting the expression
of inflammatory factors in intestinal and brain tissues after
stroke; (2) increasing the number of beneficial bacteria and
restoring the normal structure of intestinal flora; and (3)
promoting the expression of intestinal tight junction pro-
teins and reducing intestinal mucosal permeability. Another
limitation is that we ignored the resilience of penumbra neu-
rons in our selection of specimens, as the number of collat-
eral vessels that can still supply oxygen and glucose to the
neurons of penumbra to prevent irreversible necrosis around
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necrotic core. Finally, our inability to show certain associa-
tions may be due to insufficient sample size, rather than
the absence of a true relationship.

5. Conclusion

In conclusion, our study suggests that exercise precondition-
ing can improve cognitive dysfunction after ischemic stroke
by alleviating inflammation and regulating the composition
and diversity of gut microbiota. The molecular mechanism
may involve the inhibition of NLRP3 inflammasome-
mediated inflammatory response. This evidence suggests
that regulating the composition and diversity of gut microbi-
ota and inhibiting inflammatory response through exercise
preconditioning can be an efficient preventive measure in
ischemic stroke.
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