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Cognitive radios can signifcantly improve the spectral efciency of wireless communications. Spectrum sensing is a key function
of cognitive radios to prevent the harmful interference with licensed users. Tis paper considers the cooperative spectrum sensing
in 230MHz electric wireless private networks. First, the statistical distribution of the sample covariance matrix of the received
signals is investigated. Ten, taking the ratio of the sum of absolute values of the of-diagonal elements of the sample covariance
matrix to that of the diagonal elements as the decision metric, an improved covariance absolute value (ICAV) cooperative sensing
algorithm is proposed. After that, a performance analysis concerning the probabilities of false alarm and detection is carried out.
Teoretical analysis and simulation results show that the ICAV algorithm possesses an accurate decision threshold and is robust to
the noise uncertainty.

1. Introduction

Wireless communication has been widely applied in the
distribution network, enabling the electric vehicle charg-
ing, information collection, two-way interactive marketing,
and smart grid [1]. On the other hand, the development of a
smart grid has put higher requirements on the network
structure, coverage, and bandwidth. At present, general
packet radio service (GPRS) and code division multiple
access (CDMA) are widely used in electric power wireless
communication. Tey are both public network technolo-
gies, which do not need to deploy a private network for
power services. However, the network security and reli-
ability are inferior to private networks, while the high rental
fee paid to telecom operators is another concern [2].
Terefore, the National Committee of China has allocated
the 230MHz frequency band to build a new electric
wireless private network (EWPN) called the TD-LTE 230
system. To meet the requirements of intelligent distribu-
tion, the TD-LTE 230 system utilizes up-to-date technol-
ogies to reduce the transmission latency and improve the
spectrum efciency.

It is worth noting that the 230MHz EWPN may share
the same spectrum with the existing 230 digital radio sta-
tions; thus, it is of signifcant importance to confrm the
proper operation of these two systems. Specifcally, the
cognitive radio that can enable the transceiver to adapt
transmit parameters based on its interaction with the en-
vironment in which it operates to improve the quality of
communications has been considered as a promising
technology in 230MHz EWPN [3]. One of the most critical
and challenging tasks in cognitive radio is to sense the
presence of licensed users (LUs). Two main purposes of the
spectrum sensing are to sense spectrum holes to meet system
throughput and quality of service requirements, as well as to
ensure that there is no interference to LUs [4]. Based on the
above considerations, this paper regards the 230 digital radio
stations as the LUs and the EWPN nodes as the secondary
users (SUs). If the EWPN nodes detect the presence of 230
digital radio stations, they will not occupy the band so as to
avoid interference. Terefore, the spectrum sensing is in-
dispensable to achieve the efcient use of spectrum resources
in the environment where 230 digital radio stations and
EWPN nodes coexist.
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2. Related Work

Te existing spectrum sensing algorithms can be generally
classifed into energy detection (ED), matched flter detec-
tion, and feature detection. Energy detection is the most
widely used, because of its low complexity, low detection
delay, and simplicity to implement. More importantly, it is a
blind detection method that does not require prior infor-
mation of the LU’s signals. However, energy detection
cannot guarantee the reliability of spectrum sensing in the
presence of noise uncertainty [5]. Match fltering detection is
known as optimal if the prior information of signals emitted
by LUs is known, but in some situations, it is difcult to
obtain these information in advance [6]. Feature detection,
which relies on the cyclostationary or second-order statis-
tics, is computationally inefcient due to the exploitation of
a large number of received symbols for averaging [7]. For
example, the eigenvalue-based sensing is known for having a
high detection rate without requiring any knowledge about
the LU or the noise level [8]. In addition, since the spectrum
sensing is essentially a classifcation problem, data-driven
learning technologies have been advocated as a promising
solution. In [9], by using its substantial improvement in the
classifcation, a deep reinforcement learning-based spectrum
sensing was proposed. Capitalizing on the hierarchical na-
ture of feature extraction in deep neural networks (DNNs), a
novel multitask DNN architecture to detect spectrum oc-
cupancy was designed in [10].

It is worth noting that the abovementioned spectrum
sensing schemes are conducted in a single node, which has
the limitation that it is difcult to detect the signals of LUs
for desired performance in low signal-to-noise ratio (SNR)
conditions [11]. In contrast, a cooperative spectrum sensing
has been proposed as a promising solution, which can ef-
fectively address issues that arise in spectrum sensing due to
noise uncertainty, fading, shadowing, and hidden terminals
[12]. In cooperative spectrum sensing, data fusion and the
fnal decision can be executed in two diferent modes,
namely, centralized or decentralized [13]. In the centralized
mode, each SU senses the specifc spectrum separately and
reports the local detection result to the fusion center via a
reporting channel. Te fusion center analyzes the reported
information received from all SUs to make a decision and
then sends the result back to SUs. On the other hand, there is
no fusion center in the decentralized mode, and each SU
makes decisions independently. Considering the limited
communication resources between SUs and the fusion
center, this paper focuses on the problem of cooperative
spectrum sensing in the centralized mode.

A major category of cooperative spectrum sensing ex-
ploits the statistical distribution law of random matrix.
Specifcally, since LU’s signals propagate through inde-
pendent wireless channels to SUs, then each received copy
must strongly correlate with each other. Terefore, the
detection algorithm based on the sample covariance matrix
takes advantage of the correlation among received signals to
detect the presence of LU [14]. One beneft of this approach
is that it does not require prior information such as channel
characteristics and noise variance. For example, a fusion rule

based on dynamic grouping was designed to facilitate the
distributed cooperative spectrum sensing in heterogeneous
cognitive radio networks [11]. Zeng and Liang proposed the
covariance absolute value (CAV) sensing algorithm [15].
Yang et al. investigated a detection approach based on the
covariance Cholesky factorization (CCF) [16]. More re-
cently, a covariance matrix-aware convolutional neural
network-based multiband joint spectrum sensing method
was proposed in [17].

2.1. Motivation and Contributions. Although the CAV and
CCF algorithms can be applied in the multiuser cooperative
sensing scenario, there are some key issues that have not
been dealt with. For example, we will show that there is a
mismatch between the actual probability distribution
function (PDF) of the CAV method and the theoretical one.
Tis discrepancy could result in a loss of detection per-
formance. Moreover, the CCF algorithm is of high com-
plexity due to the requirement of matrix decomposition,
which is less efcient in performing spectrum sensing or
switching. To avoid the aforementioned problems, we
propose a new cooperative spectrum sensing algorithm
based on the sample covariance matrix. Te major contri-
butions are summarized as follows:

(1) Te statistical distribution of the sample covariance
matrix of the received signals is investigated. Ten,
an improved covariance absolute value (ICAV)
spectrum sensing algorithm is proposed by taking
the ratio of the sum of absolute values of the of-
diagonal elements of the sample covariance matrix to
that of the diagonal elements as the decision metric.

(2) Te performance in terms of the probability of false
alarm (Pfa) and the probability of detection (Pd) is
analyzed, and their closed-form expressions are
obtained. Moreover, the threshold for the coopera-
tive spectrum sensing is derived.

(3) Te numerical simulations are performed to verify
the efectiveness of our scheme and to investigate the
impacts of system parameters on the spectrum
sensing accuracy. Moreover, a comparison of the
proposed algorithm with the existing ones are
obtained.

Te rest of the paper is organized as follows: In Section 2,
the considered system model is described, including a brief
introduction of existing sensing algorithms. In Section 3, the
proposed scheme of cooperative spectrum sensing scheme is
presented in detail. Section 4 presents the numerical sim-
ulation results, based on which the performance analysis and
discussion are conducted. Finally, Section 5 concludes this
paper.

3. System Model Description

3.1. Scenario of Cooperative Spectrum Sensing. Te scenario
considered in this paper is centralized cooperative spectrum
sensing, as shown in Figure 1. Tere are K SUs and one LU,
as well as a fusion center, where the LU denotes a 230 digital
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radio stations and SUs represent EWPN nodes. Specifcally,
each SU sends the received signals to a fusion center, where
the fnal decision is made and the corresponding results are
then broadcast to SUs. Suppose that all SUs participate in
spectrum sensing and the number of samples used for av-
eraging is N, then the received signal by the k-th SU at time t
is given by the following:

yk(t) � hk(t)s(t) + wk(t), (1)

where s(t) is LU’s signal of zero mean and variance σ2s , hk(t)

denotes the channel connecting the LU and the k-th SU, and
wk(t) is the noise component with zero mean and variance
σ2w.Tus, the SNR is defned as 10 log (σ2s /σ

2
w). Moreover, the

considered spectrum bandwidth is assumed to be B with
central frequency fc, and the sampling frequency is fs

which satisfes fs ≥ 2B. In this paper, we use yk(n), s(n),
wk(n), and hk(n) to denote the sampled received signal
y(nTs), transmit signal s(nTs), noise component w(nTs),
and channel response h(nTs), respectively. Terefore, the
cooperative spectrum sensing can be formulated as a binary
hypotheses testing problem, i.e.,

yk(n) �
wk(n), H0,

hk(n) s(n) + wk(n), H1.
􏼨 (2)

Furthermore, let y(n) � [y1(n), . . . , yK(n)]T be the K ×

1 signal vector at time instance n, and Y � [y(1), . . . , y(N)]

indicates the K × N observation matrix. In a similar way, we
employ w(n) � [w1(n), . . . , wK(n)]T to denote the K × 1
noise vector, while W � [w(1), . . . , w(N)] represents the
K × N noise matrix. Accordingly, the covariance matrix
computed by the fusion center is given by the following:

R � E y(n)yH
(n)􏽮 􏽯 � Rs + σ2wIK, (3)

where Rs is the autocorrelation matrix of LU’s signals and IK
denotes the unity matrix of size K × K. Under hypothesis H0,
the covariance matrix is diagonal, whereas it is not diagonal
because of the presence of LU’s signal under hypothesis H1.

3.2. Te CAV Cooperative Spectrum Sensing Schemes. As
aforementioned, the covariance matrix of the received sig-
nals is diagonal in the absence of LU, while is nondiagonal in

the presence of LU. Tis observation can be exploited for
spectrum sensing, which is the core idea of the CAVmethod
[15]. Te decision metric and threshold of the CAV method
are as follows:

TCAV �
T1

T2
�

􏽐
K
i�1 􏽐

K
j�1 rij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
K
i�1 rii

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

cCAV �
1 +(K − 1)

�������
2/(Nπ)

􏽰

1 − Q
−1

Pfa􏼐 􏼑
����
2/N

√ ,

(4)

respectively. Te (i, j)-th element of the sample covariance
matrix is denoted by rij,1≤ i, j≤K. Pfa denotes the prob-
ability of a false alarm, and Q− 1(·) indicates the inverse error
function. In principle, TCAV equals 1 under hypothesis H0,
whereas TCAV > 1 under hypothesis H1. Figure 2 compares
the analytical threshold and the numerical one, where Pfa

varies. Obviously, the mismatch between these two curves
indicates that the CAV algorithm cannot handle the decision
threshold properly. Although this mismatch can be reduced
by increasing N, it leads to a poor detection performance, as
will be demonstrated later.

4. Proposed Cooperative Spectrum
Sensing Algorithm

In practice, the covariance matrix in (3) is not available due
to the fnite observation samples. On the contrary, the
sample covariance matrix 􏽢R is used to approximate the true
covariance matrix, that is,

􏽢R �
1
N

YYH
. (5)

With sufcient samples, 􏽢R can be a good approximation
of R. From the analysis above, one can fnd that the of-
diagonal elements of 􏽢R describe the correlation among SU’s
received signals; thus, it is possible to utilize this information
to detect the presence of LU’s signals. Since 􏽢R is a Hermitian
matrix, then the sum of the absolute values of its of-diagonal
elements and that of diagonal elements are denoted by the
following:

V1 �
1
K

􏽘

K

i�1
􏽘

K

j< i

rij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

V2 �
1
K

􏽘

K

i�1
rii

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (6)

respectively. Hence, the decision metric of the proposed
algorithm is as follows:

TICAV �
V1

V2
. (7)

We then discuss the diferences between TICAV and TCAV.
From Equation (4),we note that T1 includes T2, which means
there exists a correlation between the numerator and de-
nominator. However, this correlation was ignored when the
authors of [16] derived the decision threshold, causing a large

SU1

SU2

SUK

SUK–1

FC

LU

Figure 1: Scenario of cooperative spectrum sensing, where LUs
denote the 230 digital radio stations and SUs represent the EWPN
nodes.
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mismatch between the preset threshold and the actual one. In
addition, because of the correlation between T1 and T2, the
Mellin transform is required to calculate the distribution of
TCAV. As a result, the obtained expression of the PDF could be
extremely complex. In contrast, the proposed decision metric
TICAV avoids the aforementioned problem since V1 and V2
are statistically independent.

Te complexity of the proposed ICAV algorithm is
mainly attributed to two parts: computation of the sample
covariance matrix and the decision metric. Te frst part
requires N(N + 1)K/2 multiplications and N(N + 1)(K −

1)/2 additions. For the second part, generally, K(K + 1)

additions are required. As for the CAV algorithm, its
complexity is basically the same as the proposed one. On the
other hand, the complexity of the CCF-based algorithm also
comes from the computation of the sample covariance
matrix and decision metric. While the complexity of cal-
culating the sample covariance matrix is identical, that of
Cholesky factorization includes about O(N3/3) multipli-
cations and additions. Note that $N$ is usually larger than
$K$, since more samples of the received signal are benefcial

to obtain a more accurate sample covariance matrix.
Terefore, the complexity of the CCF-based spectrum
sensing is much higher than the proposed ICAV algorithm.

4.1.TePDFandCDFof theProposedMetric. In this part, the
PDF and cumulative distribution function (CDF) of the
proposed ICAV algorithm are derived. Assume the noise
component wk(n) is Gaussian-distributed, i.e,
wk(n)∼CN(0, σ2w). Under hypothesis H0, the nondiagonal
element rij, i≠ j can be written as follows:

rij �
1
N

W(i, : )W(:, j)

�
1
N

􏽘

N

n�1
wi(n)w

∗
j (n),

(8)

where W(i, : ) and W(:, j) denote the i-th row and j-th
column of W, respectively; wi(n) is independent of wj(n).
Let us defne zij ≜Nrij; then, its PDF is as follows:
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Figure 2: Te decision threshold of the CAV algorithm, where the analytical result is obtained by Equation (4).
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fZij
(t) �

1
σ2w(m − 1)!

exp −
|t|

σ2w
􏼠 􏼡 􏽘

m−1

i�0

(m + i − 1)!

2m+i
i!(m − i − 1)!

|t|

σ2w
􏼠 􏼡

m−i−1

, N � 2m,

|t|/ 2σ2w􏼐 􏼑􏼐 􏼑
m

��
π

√
χ(m + 1/2)σ2w

Km

|t|

σ2w
􏼠 􏼡, N � 2m + 1,
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where χ(·) is the Gamma function and Km(·) is the second
kind of modifed Bessel function of m. Let Qij � |zij|; then,
its PDF can be derived as follows:

fQij
(t) �

fZij
(t) + fZij

(−t), t> 0,

0, t≤ 0.
􏼨 (10)

According to Equations (9) and (10), the mean and
variance of Qij are derived by the following:

uQij
� E Qij􏽮 􏽯 � 􏽚

+∞

−∞
qfQ(q)dq �

����
2N

πσ2w

􏽳

σ2Qij
� D Qij􏽮 􏽯 � 􏽚

+∞

−∞
q
2
fQij

(q)dq − 􏽚
+∞

−∞
qfQij

(q)dq􏼢 􏼣

2

� N
1 − 2
π

􏼒 􏼓σ4w.

(11)

With Equations (9–11̶11), we can study the distribution
of V1.

According to the defnition of V1, it can be rewritten as
follows:

V1 �
1
K

􏽘

K

i�1
􏽘

K

j< i

rij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

�
1

KN
􏽘

K

i�1
􏽘

K

j< i

Nrij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

�
1

KN
􏽘

K

i�1
􏽘

K

j< i

Qij,

�
1

KN
􏽘

L

l�1
Q(l),

(12)

where Q(l) ⊂ Qij | 1≤ i≤K, 1≤ j< i􏽮 􏽯, and L � K(K − 1)/2.
Since Q(l) are independent and identically distributed, the
mean and variances are uQij

and σ2Qij
, respectively. Terefore,

we can obtain that the mean and variance of Q(l)/(KN) are
as follows:

uQij
′ �

1
KN

uQij
�
1
K

�����
2

(Nπ)

􏽳

σ2w

σ2Qij
′ �

1
K

2
N

2σ
2
Qij

�
1

K
2
N

1 −
2
π

􏼒 􏼓σ4w,

(13)

where Qij
′ � Q(l)/(KN). When L is sufciently large, one can

arrive at the following result according to the central-limit
theorem:

V1 − LuQij
′

σQij
′

��
L

√ ∼ N(0, 1). (14)

Terefore, we have V1 ∼ N(LuQij
′, Lσ2

Qij
′), and its PDF and

CDF can be given by the following:

fV1
(t) �

1
����
2πL

√
σV1

exp −
t − LuV1

􏼐 􏼑
2

2Lσ2V1

⎛⎝ ⎞⎠,

FV1
(t) �

1
����
2πL

√
σV1

􏽚
t

−∞
exp −

t − LuV1
􏼐 􏼑

2

2Lσ2V1

⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(15)

Next, we derive the distribution of V2. As before, let us
assume the elements in W are additive Gaussian noise,
namely, wk(n)∼CN(0, σ2w). Ten, under hypothesis H0, we
have Y � W; thus, the diagonal elements of the sample
covariance matrix are denoted by the following:

rii �
1
N

W(i, : )W(:, i)

�
1
N

􏽘

N

n�1
wi(n)wi(n)

�
1
N

􏽘

N

n�1
w

2
i (n).

(16)
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Meanwhile, according to its defnition, V2 can be written
as follows:

V2 �
1
K

􏽘

K

i�1
rii

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

�
1
K

􏽘

K

i�1

1
N

􏽘

N

n�1
w

2
i (n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

� 􏽘
K

i�1
􏽘

N

n�1

�������
1/(KN)

􏽰
wi(n)􏼐 􏼑

2
.

(17)

From Equation (17), V2 follows a central chi-square
distribution with KN degrees of freedom. Terefore, the k

-th moment of V2 is denoted as follows:

E V
k
2􏽮 􏽯 �

2σ21􏼐 􏼑
kχ(m + k)

(m − 1)!
, KN � 2m,

2σ21􏼐 􏼑
kχ(m + k + 0.5)

χ(m + 0.5)!
, KN � 2m + 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

where σ21 � σ2w/KN.
According to the distributions of V1 and V2, the CDF

and PDF of TICAV are represented as follows:

FICAV(t) � P TICAV ≤ t( 􏼁,

� P
V1 − LuQ′

σQ′
��
L

√ ≤
tE V2( 􏼁 − LuQ′

σQ′
��
L

√􏼠 􏼡,

� FN

�
2

√
KNt − K(K − 1)

����
N/π

√

�����������������
KN(K − 1)(1 − 2/π)

􏽰􏼠 􏼡,

fICAV(t) �
d FICAV(t)( 􏼁

dt
,

�

�����
2KN

√

��������������
(K − 1)(1 − 2/π)

􏽰 fN

�
2

√
KNt − K(K − 1)

����
N/π

√

�����������������
KN(K − 1)(1 − 2/π)

􏽰􏼠 􏼡,

(19)

respectively, where fN(t) � 1/
���
2π

√
exp (−t2/2) and FN(t) �

1/
���
2π

√
􏽒

t

−∞ −t2/2dt denote the PDF and CDF of a standard
Gaussian random variable, respectively, and E V2􏼈 􏼉 can be
computed according to (18). Note that since KN is a large
number, E V2􏼈 􏼉 is obtained by setting KN � 2m.

In light of the analysis above, it is observed that V1 and
V2 are statistically independent of each other, thus making
the obtained FICAV(t) more accurate. Terefore, it is ex-
pected that the preset threshold can match well with the
actual one, which will be verifed by numerical results.

4.2. Te Decision Treshold of ICAV. According to the PDF
and CDF of the decision metric and the Neyman–Pearson
criterion, the Pfa can be calculated by the following:

Pfa � Pr TICAV > cICAV H0
􏼌􏼌􏼌􏼌􏼐 􏼑

� Q

�
2

√
KNcICAV − K(K − 1)

����
N/π

√

�����������������
KN(K − 1)(1 − 2/π)

􏽰􏼠 􏼡,

(20)

where Pr(·) indicates the event’s probability,
Q(t)≜ 1/π 􏽒

∞
t
exp (−t2)dt is the error function, and cICAV

denotes the decision threshold. In general, the decision
threshold is set according to the predefned Pfa. Given
Equations (19) and (20), one can obtain the threshold of the
proposed sensing algorithm as follows:

cICAV �
1

�
2

√
KN

Q
− 1

Pfa􏼐 􏼑

����������������

NK(K − 1) 1 −
2
π

􏼒 􏼓

􏽲

+ K(K − 1)

���
2N

π

􏽲

􏼠 􏼡, (21)
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where Q− 1(·) is the inverse function of Q(t). From Equation
(21), it is observed that, aside from Pfa, cICAV relates to the
number of received samples N and the number of SUs K.

To sum up, the proposed ICAV sensing algorithm in-
cludes the following steps:

(1) SUs sample the received signals and send them to the
fusion center, where the sample covariance matrix is
computed.

(2) We calculate the sum of absolute values of non-
diagonal elements of the sample covariance matrix to
obtain V1 and calculate the sum of absolute values of
diagonal elements to obtain V2. Ten, the decision
metric is obtained.

(3) Given a prerequisite Pfa and the PDF of the decision
metric under hypothesis H0, we compute the deci-
sion threshold according to (21).

(4) If cICAV ≥TICAV, then the hypothesis H1 is declared;
otherwise, H0 is declared.

5. Simulation Results and Discussion

In this part, extensive numerical simulations are conducted
to verify the performance of the proposed ICAV detection
algorithm and a comparison with existing methods is also
included. All the results were obtained by averaging over
10,000 independent Monte Carlo runs. Te channels be-
tween diferent nodes are assumed to follow the Rayleigh
fading model.

5.1. SignalModel of LU. At present, 230 digital radio stations
are the most widely used power wireless private network,
where the minimum shift keying (MSK) modulation scheme
is employed. Te MSK modulation is a continuous phase
frequency shift keying with a modulation index of 0.5, and
its time-domain signal is denoted by the following:

s(t) � c(t) cos 2πfct + ϕ0( 􏼁 − d(t) sin 2πfct + ϕ0( 􏼁, (22)

where

c(t) � 􏽘
∞

k�−∞
ckq t − kTs − t0 −

Ts

2
􏼒 􏼓,

d(t) � 􏽘
∞

k�−∞
dkq t − kTs − t0( 􏼁,

q(t) � cos
πt

Ts

􏼠 􏼡.

(23)

Ts is the sampling interval, fc is the operational fre-
quency, and ϕ0 indicates the initial phase. In the following
simulation, we set fc � 230MHz and the sampling fre-
quency is fs � 153.6KHz.

5.2.Results andDiscussion. Figure 3 draws the analytical and
numerical results of FICAV(t) with diferent (K, N) com-
binations, where Pfa varies. Te good match between an-
alytical and numerical curves verifes the correctness of our

derivation. Besides, Figure 4 shows how the decision
threshold TICAV varies with Pfa. Again, the analytical curve
matches well with the numerical one. It is observed that
TICAV reduces if one increases the Pfa, which is in accor-
dance to our expectation. Moreover, increasing K or N

results in a larger TICAV subject to the same Pfa. To sum up,
Figures 3 and 4 demonstrate the efectiveness of our deri-
vation, and then, we focus on the detection performance in
the following analysis.

Figure 5 depicts the receiver operating characteristic
(ROC) curves of spectrum sensing algorithms, where the
ED, CAV, CCF, and fusion rule-based schemes are included
for performance comparison. In this fgure, the simulation
parameters are K � 8, N � 200, and SNR � −5 dB. In ad-
dition, we also account for the noise uncertainty, which is
caused by the estimation error of noise variance. However,
the noise variance can never be precisely estimated, which
results in the noise uncertainty. Technically, the estimated
noise variance follows a unit distribution, i.e.,

σ2w ∼U
σ2w
uc

, 􏽢σ2wuc􏼠 􏼡, (24)

where 􏽢σ2w is the noise variance estimate and uc is the noise
uncertainty, which is usually represented in dB. First of all,
one can fnd that the proposed ICAV detection scheme
performs the best among these schemes. For example, Pd

achieves approximately 86% at Pfa � 0.1. In particular, the
ED scheme is inherently sensitive to the noise uncertainty, as
it is clearly shown that its performance degrades as the noise
uncertainty increases. In contrast, our proposed scheme is
immune to this kind of uncertainty.

Figure 6 compares the detection performance of diferent
algorithms when SNR varies, where K � 8 and N � 200.
Specifcally, the required SNR for the ICAV algorithm to
achieve Pd � 0.9 is about −8.2 dB, while that of CCF, CAV,
and fusion rule-based schemes is −7.7 dB, −6.2 dB, and −4 dB,
respectively. Terefore, the performance gain of ICAV al-
gorithm over CCF, CAV, and fusion rule-based schemes is
0.5 dB, 2 dB, and 4.2 dB, respectively. In addition, it is evident
that the ICAV algorithm possesses a higher Pd over the ED
method. Since the CCF scheme is of high computational
complexity due to the requirement of Cholesky decompo-
sition, the proposed algorithm hits a balance between the
detection performance and implementation cost.

Figure 7 analyzes the detection performance of diferent
algorithms when the noise uncertainty varies, where K � 8,
N � 200, and SNR � −5 dB. Te left and right subfgures
relate to thePd and Pfa, respectively. From the left subfgure,
the ICAV algorithm shows robustness to the noise uncer-
tainty as it achieves the best Pd. Also, ICAV, CAV, and CCF
schemes witness little performance loss when the noise
uncertainly becomes severe. In contrast, the ED method is
quiet vulnerable to this problem, although it is simple to
implement. On the other hand, the right subfgure shows
that the Pfa of the ICAV and CCF schemes equals the
nominal value of 0.05, while that of the CAV and ED
schemes deviates from 0.05. Note that this deviation could
harm the detection accuracy.
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Figure 8 presents the Pd and Pfa results when K varies,
where SNR � −5 dB, N � 200, and the noise uncertainty NU �

0.5 dB. According to the left subfgure, the proposed ICAV
algorithm achieves the best detection performance. Besides, the
right subfgure shows that the actual Pfa of ICAV approximates
the nominal value of 0.05, whereas those of other schemes

deviate from 0.05with diferent extents. Intuitively, the deviation
of the ED scheme is caused by its sensitivity to the noise un-
certainty, while that of the CAV scheme is due to the mismatch
between the analytical threshold and the numerical one shown
in Figure 2. Hence, the proposed ICAV scheme is superior to the
rest in terms of Pd when the noise uncertainty exists.
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Figure 4: Te decision threshold of the proposed ICAV algorithm, where Pfa varies.
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Finally, Figure 9 discusses how the performance varies
with $N$, where SNR � −9 dB, K � 8, and the noise un-
certainty equals to 1 dB. As before, the left and right sub-
fgures consider the Pd and Pfa, respectively. For Pd, the
proposed ICAV algorithm performs better than the others.
Te right subfgure indicates that except for the ED method,
the rest three achieve a decent performance in terms of Pfa.
Note that although a larger N is benefcial to improve the
detection accuracy, the computational complexity increases
as well. Tus, from the system design point of view, one
needs to balance between performance and complexity when
choosing N.

6. Conclusions

Aiming at the practical problems encountered in the
application of the power wireless broadband system, this
paper proposed a cooperative spectrum sensing algo-
rithm to realize the coexistence of the newly deployed
EWPN system and existing 230-data transmission radio
systems. Specifcally, through analyzing the statistical
distribution of the sample covariance matrix of the re-
ceived signal, an ICAV spectrum sensing algorithm was
proposed. Teoretical analysis and simulation results
showed that the proposed ICAV algorithm achieved a
more accurate threshold compared to the CAV algo-
rithm. Moreover, the proposed ICAV algorithm not only
was robustness to the noise uncertainty but also struck a
balance between the detection performance and com-
putational complexity.
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