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Microglial cells serve as molecular sensors of the brain that play a role in physiological and pathological conditions. Under normal
physiology, microglia are primarily responsible for regulating central nervous system homeostasis through the phagocytic
clearance of redundant protein aggregates, apoptotic cells, damaged neurons, and synapses. Furthermore, microglial cells can
promote and mitigate amyloid 8 phagocytosis and tau phosphorylation. Dysregulation of the microglial programming alters
cellular morphology, molecular signaling, and secretory inflammatory molecules that contribute to various neurodegenerative
disorders especially Alzheimer’s disease (AD). Furthermore, microglia are considered primary sources of inflammatory
molecules and can induce or regulate a broad spectrum of cellular responses. Interestingly, in AD, microglia play a double-
edged role in disease progression; for instance, the detrimental microglial effects increase in AD while microglial beneficiary
mechanisms are jeopardized. Depending on the disease stages, microglial cells are expressed differently, which may open new
avenues for AD therapy. However, the disease-related role of microglial cells and their receptors in the AD brain remain
unclear. Therefore, this review represents the role of microglial cells and their involvement in AD pathogenesis.

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative
disorder that is well characterized by complex cellular and
molecular alterations, such as loss of neurons and synapses,
protuberant gliosis, dystrophic neuritis, formation of extra-
cellular deposits of amyloid 3 (Af), and intracellular aggre-

gated phosphorylated tau [1, 2]. Interestingly, reactive gliosis
includes changes in function and morphology of astrocytes
and microglia [3-5]. The neuroinflammatory process plays
an important role in several neurological diseases, including
autoimmune ailments [6]. In the case of AD development,
the inflammatory response has been undoubtedly connected.
Moreover, microglia have been found to have a pivotal role
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in the pathogenesis of sporadic AD [7-9]. M1 microglia
produce inflammatory mediators, which cause inflamma-
tion and neurotoxicity, while M2 microglia produce anti-
inflammatory mediators, resulting in anti-inflammatory
and neuroprotective effects. Microglia-facilitated neuroin-
flammation is a dual-edged sword in neurodegenerative
events, with both damaging and beneficial consequences [10].

Activated microglial cells surround the Af plaques
during A phagocytosis/compaction, which may play either
a neuroprotective or neurodegenerative role that depends on
microglial phenotype switching [11-14]. In fact, via a reduc-
tion in the levels of Af in amyloid precursor protein- (APP-)
based models, chronic microglial activation might improve
the AD pathology [15]. Nevertheless, it has been implicated
that inflammatory response exerts harmful neurotoxic
effects via the release of neurotoxins and proinflammatory
chemokines/cytokines [16, 17]. Induction of inflammation
is also likely associated with tau pathology [18]. Evidence
suggests that microglia have been linked to tau pathology
and spatial memory deficits [19].

Human genome-wide association studies (GWAS)
further strengthened the relationship between microglia
and AD pathology. GWAS data showed that the microglial
immune response is associated with multiple polymor-
phisms [8, 20, 21]. On the other hand, within a diverse range
of AD-related genes, the microglial triggering receptor
expressed in the myeloid cell 2 (TREM2) gene appears to
have a critical contribution in case of AD-related immune
response [8]. TREM2 is a lipoprotein sensor and lipid that
encourages reactive microgliosis via its DNAX activation
protein of 12kDa (DAPI2, a transmembrane protein)
[22, 23]. It has been exhibited that through its interaction
with apolipoprotein E (APOE), TREM2 controls the tran-
scriptional activation of microglial cells [24-26]. Nonethe-
less, the impact of TREM2-facilitated microglial activation
in AD pathogenesis, or the activities of the microglial cell,
is not yet well-explained [27].

In the case of AD individuals, the neuroinflammatory
response is possibly not entirely beneficial or harmful.
Indeed, an uncontrolled microglial reaction might be detri-
mental to the surrounding neuronal elements or neurons
[28]. In AD mouse models, parabiosis experiments revealed
that, with a negligible contribution of infiltrating macro-
phages, microglia are responsible for increasing the number
of myeloid cells observed in brains with plaque pathology
[29]. Furthermore, via the elimination of undesirable syn-
apses and neurons (i.e., immature synaptic connectivity
whereby less active synaptic connections are formed),
microglia also contribute to the developmental sculpting
of neural circuits [30, 31]. These microglial roles have
been shown to be compromised in aging that contributes
to AD progression [32-34]. Therefore, this review is aimed
at discussing how microglia act as immune system cells
and how this system is changed in AD pathogenesis.

2. Microglia in Brain Aging

Aging causes microglial morphology changes [35, 36]. It has
been specified in mice that microglia surveying processes are
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not so dynamic and less critical because of age [32, 37]. This
explains the impact of pathogenic response, response to
accumulated protein, or delayed injury in aged brains rather
than younger mouse brains. In a facial nerve axotomy study,
microglial proliferation during aging remained significantly
higher in response to neuronal injury, suggesting that
regulation of microglial proliferation changes with aging
[38]. Moreover, the migration rate of the microglial cell
was affected by aging when microglia responded to injury
[32, 39]. A study on the dynamic behavior and morphology
of microglia with aging disclosed that microglial response
significantly reduced with age [39], whereas the distal
branches become thinner and contain major functions
[40-42]. Most importantly, myelin fragmentation has a role
in the formation of myelin inclusions [43]. In addition to
this, aging can cause the reduction of the somatic volume
of the microglial cell that reduces tissue distribution homo-
geneity [44, 45].

During aging, microglia show an increased inflamma-
tory response and exhibit differential changes in expression
level [35]. For example, the expression level of major
histocompatibility complex (MHC) II and cluster of differ-
entiation (CD) 68 was higher in the aged microglial cell
[46, 47]. On the other hand, the CD200 shows a decreased
expression [48]. In order to form the ramified microglia,
the CX3CL/fractalkine cytokine also plays a similar role.
CX3CLI connects with C-X3-C motif chemokine receptor
1 (CX3CR1), which is expressed vastly in the microglial cell
[49]. Generally, in the pathway of canonical signaling for
transforming growth factor-beta (TGFf), Smad3 takes part
in signaling, and the aged brain cell shows reduced anti-
inflammatory functions [50]. Moreover, in proinflammatory
gene transcription, interferon-gamma (IFNy) activates
microglia [51, 52], and the activation increases in the aged
brain. Microglial maturation is influenced by altering gene
function, which is predicted as a principal regulator of
aging-associated changes in the microglial cell [53]. Apart
from this, Iba-1 is highly expressed in microglia, which exerts
its lessened ramified structure of microglial cells during aging
[54], and it also accomplishes the proliferation of microglia.

According to the previous literature, microglial age-
related phenotypes vary based on central nervous system
(CNS) compartments [55]. The current studies have also
reported that the aging effects on the microglial tran-
scriptome are predominantly reliable on the basis of CNS
locations [56]. Normally, microglia become highly activated
during aging, and it acts towards CNS and peripheral ner-
vous system (PNS) insults combined. Caldeira et al. [57]
have reported by in vitro experiment that the isolated micro-
glial cell tends to show a reduced reaction in autophagic
capability, chemotaxis, phagocytosis, and overall reactivity.

3. Microglia in Neurodegeneration

Microglial activation exacerbates the production of cyto-
kines, chemokines, and other factors that trigger AD pro-
gression [58]. Not only do proliferative microglia correlate
with disease severity in AD patients but also AD animal
models [59]. Their gradual gathering and changing in
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signaling prompt the cognitive decline; thereby, targeting
microglia and their signaling pathways would be a potential
therapeutic strategy.

By using a gene expression profile, a study identified a
newer type of microglia that extended the existent microg-
lia classification, and investigators in this inquiry yclept
this molecular signature of disease-associated microglia
(DAM, distinctive microglia subgroups) [24]. Interestingly,
Krasemann et al. [24] showed that microglial neurodegener-
ative phenotype (MGnD) upregulated 28 inflammatory
molecules and diminished the expression of 68 homeostatic
microglial genes; in contrast, a large segment of these activi-
ties disappeared in the microglia-specific knockout of APOE
in mice. These findings indicate that the APOE strongly
persuades phenotypic switching in disease-related microglia
and is upregulated through the vicinity of plaques. Moreover,
MGnD microglia remarkably increased in miR-155 expres-
sion resulting in a notable upregulation of microRNA
(miRNA) in microglia after extreme provocation with an
insult, which leads to the release of proinflammatory mole-
cules, including interleukin-6 (IL-6), interleukin-18 (IL-1p),
nitric oxide synthase-2 (NOS-2), and tumor necrosis factor-
alpha (TNF-a) [60]. In 5XFAD transgenic mice, elevation
of APOE, TREM-2, and leukocystatin (Cst7) gene expression
was associated with the transition from homeostatic microg-
lia to DAM activation [61]. Previously, it has been demon-
strated that DAM activation is tightly linked with the loss
of microglial homeostatic genes such as purinergic receptor
P2Y (P2RY12) and CX3CR1 [61].

In addition, Runt-related transcription factor 1 (RUNX-
1), Sal-like 1 (SALL-1), T-cell-acute-lymphocytic leukemia
protein-1 (TAL-1), and interferon regulatory factor 8
(IRF8) genes acquainted with microglia maturation and
ramification are also influenced by AD pathology [60].
Usually, MGnD is a consequence of chronic manifestation
of disease pathology and can easily differentiate between
M1 and M2 microglia through the appearance of ApoE,
TREM2, chitinase-3-like protein (Yml), arginase 1 (Argl)
as well as the nonappearance of a homeostatic transcription
factor, namely, early growth response protein 1 (Egrl),
respectively [24]. In the AD brain, both the MGnD and
DAM phenotypes are upregulated in the microglia and
influenced mainly by TREM2 expression [62, 63]. From
these studies, the researchers propose that the APOE-
TREM?2 signaling pathway is mainly accountable for the
remodelling of the gene expression profile that prompts the
MGnD phenotype in microglia [24, 61, 63]. While the rela-
tionship between the MGnD phenotype and aging is ques-
tionable, how microglia with advancing age are responsible
for making this transition needs to be solved. Advance
research is warranted for better understanding to elucidate
the close relationship between the time-dependent APOE-
TREM?2 signaling complex and the MGnD phenotype.

4. Activated Microglia and
Alzheimer’s Pathogenesis

Microglia have a dual role in AD pathogenesis; in AD,
microglial detrimental effects are associated with proinflam-

matory mediators [64, 65]. Apparently, A3 provoked the
microglial activation, and deteriorated neuron-derived
ingredients may exaggerate microglial neurotoxicity in AD
[66]. A subsists in several assembly forms, such as mono-
mers, oligomers, and fibrils. However, from these three Af
assemblies, only oligomeric Af (0Af) and fibrillar AS (fAf)
have been implicated to microglial releases of proinflamma-
tory mediators (Figure 1) such as cytokines (i.e., IL-1, IL-6,
and TNF-a), chemokines (i.e, monocyte chemotactic-1
(MCP-1) and macrophage inflammatory protein-1 (MIP-1)),
and reactive oxygen species (ROS) [67, 68].

The expression of nicotinamide-adenine-dinucleotide-
phosphate-oxidase (NADPH oxidase) is stimulated to pro-
duce the ROS, which is correlated with the upregulation of
AD [69]. fAp is liable to microglial NADPH [70, 71], and
activation of NADPH oxidase eventually leads to neurotox-
icity. In fact, microglia produce extracellular ROS that has
been directly harmful to neurons. Moreover, intracellular
ROS act like a signaling molecule in microglia, which pro-
motes the secretion of different proinflammatory cytokines
and neurotoxic molecules [72].

Furthermore, glutaminase expression was disorganized
by microglial activation; as a result, release of a large propor-
tion of glutamate influenced excitoneurotoxicity through the
N-methyl-D-aspartate (NMDA) receptor signaling pathway
[73-75]. Previously, it has been demonstrated that persistent
triggering of extrasynaptic NMDA receptors contributes to
accelerated Af production [76]. Accumulating evidence
supports that expression of A itself disrupts the synaptic
function, such as suppressing hippocampal long-term
potentiating, the assistance of prolonged depression, and
disturbance of synaptic plasticity [77, 78]. Hence, it is cru-
cially important to examine the microglial neurotoxicity
along with A neurotoxicity. In addition, both the tau
protein and Af3 pathology have been directly linked to the
neuroinflammatory responses through the accumulation of
reactive microglia and astrocytes, which are close to the
amyloid deposits, an additional histological characteristic
of AD [8, 79]. For example, in P301S tau, transgenic
mice exhibit prominent microglial activation that ulti-
mately disrupts hippocampal synaptic function [80]. Thus,
microgliosis-induced hippocampal synaptic pathology may
be the earliest expression of neurodegenerative tauopathies.
Activated microglia can also reactivate astrocytes by releasing
cytokines, including IL-1a, TNF-a, and Clq [81]. Reactiva-
tion of these astrocytes notably upregulates complement
cascade genes, including C3, and fails to contribute to synap-
togenesis and phagocytose synapses and myelin debris. In the
prefrontal cortex of AD patients, nearly 60% of the astrocytes
are C3-expressing astrocytes and may possibly cause neu-
ronal injury [81]. During AD, reactive astrocytes interact
with neuronal and nonneuronal (i.e., microglia and oligo-
dendrocytes) cells by secreting feedforward signals and
contributing to the vicious cycle that expedites neurode-
generation [82]. Although reactive astrocytes have both
beneficial and harmful functions during AD, atrophic
astrocytes (reduction of the surface area and volume of
astroglial morphological profiles) might lose their homeo-
static functions.
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FI1GURE 1: Role of Af in the activation of microglia to initiate Alzheimer’s pathology. AfB: amyloid beta; APP: amyloid precursor protein;
IL-1: interleukin-1; IL-6: interleukin-6; TNF-a: tumor necrosis factor-a; MCP-1: monocyte chemotactic-1; MIP-1: macrophage
inflammatory protein-1; HO: hydroxyl radical; H,O,: hydrogen peroxide; O,: oxygen radical.

Microglia-neuron communication is bidirectional.
Microglia-derived exosomes serve as a carrier for tau and
Ap in the brain. On the other hand, neuron-derived
exosomes have similar effects on microglia. A study has
shown that microglia act as scavengers by uptaking neuronal
exosomes containing toxic proteins, including pTau and
ApB [83].

5. Microglia Receptors in the Amyloid
Cascade of Alzheimer’s Disease

5.1. Complement Receptors. Complement components (CRs)
and their receptors are categorized as cell surface molecules
on microglia that are located within or around Af cerebral
plaques in AD [84]. Previously, it has been demonstrated
that microglia not only express complement protein
components such as complement component-1 (Clq) and
complement component-3 (C3) but also precisely express
complement receptors, including complement receptor
type-1 (CR1), complement receptor type 3 (CR3), comple-
ment receptor type-4 (CR4), and complement component
5a receptor 1 (C5aR1), which support phagocytic uptake
[85]. The imbalance of these complementary systems is cor-
related with the development of AD pathogenesis (Table 1).
For instance, A3 plaque formation was observed to be mark-
edly increased with the suppression of these complement
systems in the AD transgenic mouse model [86]. However,
different proteins of the complement system and its analo-
gous mRNAs are unregulated, resulting in Ap-instigated
inflammation, the emergence of senile plaque, and Af
phagocytosis in AD patients [87]. C3 is denoted as a protein

and an integral part of the complement system, which
influences the phagocytosis of pathogens by interacting with
the CR3 receptor. CR3 is also familiar as a macrophage-1
antigen and indisputably observed in microglia that have
been upregulated by the AD brains [88]. In addition, both
in vivo and in vitro studies have demonstrated that CR3
was responsible for the uptake and clearance of Ap
[89-91]. Likewise, this receptor is partially associated with
Ap-induced microglial activation and involved in Af-medi-
ated microglia ROS generation [92], as stated in Figure 2.
Furthermore, a study in AD mice showed that microglia
were associated with synaptic pruning in a CR3-dependent
pathway [93]. More clearly, oligomeric A locally activated
complement (ie, Clq and C3) at vulnerable synapses,
resulting in microglial engulfment of these synapses via
C3/CR3 signaling. Nowadays, CR3 antagonists are widely
accepted as potential therapeutics to treat AD owing to their
potential to significantly decrease the AfS-induced proin-
flammatory molecules and ROS in microglia [92].

Cb5a is a protein fragment that can generate highly proin-
flammatory molecules via activating the complement system
[41]. It is also called a CD88 and is located on the surface of
the microglial cell. CD88 is involved in microglial recruit-
ment and activation; an elevated level of CD88 has been
observed in microglia and appeared close to the amyloid pla-
ques in the AD mouse brains [119]. In addition, coinvigora-
tion of human monocytes with A3 and C5a encourages the
promotion of IL-1f as well as IL-6 secretion [120]; mitigat-
ing the destructive role of CD88 would be a potential
strategy for AD pathogenesis. Therefore, Fonseca et al. [97]
conducted a study to assess the efficacy of this receptor
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TaBLE 1: Outline of microglia receptors and their function in Alzheimer’s disease.

Microglia receptors

Functions in Alzheimer’s disease
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(ii) Microglia activation
(iii) Proinflammatory molecule generation
(iv) AB clearance
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(ii) A clearance
(iif) Microglia activation
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(v) tau phosphorylation
(i) A internalization and clearance
(ii) Inflammatory response
(iii) Maintain microglia immune response
(i) Microglia recruitment
(ii) Inflammatory response
(iil) Activation of A3 phagocytosis
(iv) Modulates microglial AfB42 phagocytosis
(i) Microglia activation
(ii) Stimulate IL-1p3
(iii) TNF-a production
(iv) Intensify oxidative stress
(i) AP clearance
(ii) Regulates microglial mammalian target of rapamycin
(mTOR) activation and metabolism
(iil) Balanced microglial autophagy
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F1GuRre 2: The linkage of microglia receptors in the pathogenesis of Alzheimer’s disease. CR3 is responsible for the Af-induced microglial
activation and involved in Af-mediated microglia free radical generation as well as uptake and clearance of Af. TLR2 is implicated in the
generation of the inflammatory response. On the other hand, TLR4 (i.e., stimulated with LPS) is associated with the clearance of Af.
Microglia cells showed an increase in Af uptake. The binding of Af to SRs internalizes Af and could activate inflammation responses
and generate reactive species. Microglia RAGE-Af interaction triggers the genesis of proinflammatory molecules that causes neuronal
destruction. PM: plasma membrane; AfS: amyloid beta; CR: complement receptor; LPS: lipopolysaccharide; TLR: Toll-like receptor; SR:
scavenger receptor; RAGE: receptor for advanced glycation end products; ROS: reactive oxygen species.



antagonist, which markedly attenuated Af3 plaques, reduced
glial triggering, and ameliorated context-dependent memory
in double transgenic AD mouse models (Table 2).

Although accumulating evidence indicates the comple-
ment system manifested detrimental effects, a few data
claimed that it has beneficial effects too in AD. For instance,
C3-deficient APP mice showed an elevated level of Af in the
brain area linked with notable neuronal damage [89]. More
interestingly, higher expression of C3 mRNA levels is linked
with a depletion in Af deposition in hAPP/TGF-f1 trans-
genic mice [121]. Overall, activation of these receptors might
encourage the A clearance, therefore eventually decreasing
the AB accumulation in the AD. Still, many issues remain
unsolved, so future studies are warranted to expurgate the
molecular mechanism of the complement system in the
brain and evaluate its suitability to the design and develop-
ment of novel AD treatments.

5.2. Toll-Like Receptors. In 1997, Toll-like receptors (TLRs)
were first identified as membrane proteins found in different
types of cells, such as microglia and astrocytes [124, 125].
Although in mammals, there are 12 TLRs that have been
described, only TLR2 and TLR4 can recognize A3 [126].
However, its activation stimulates several signaling path-
ways; as well as, the secretion of several cytokines, nitric
oxide (NO), and ROS [98]. Surprisingly, animal and human
brain microglia expressed among the TLRs 1-9 and maxima
of these receptors were responsible for microglial activation
and neurotoxicity [125, 127]. For example, aged APP23
transgenic mice showed an upregulation of TLR-2, TLR-4,
TLR-5, TLR-7, and TLR-9 mRNA levels in plaque-related
brain tissue [128]. Studies have demonstrated that TLRs
stimulate the intracellular cascade that leads to either release
of proinflammatory mediators or the uptake and clearance
of A [99, 102]. Likewise, TLR2 involvement in the activa-
tion of microglial proinflammatory signaling to Af3 has been
shown in Figure 2. Both AD patients and AD murine models
found an increase in mRNA levels for TLR2 in the brains
[129, 130]. Additionally, it has been reported that deficiency
of TLR2 promotes a reduction in both spatial and nonspatial
memory [123]. Interestingly, knockdown of TLR2 mice has
disclosed a depletion of Af-induced manifestation of proin-
flammatory molecules (i.e., TNF-a, iNOS, IL-1f, and IL-6)
and integrin markers (i.e., CD1la, CD11b, and CD68) in
microglia [99]. Likewise, Liu et al. [101] have demonstrated
that TLR2 deficiency suppressed Apf-induced inflammatory
signaling and improved Ap internalization by phagocytosis
in cultured microglia and macrophages. So suppression of
TLR2 would be a powerful scheme that could markedly
dwindle the inflammatory response and notably enhance
the A3 clearance, consequently slowing the AD pathogenesis.

TLR4 can recognize LPS by microglia; previous studies
have identified its influences on stimulating the microglia-
A activation [131]. For instance, an activated murine
microglia cell demonstrates that TLR4 contributes to Af-
induced microglial neurotoxicity combined with a CDI14
and myeloid differentiation protein-2 (MD2) [131]. In an
in vitro experiment, microglia cells invigorated with LPS
(i.e., a TLR4 ligand) showed an upregulation of Af uptake
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[102], as shown in Figure 2. In addition, both in vivo and
in vitro studies on an LPS-deficient response have revealed
that microglia increased the AfS load and decreased Ap
uptake [102]. Moreover, in early stages, the TLR4-mutated
AD animal model expressed a deficiency of spatial learning
and increased levels of Af42 in the brain [122]. Altogether,
roundup evidence on TLR2 and TLR4 indicates that
depending upon diverse microglial phenotypes, these recep-
tors have a complex role in AD. However, consolidated
evidence strongly suggests that activation of TLR2 and
TLR4 contribute to AD progression, and their inhibition
may suppress AD pathogenesis [132]. Maybe these receptors
show their beneficial effects in the early stages of AD, and
their opposite role is exhibited in the late stages of AD due
to diverse microglial phenotypes. Therefore, microglial
TLR2 and TLR4 represent an acceptable target for therapeu-
tic intervention within the disease progression, and targeting
them could increase A phagocytosis or reduce inflamma-
tory responses [133-135].

5.3. Scavenger Receptors. Two kinds of scavenger receptors
(SRs) have been identified in the CNS. Scavenger receptor
type-A (SR-A) is manifested on microglia and astrocytes,
whereas scavenger receptor type-B (SR-B) receptors are
manifested on microglial and endothelial cells [108]. Micro-
glial adherence via SR-A binding to fibrillar Af causes
microglial immobilization, the genesis of ROS, and secretion
of cytokines [70]. Both of these SRs could bind and internal-
ize A (Figure 2), inducing an inflammatory response that
leads to AD pathogenesis [104]. Furthermore, both the SR-
AT expression levels and Af clearance have been attenuated
by prolonged preservation of microglia activation [106]. In
addition, SR-AI deficiency with a presenilinl (PS1)/APP
transgenic mouse brain showed that increased levels of Af
deposition correlated with an increase in mortality [11].

CD36 is a pattern recognition receptor (PRR) found on
many different kinds of cells. This receptor comprehends
not only exogenous molecules, for example, microbial
elements [136] but also endogenous molecules, such as
low-density lipoproteins (LDL), oxidized phospholipids
(0xPCCD36) [137], programmed cell death-related cells,
and Af [138]. CD36 is responsible for the development of
several diseases, including AD [139]. Furthermore, CD36
interacts with Af by microglia to generate ROS [110] and
activation in response to fAf3 [108, 110, 140]. For instance,
reducing the expression of cytokine and chemokine such as
monocyte chemoattractant protein-1 (MCP-1), IL-1/3, mac-
rophage inflammatory protein-lae (MIP-1a), macrophage
inflammatory protein-1$ (MIP1f), macrophage inflamma-
tory protein-2 (MIP-2), and TNF-« has been seen in macro-
phages and microglia from CD36-deficient mice vivified
with fAfB [110]. However, in human brains, CD36 was
observed at an overexpressed level with Af deposits, but
without Af deposition, CD36 has not been detected in
healthy brains [141]. Moreover, CD36 configures complexes
with other PRRs to bind to fibrillar proteins.

CD163 is an unclassified SR that is expressed on
mature tissue macrophages and is involved in hemoglobin-
haptoglobin clearance from the blood [142]. CD163
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engagement caused macrophages to produce proinflamma-
tory mediators, indicating that CD163 is involved in macro-
phage activation [143]. Fabriek et al. [144] also reported
CD163 functions as an innate immunological sensor and
modulator of local inflammation in the host’s defense against
both gram-positive and gram-negative bacteria. Interest-
ingly, CD163 was found to be expressed on microglia in the
brains of patients with HIV-associated dementia [145]. How-
ever, whether CD163 is involved in AD pathogenesis is still
elusive.

5.4. Receptor for Advanced Glycation End Products. The
receptor for advanced glycation end products (RAGE) is a
multiligand receptor and a compelling factor in aging that
identifies the Af peptides [146]. Previously, it has been
observed that A3 provokes nuclear factor kappa light chain
enhancer of activated B cell (NF-xB) activation in several
cells and stimulates the release of proinflammatory media-
tors by the dealings with RAGE [147, 148].

Different experimental data disclosed that microglial
RAGE-dependent molecular signaling drives Af-induced
inflammatory response and neuronal damage in the AD
[112-114, 149]. In particular, the experimental result
proposes that the p38 mitogen-activated protein kinase
(MAPK) signaling pathways engage in the activation of
microglia through the interaction between Af and RAGE
receptor [113, 115]. Fang et al. [115] have documented
microglial RAGE in the pathogenesis of AD and proposed
that refraining of the RAGE signaling pathway may be a
quintessential target for reducing the secretion of proinflam-
matory molecules like TNF-a and IL-1f after A stimula-
tion in the AD. Microglia RAGE-Af interaction stimulates
to upregulate the proinflammatory response as a conse-
quence; the neuronal destruction that directly influences a
shortage in learning and memory is mentioned in Figure 2.
Further exploration has been suggested to ascertain small
molecules for the blocking of AS-RAGE interaction, which
would be a possible therapeutic stratagem to deal with most
devastating AD pathogenesis.

6. Microglia in the Spread of Tau Pathology in
Alzheimer’s Disease

The hyperphosphorylation and accumulation of microtubule-
associated protein tau (MAPT) form the initial event before
neurodegeneration [150]. In humans, neuroinflammation is
positively linked with tau pathology and is involved in the
production of tau hyperphosphorylation, accumulation,
and neurodegeneration [151, 152]. In the P301S animal
model of tauopathy, it has been shown that microglial acti-
vation is the earliest manifestation of tau pathology [80].
Notably, in this study, they administered FK506 (i.e., an
immunosuppressant drug), which reduced the microglial
activation and augmented the lifespan of tau (P301S) trans-
genic mice [80]. Later, Maphis et al. [19] demonstrated that
activated microglia played a pivotal role in the proliferation
of tau. Afterwards, Bolos et al. [153] reported that microglia
phagocytose the tau. However, how microglia induced tau
pathology is yet to be confirmed.
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Interestingly, an in vivo humanized mouse model of
tauopathy (hTau) showed that either chemical compound
or genetically induced microglial triggering markedly mani-
fested tau pathology and behavioral malformation [154].
Furthermore, in hTau mice, deficiency of microglia-specific
CX3CR1 evolved in triggered microglial activation as a result
of increased tau pathology and impaired working memory
[154]. This effect is arbitrated through the IL-1/p38 MAPK
signaling pathway. Another study showed that deleting
CX3CR1 in hAPP mice promoted the expression of inflam-
matory mediators and enhanced plaque-independent neuro-
nal abnormality as well as cognitive deficits [155]. The
CX3CL1/CX3CR1 signaling pathway is an important neuron
and microglial communication [156]. A study demonstrated
that nonappearance of CX3CR1 weakens the microglial
internalization of tau, which leads to AD progress [157].
Accumulating studies indicate that microglia-allocated neu-
roinflammation increases the tau pathology as a consequence
of neurodegenerative disease. In hTau mice, Maphis et al.
[19] evaluated that depending on the different disease stages,
CX3CR1 deficiency is responsible for the onset and develop-
ment of tau pathology. They suggest that these reactive
microglia can influence the development of the tau pathology
and be consistent with the propagation of pathological tau in
the brain. In addition, a study reveals that lacking microglial
TREM2 results in exacerbated tau pathology and a profound
dysregulation of stress-related kinase pathways in a human-
ized mouse model of tauopathy [158]. On the other hand,
TREM2 reduces neuronal tau hyperphosphorylation by
reducing the microglial inflammatory response [159]. During
the pathological investigation of human brains, it has
been found that microglia morphologically degenerated
and were associated with tau pathology [160]. These mor-
phological changes are suggested to result from microglial
senescence and chronologically precede the spread of tau
pathology [161, 162].

7. Microglial Activation in Alzheimer’s Stage

7.1. Activated Microglia in Early-Onset Alzheimer’s. The
amyloid cascade-neuroinflammation hypothesis character-
ized as an abnormal production of Af owing to the
redundancy of Af synthesis or a dysfunctioning of Apf
clearance is the paramount causality of the AD, which
consequently stimulates neuroinflammation-induced neu-
ronal loss [163, 164]. Therefore, neuroinflammation is
noticed as a critical factor in the development of AD path-
ogenesis [165]. In addition, activated microglia can be
either proinflammatory or anti-inflammatory.

In AD at its early stages, it has been proposed that the
initial microglial activation may have a beneficial function
through the clearance of the amyloid and releasing potential
nerve growth factors [166]. On the other hand, due to the
failure of this process hence to promote the Af3 aggregation
or other lethal products, therefore, activation of proinflam-
matory phenotypes leads to a rapid destruction of the neu-
rons. However, the genetic data from GWAS propose
microglial activation to be able to execute several critical
functions in the early stages of AD and autonomous amyloid
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pathology [167, 168]. Although epidemiological analysis
has demonstrated that people who take nonsteroidal anti-
inflammatory drugs (NSAIDs) have an inferior frequency
of AD, randomized control trials have not shown the effec-
tiveness of these NSAIDs in subjects with later onset of AD
[169]. Recently, one study hypothesized two particular stages
of microglial activation in the AD trajectory, an early anti-
inflammatory phase and an advanced proinflammatory
phase [170]. In this case, targeting antimicroglial medications
would be most favorable to protect against the battle of the
proinflammatory phenotype in the advanced phase of this
disease. In the early phase of AD, microglial activation is able
to alleviate Af3 aggregation by augmenting its phagocytosis,
clearance, and degradation properties [171, 172]. For
instance, an investigation of amyloid plaques by electron
microscopy demonstrated that microglia are efficiently
engulfing Af, and Af3 appeared in the endosome-like cellular
domain [173].

7.2. Activated Microglia in Late-Onset Alzheimer’s. In late-
onset AD (LOAD), microglia have been deprived of their
beneficiary function due to a tenacious production of proin-
flammatory mediators [174]. A study has shown that the
amyloid plaque burden upsurges with aging in human
patients, indicating the relatively ineffective phagocytic
potential of microglia [175]. In human AD, A42 immuni-
zation improves the function of microglia by intensifying
their phagocytic activity [176]. Based on the microglial dys-

functioning notion, there is a loss in microglial neuroprotec-
tive activity in AD, rather than an increase in an
inflammatory role [177]. Previously, it has been reported
that the microglial phagocytic capabilities are shifted with
aging and similarly decrease this feature in neurodegenera-
tive diseases. Likewise, these senescent (i.e., biological aging)
microglia are linked with the onset of sporadic AD [178].
Furthermore, recent studies on TREM2 also ascertain both
early and late stages of microglial activation during the AD
trajectory [179, 180]. TREM2 expressed in microglia is sup-
posed to link with microglial activation. Even though a few
studies indicate opposed effects for TREM2 levels in AD,
lately, a study reported the level of soluble TREM2 (sTREM)
directly linked with the early and delayed stage of AD
[181, 182], where the peak beneficial role of TREM2 has
observed in the early stage and later stage; its salutary
effect gradually decreased (Figure 3).

8. Microglial Deterioration in
Alzheimer’s Patients

The activated microglial response has been extensively
explored in AD brain regions by comparatively exalted Af
subjects or in Af-rich transgenic models [183-185].
Fascinatingly, A accumulation and neurofibrillary tangles
(NFTs) do not appear in similar anatomical locus; in this
sense, a direct pathogenic connection between amyloid
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plaques and neurodegenerative diseases is still elusive
[186, 187]. In fact, cognitive disability is not compatible
with an overabundance of amyloid plaque, even so with
the presence of neurofibrillary pathology explicit as tau-
positive morphology, including unmyelinated axons in the
nervous system so-called neuropil threads, NFTs, and neu-
ritic plaques [188, 189]. Additionally, an unambiguous
determination of microglial activation in the human brain
is extremely complicated since there is no effective biomarker
for differentiating between activated and nonactivated cells.
It is also surprising that microglial cells become progressively
dysfunctional with aging in the human brain that displays
morphologically senescence rather than activation, like frag-
mented cytoplasmic processes [190]. The identification of
senescence microglia has imparted new aspects on the
possible implication of microglia in aging-associated neuro-
degeneration; for example, aging causes loss of notable
microglial cell function involved in the reduction of micro-
glial neuroprotection [190, 191]. A study evaluating the
microglial reaction in postmortem hippocampal human tis-
sue demonstrated that microglia underwent a noticeable
degenerative process in the dentate gyrus (DG) as well as
CA3 of Braak V-VI samples, likely to be the case linked with
the accumulation of soluble pTau [160].

Not only are microglial cells able to protect the synaptic
integrity [192] but also they contribute to the learning ancil-
lary synaptic formation [193]. Moreover, microglia induce
ApB-phagocytosis [194, 195] and senile plaque compaction
and limit the A toxicity [196, 197]. Furthermore, microglia
contribute to removing depreciated neurons as well as neu-
ronal stuff, for example, paranormal synaptic terminals or
axonal demyelination. In this context, deficits in colony-
stimulating factor 1 receptor (CSF1R) or TREM2 are corre-
lated with a rare group of neurodegenerative disorder, for
example, adult-onset leukoencephalopathy with axonal
spheroids (i.e., characterized by excessive demyelinating
lesions in the cerebral white matter) or Nasu-Hakola disease
(i.e., characterized by multiple bone cysts linked to neurode-
generation), respectively [198-200]. These studies, together
with Sanchez-Mejias [160] data, strongly indicated micro-
glial pathology resulting in a deficient immunoprotection
in DG and CA3 that leads to progressive AD pathology
and cognitive damage. Furthermore, TREM2-knockout
models show dystrophic microglial cells [201], shortages in
microglial survival, and worsening in AD pathology [22].

Accumulating evidence demonstrates that AD is associ-
ated not only with microglial activation but also with
microglial senescence, which might be considered the degen-
eration of these cells continuously [190]. These findings sug-
gest that NSAIDs have become incapable of preventing or
decreasing neurodegenerative disease like AD. Surprisingly,
they reconstructed the conception regarding AD pathogene-
sis far away from inflammation-related impairment and
proximate to an uninvestigated area of neuroscience, for
instance, activities or events that can destroy microglial cells.
Incredibly, it has become crystal clear that senescence
microglia are responsible for age-related telomere length
(TL) shortening [202, 203]. In addition, shortened TL in
peripheral blood leukocytes is further recognized as early
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jeopardy of dementia [204]. Since microglia are indispens-
able for providing neuroprotection [191], aging-associated
loss of a microglial protective role in neurodegenerative dis-
ease is likely to have detrimental repercussions for neurons.

9. Conclusion

Nowadays, studies started focusing on microglia to better
understand the functional role of microglia in changing the
progression of AD. Microglial cells are dynamic and reactive
and change their surrounding environment rapidly, result-
ing in either proinflammatory or anti-inflammatory states.
It has become apparent that microglia not only produce neu-
rotoxic products but also need for phagocytic clearance of
neurotoxic proteins associated with AD. The randomized
control trials that employed nonspecific anti-inflammatory
agents have not appeared to be significant in mitigating dis-
ease, possibly because of the inhibition of indispensable
phagocytic functions that accumulate toxic proteins. Fur-
thermore, depending on the clinical environment, microglia
phenotypes may have a negative or positive effect. In fact,
the ultimate beneficial role of TREM2 has been observed in
the early stage and later stage, and its beneficial effect grad-
ually decreased. AD pathogenesis is dependent on microglial
cells and their receptors. Therefore, targeting microglial
receptors to maintain microglial homeostasis would be a
potential therapeutic strategy in AD.
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