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Edge computing is a creative computing paradigm that enhances the computing capacity of the edge device close to the data
source. As the key technology of edge computing, task ofoading, which can improve the response speed and the stability of the
network system, has attracted much attention and has been applied in many network scenarios. However, few studies have
considered the application of task ofoading in time-sensitive networking (TSN), which is a promising technology that has the
potential to guarantee data delivery with bounded latency and low jitter. To this end, we establish a task ofoading stream
transmission model for TSN based on the queueing theory. With the model, the average response time can be achieved by
quantitative calculation. Ten, we introduce the backward method to construct a utility function and formulate an exact potential
game to model the task ofoading competition among edge devices considering the minimization of the average response time of
all tasks. Furthermore, a distributed and sequential decision-making algorithm for multitask ofoading (DSDA-MO) is proposed
to fnd the Nash equilibrium. Trough numerical studies, we evaluate the algorithm performance as well as the beneft of the
multitask ofoading mechanism.Te results reveal that through the proposed game theoretic approach, we can obtain the optimal
multitask ofoading strategy, which can signifcantly reduce the task computation delay in TSN, within a fnite number of rounds
of calculation.

1. Introduction

With the advent of the era of Industry 4.0, related tech-
nologies, such as artifcial intelligence (AI), cyber-physical
systems (CPSs), and industrial internet of things (IIOT),
have been deeply studied and developed [1, 2]. In many
cases, such as the case of industrial equipment and systems
sharing the communication channel in the industrial feld
network, the data packet delivery requires bounded latency
and low jitter, which are known as deterministic real-time
communication. Te traditional network technology can no
longer meet the requirements of deterministic real-time
transmission of industrial data, let alone support the mixed
transmission of periodic control data and emergency data in

many complex industrial scenarios. To overcome this
challenge, IEEE promotes a new real-time communication
protocol standard, IEEE 802.1 Time-sensitive networking
(TSN) [3, 4], which evolved based on IEEE 802.1 audio video
bridging (AVB) series standards. Utilizing network-wide
clock synchronization, time-aware haper (TAS), trafc
scheduling, and other mechanisms, TSN realizes the shared
network transmission of time-sensitive streams and nonreal-
time streams within the local area network.

During the development process of industrial network
technology, the industry and academy fnd that the tradi-
tional centralized cloud computing model cannot satisfy the
requirement of real-time computing in the industrial feld.
Terefore, a new computing paradigm, named edge
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computing (EC), has come out to address the challenge of
real-time processing data from the network edge. EC pro-
vides an architecture for migrating computation power from
the remote cloud to the local position close to the data source
by deploying edge computing nodes (ECNs) or edge
computing servers (ECSs) near the edge devices [5–8].

Since TSN can reduce the delay of data transmission and
EC can reduce the time cost of data computation, the
combination of TSN and EC technologies will be able to
decrease the overall delay of the industrial system. Te core
principles of EC are computing resource allocation and
computing service provision. A common application of EC
is task ofoading from edge devices to ECN/ECS, i.e., tasks
generated in edge devices are delivered to ECN/ECS for
remote computing [9]. Recently, several studies have in-
vestigated computing task ofoading strategies in many
network environments for EC [10–12]. However, to the best
of our knowledge, few studies have considered their ap-
plications in TSN. We are the frst to study the computing
task ofoading strategy in TSN.

Te TSN standard comprises a series of protocol clusters,
of which IEEE 802.1Qbv [13] is now widely applied in in-
dustrial scenarios.Te core of IEEE 802.1Qbv is the principle
of time-triggered communication controlled by gate control
list (GCL) according to the trafc priority. Te GCL is
usually generated in advance of data delivery in TSN
according to the transmission requirements of the given
application. Generally, edge devices are ignorant of the
details of GCL. Hence, it is challenging to evaluate the task
ofoading cost and design the multi-task ofoading strategy,
i.e., whether each task should be computed locally or of-
loaded to an ECN/ECS. For scenarios that are similar to the
uncertain transmission conditions, Li [14] applied the
queuing theory to model and evaluate the average delay
encountered in task ofoading. Moreover, Li proposed a
strategy for adjusting the arrival rates of tasks ofoaded from
user equipment (UE) to diferent mobile edge computing
(MEC) [15] servers based on the average delay. Motivated by
these ideas, this paper treats each edge device as an M/G/1
queueing system continuously generating multitasks.
Moreover, it is assumed that the hybrid stream, which is
composed of the task ofoading substreams and the original
TSN substreams with the same priority, injects into an M/G/
1 queue with server breakdown in the TSN switch. Based on
it, this paper proposes a system model and designs a strategy
decision-making algorithm on the basis of the potential
game theory. Te technical contributions of this article can
be summarized as follows:

(1) Tis paper establishes a task ofoading streams
transmission model by treating each edge device as
an M/G/1 queueing system continuously generating
multitasks and treating the TSN switch as many M/
G/1 queueing systems with server breakdown.
Trough the proposed model, the average response
time of tasks generated on each edge device can be
obtained through quantitative calculation, and the
optimal multitask ofoading strategy of the edge
device can be studied mathematically and rigorously.

(2) Tis paper constructs a utility function with the
backward method and formulates an exact potential
game to model the task ofoading competition
among edge devices considering the minimization of
the average response time of all tasks.

(3) To efectively fnd the Nash equilibrium, a distrib-
uted and sequential decision-making algorithm for
multitask ofoading (DSDA-MO) is proposed, and
its performance is studied in simulation
experiments.

Te remainder of this paper is structured as follows: in
Section 2, the related work is presented. In Section 3, we
describe the system model. In Section 4, we introduce the
game formulating the competition among edge devices for
edge computing resources and propose a DSDA-MO al-
gorithm to search the Nash equilibrium. In Section 5, nu-
merical results are presented, and the algorithm is evaluated.
Finally, the paper is concluded in Section 6.

2. Related Work

As the key technology of EC, computing ofoading refers to
ofoading tasks generated on terminal devices to ECN/ECS
based on rational ofoading decisions and resource allo-
cation strategies [16]. Utilizing the computing ofoading
mechanism, the terminal devices, also named edge devices,
with limited computing resources can achieve less response
time and energy consumption by the tasks executing on
ECN/ECS. Tere are three main goals for task ofoading
decision-making: shorten the task computing time, reduce
the device energy consumption, and jointly optimize the
weighted sum of task computing time and energy
consumption.

Over the past few years, task ofoading in MEC has
received more and more attention. Several studies jointly
model the computing mode decision problem and resource
allocation problem. Liu et al. [17] propose an efcient one-
dimensional search algorithm to fnd the optimal task
scheduling strategy. It uses the Markov chain to analyze the
average delay and energy consumption of each task on the
mobile device for computing task ofoading strategies,
according to the queuing state of the task bufer, the exe-
cution state of the local processing unit, and the state of the
transmission unit. It establishes a mathematical model of
delay minimization problems with power constraints. Chen
and Hao [18] study the task ofoading problem in ultradense
networks from the perspective of software-defned net-
working (SDN) thinking and model the task ofoading
problem as an NP-hard mixed integer nonlinear pro-
gramming (MINLP) problem. In reference [19], mobile
devices ofoad computing tasks to multiple ECSs and
download results from the MEC servers in a preset time slot.
By jointly optimizing task scheduling and resource alloca-
tion, the computational delay of tasks is minimized.

Recently, many pieces of literature have proposed some
approaches to deal with multitask ofoading situations
[20–23]. In these approaches, the author of reference [20]
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constructs a multitask scheduling scheme for multicore
mobile devices to balance the execution cost and energy
consumption; the author of reference [21] aims to the
tradeof for energy consumption and time cost of a single
task with diferent ofoadable components, the author of
reference [22] proposes a decision-making strategy for the
multitask ofoading game and constructs the Nash equi-
librium. In addition, many researchers apply game theoretic
approaches for computation ofoading and resource allo-
cation with minimizing the time cost as an optimal objective,
by treating the multiuser computation ofoading strategy
making as a noncooperative game [24–29].

Overall, a lot of literature focuses on modeling task
ofoading decision-making mode and has promoted many
excellent algorithms to resolve the optimal problem of the
ofoading strategies for EC in the mobile network. However,
few studies have considered the TSN scenarios. To the best of
our knowledge, this is the frst study that reviews the task
ofoading problem for EC in the TSN environment. In TSN,
the tasks are generated in the queue in each edge device, and
the transmission packages are cached in the queues of TSN
switches for delivery controlled by GLC. Utilizing queueing
theory to evaluate task ofoading time cost seems an ap-
propriate choice. Te author of reference [30] uses M/M/1
queueing theory to model the task ofoading competition as
a noncooperative game in a three tiers architecture, con-
sisting of mobile nodes, cloudlets, and cloud servers. Li [14]
establishes anM/G/1 queueing model for the UEs and anM/
G/m queueing model for the MEC and models a nonco-
operative game to study the stabilization of a competitive
mobile edge computing environment. Inspired by the pre-
vious studies, we model multitask ofoading competition in
TSN as a potential game by using queueing theory.

3. System Model

Tis section studies a TSN system comprising multiple TSN
end nodes, one TSN switch, M edge devices denoted by the
set M � D1, D2, . . . , DM􏼈 􏼉, and N ECSs denoted by the set
N � E1, E2, . . . , EN􏼈 􏼉. Te multitask ofoading in the TSN
system is shown in Figure 1, and the notations and def-
nitions in the proposed system model are listed in Table 1.
We consider that each edge device has a queueing system to
process the continuously generated tasks. A task in Di can be
further described as ti � (li, ρi), where li is the task body
size (including the code and data) and ρi is the processing
density in cycles per bit, i.e., the number of cycles required to
process a unit bit of the task body. Te task processing time
in the edge device can be calculated as (li ∗ ρi)/􏽢fi, where 􏽢fi

is the process frequency of the given edge device Di in cycles
per second (e.g., MIPS). Usually, ρi is treated as a constant
according to the task application type and li follows an
arbitrary probability distribution; thus, the task computing
time is also an arbitrary random variable. We assume that in
each edge device, the task interarrival time follows an ex-
ponential distribution. Terefore, each edge device can be
treated as an M/G/1 queueing system.

Benefting from the edge computing technology, edge
devices could choose tasks to be ofoaded to the nearby
ECSs to achieve faster computation speed or less power
consumption than local computing. Te tasks on Di are
divided into two types of M/G/1 substreams: unofoadable
computing task substream and ofoadable computing task
substream. Te latter includes local computing tasks and
remote computing tasks ofoaded to other ECSs. Corre-
spondingly, the whole task arrival rate of Di can be for-
mulated as λi � λi,∆ + λi,0 + 􏽐

N
n�1 λi,n, where λi,∆ is the arrival

rates of the tasks unofoadable, λi,0 is the arrival rates of the
tasks that are ofoadable and executed locally, and λi,n is the
arrival rates of the tasks that are to be ofoaded to the ECS
En. Te arrival rate distribution vector
(λi,∆, λi,0, λi,1, · · · , λi,N) (for 1≤ i≤M) represents the com-
putation ofoading strategy of Di. Similarly, there are two
types of task body sizes, which are denoted as li,∆ and li,∗
corresponding to the aforementioned unofoadable and
ofoadable task substreams, respectively; these variables
are independent and identically distributed (i.i.d.) random
variables with an arbitrary probability distribution. Since
most devices generally work on periodic duty in TSN, the
statistical distribution of the attributes of the tasks in the
edge devices can be obtained via long-term statistics.
Herein, we assume that the expected values of li,∆ and li,∗,
i.e., E[li,∆] and E[li,∗], and their second moment, E[l2

i,∆]
and E[l2

i,∗ ], are available.
Each task generated in an edge device has two choices:

local computing or remote computing in one of the ECSs.
We discuss the two cases of the local computing and the
remote computing approaches here.

3.1. Local Computing. Te local computing task stream is
composed of an unloadable task substream and a loadable
local computing task substream; the arrival rates of these
substreams are given by λi,∆ and λi,0, respectively. Let Ci,0
denote the tasks’ local computing time in Di; then, the
average time for local computing is as follows:

E Ci,0􏽨 􏽩 �
λi,∆

λi,∆ + λi,0
·
E li,∆􏽨 􏽩 × ρi

􏽢fi

+
λi,0

λi,∆ + λi,0
·
E li,∗􏽨 􏽩 × ρi

􏽢fi

.

(1)

Te second moment of Ci,0 can be obtained as follows:

E C
2
i,0􏽨 􏽩 �

λi,∆
λi,∆ + λi,0

·
E l

2
i,∆􏽨 􏽩 × ρ2i
􏽢f
2
i

+
λi,0

λi,∆ + λi,0
·

E l
2
i,∗􏽨 􏽩 × ρ2i
􏽢f
2
i

.

(2)

Furthermore, according to the Pollaczek–Khintchine
formula [31], the average waiting time in the queue is given
by the following expression:

Wi,0 �
λi,∆ + λi,0􏼐 􏼑E C

2
i,0􏽨 􏽩

2 1 − λi,∆ + λi,0􏼐 􏼑E Ci,0􏽨 􏽩􏼐 􏼑
,

s.t 1> λi,∆ + λi,0􏼐 􏼑E Ci,0􏽨 􏽩,

(3)
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Figure 1: Multitask ofoading in time-sensitive networking system. Te task ofoading substream to ECS n is composed of ofoading
packages marked in blue from all edge devices, and the original TSN substream to ECS n consists of TSN packages marked in yellow from all
TSN end nodes.

Table 1: Summary of notations and defnitions.

Notation Defnition
Di Te edge device i, 1≤ i≤M

En Te ECS n, 1≤ n≤N

M Te set of edge devices, M � D1, D2, . . . , DM􏼈 􏼉

N Te set of ECSs, N � E1, E2, . . . , EM􏼈 􏼉

ti a task generated on Di

li,∆ Te size of the unofoadable tasks on Di, including code and data
li,∗ Te size of the ofoadable tasks on Di , including code and data
ρi Te processing density of tasks in Di

λi,∆ Te arrival rate of the unofoadable tasks generated on Di

λi,n If n � 0, the arrival rate of tasks computed locally in Di if 1≤ n≤N, the arrival rate of tasks ofoaded from Di to En

λi Te sum of arrival rates of ofoadable tasks generated on Di, λi � 􏽐
N
n�0 λi,n

􏽥λp,n Te arrival rate of the original TSN stream of priority p to En in the TSN gateway
Λn Te available maximum ofoading task arrival rate from all edge devices to En

v Te bandwidth of the TSN network

Ci,n

If n � 0, the execution time of tasks computed locally in Di if 1≤ n≤N, the execution time of the tasks generated on Di and
computed remotely in En

Ci,n Mean of Ci,n

Q∗,n Te average time that the members of the hybrid streams spend in queue Qp,n

Ti,n

If n � 0, the average time cost of the tasks computed locally in Di if 1≤ n≤N, the average time cost of the tasks generated on Di

and computed remotely in En

T
l

i,0 Te average time cost when all tasks are processed locally in Di

Ti Te average time cost of all tasks generated on Di

W∗,n Te average waiting time of the tasks from all edge devices to En spent in TSN gateway
gp,n Te length of the original TSN packages in queue Qp,n

hn Te service interrupted time of queue Qp,n

Ω0,n Te service time of the original the TSN substream in Qp,n

Ω∗ ,n All the service time of the compound stream in Qp,n
􏽢fi Te processing frequency of Di

fn Te processing frequency of En

G Te multi-task ofoading game
Si Te task ofoading strategy of the Di

S−i Te task ofoading strategy set of all edge devices except Di

S Te task ofoading strategy space of all edge devices
ξ Te accuracy parameter
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and the average response time for all local computing tasks
on Di is as follows:

Ti,0 � Wi,0 + E Ci,0􏽨 􏽩

�
ρ2i λi,∆E l

2
i,∆􏽨 􏽩 + λi,0E l

2
i,∗􏽨 􏽩􏼐 􏼑

2􏽢f
2
i − 2􏽢fiρi λi,∆E li,∆􏽨 􏽩 + λi,0E li,∗􏽨 􏽩􏼐 􏼑

+
ρi λi,∆E li,∆􏽨 􏽩 + λi,0E li,∗􏽨 􏽩􏼐 􏼑

􏽢fi λi,∆ + λi,0􏼐 􏼑
.

(4)

If all tasks are executed locally, i.e., λi,0 � λi − λi,∆, the
average response time for all tasks in Di is as follows:

T
l

i,0 �
ρ2i λi,∆ E l

2
i,∆􏽨 􏽩 − E l

2
i,∗􏽨 􏽩􏼐 􏼑 + λiE l

2
i,∗􏽨 􏽩􏼐 􏼑

2􏽢f
2
i − 2􏽢fiρi λi,∆ E li,∆􏽨 􏽩 − E li,∗􏽨 􏽩􏼐 􏼑 + λiE li,∗􏽨 􏽩􏼐 􏼑

+
ρi λi,∆ E li,∆􏽨 􏽩 − E li,∗􏽨 􏽩􏼐 􏼑 + λiE li,∗􏽨 􏽩􏼐 􏼑

􏽢fiλi

. (5)

3.2. Remote Computing in ECS. In the scenario of task re-
mote computing, a task generated on one edge device is
delivered to an ECS using TSN. To simplify the model, we
assume that the tasks generated on edge devices only pass
one TSN switch to reach various ECSs and the whole TSN
network is consistent with the IEEE 802.1Qbv standard. As
shown in Figure 1, each TSN device injects into the TSN data
stream from the relevant ingress port of the TSN switch.
Ten, the switching fabric of the switch redirects the data
stream to the proper output port according to the TSN data
frame destination. To provide latency and jitter guarantees,
before being transported to a specifc output port that is
connected to En, the TSN stream must pass through a
priority flter and be reshaped in eight priority queues,
Q0,n, Q1,n, Q2,n, . . . , Q7,n, and be fnally ejected out from
egress port according to the frame priority and GCL state
without confict; this process is known as the time aware
shaper (TAS) mechanism. In the computing tasks ofoading
scenario, the hybrid stream composed of task ofoading
substreams and original TSN substreams is transmitted over
the network. In IEEE802.1Q stand, the stream type and
priority are defned in Table 2. To reduce the impact on
original TSN data transmission, we set the priority of all the
task ofoading substreams to be p (e.g., p � 2, excellent
efort trafc), i.e., all the task ofoading streams to En get
into the queue Qp,n, for all 0≤p≤ 7, 1≤ n≤N.

First, we ignore the priority queue delivery interruption
caused by TAS. Herein, we have three assumptions. First, we
assume that before the task ofoading substreams were
generated, the queue Qp,n was in agreement with the M/G/1
queue model. Second, we assume that the original TSN
substream of priority p, whose empress port is the same as the
task ofoading substreams to En, arrives according to a
Poisson process with a rate of 􏽥λp,n, and the length of each
package (composed of many TSN frames) is gp,n following a
general distribution. Tird, we assume that E[gp,n] and
E[g2

p,n] are available, and we set the TSN switch egress port
sending speed as v. Tus, the service time,Ω0,n, of the original

TSN substream in Qp,n is an i.i.d random variable with mean
E[Ω0,n] � E[gp,n]/v and second moment
E[Ω20,n] � E[g2

p,n]/v2. When the task ofoading stream from
edge device Di to En arrives at queue Qp,n, it is considered as a
single Poisson substream with arrival rate λi,n. Its service time
Ωi,n is also an i.i.d. random variable with mean E[Ωi,n] �

E[li,∗]/v and second moment E[Ω2i,n] � E[l2
i,∗ ]/v2. Te

compound stream, composed of the original TSN data
Poisson substream and the task ofoading Poisson sub-
streams from all devices to En, is still a Poisson stream, whose
arrival rate is 􏽥λp,n + 􏽐

M
i�1 λi,n. Let the service time of each

substream in queue Qp,n be denoted by Ω0,n,Ω1,n, · · · ,ΩM,n;
then, the whole service time Ω∗ ,n of the compound stream is
an i.i.d. random variable with mean

E Ω∗,n􏽨 􏽩 �
􏽥λp,nE Ω0,n􏽨 􏽩

􏽥λp,n + 􏽐
M
i�1 λi,n

+
􏽐

M
i�1λi,nΩi,n

􏽥λp,n + 􏽐
M
i�1 λi,n

�
􏽥λp,nE gp,n􏽨 􏽩 + 􏽐

M
i�1 λi,nE li,∗􏽨 􏽩

v 􏽥λp,n + 􏽐
M
i�1 λi,n􏼐 􏼑

,

(6)

and second moment

E Ω2∗,n􏽨 􏽩 �
􏽥λp,nE Ω20,n􏽨 􏽩

􏽥λp,n + 􏽐
M
i�1 λi,n

+
􏽐

M
i�1 λi,nE Ω2i,n􏽨 􏽩

􏽥λp,n + 􏽐
M
i�1 λi,n

�

􏽥λp,nE g
2
p,n􏽨 􏽩 + 􏽐

M
i�1 λi,nE l

2
i,∗􏽨 􏽩

v
2 􏽥λp,n + 􏽐

M
i�1 λi,n􏼐 􏼑

.

(7)

According to the standard IEEE802.1Qbv, the trans-
mission of queue Qp,n may be interrupted, i.e., queue service
breakdown may occur, due to the GLC state or higher
priority queue transmission requirements. We assume that
the queue system of Qp,n remains in a stable state before the
task ofoading substreams reach the switch and that the
transmission server breaks down at an exponential rate αn,
i.e., the probability that the queue will be able to serve for an
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additional time t without breaking down is e−αnt. After the
transmission server breaks down, the queue system stops
sending data for a random time denoted as hn with a general
distribution; subsequently, the server goes on from the point
at which it broke down. We assume that based on long-term
statistics of the stable original TSN stream queue system, the
mean time E h[ )n] and the second moment E[h2

n] are known.
When the task ofoading streams arrive at Qp,n, as the GCL
and higher priority queues are unchanged and only the
customer arrival rate increases in Qp,n, we suppose that the
server of queue Qp,n still breaks down at the exponential rate
αn, and the pause time still follows the previous general
distribution.

Here, we discuss the average time a customer spends in
queue Qp,n with server breaking down. Let H denote the
random variable “cost time” that includes service and pause
time of server breaking down, k denotes the number of times
the server breaks down, and h1

n, h2
n, . . . , hk

n denote the
amount of time the server waits for in each breakdown
period. Ten, it can be found that

H � 􏽘
k

i�1
h

i
n +Ω∗,n. (8)

According to the Pollaczek–Khintchine formula [31], the
average waiting time before a customer begins to be served is
calculated as follows:

W∗,n �
λpE H

2
􏽨 􏽩

2 1 − λpE[H]􏼐 􏼑
. (9)

To obtain E[H] and E[H2], we assume that a customer
in Qp,n requires service time s′; thus, we can obtain the
following expressions:

E H|Ω∗,n � s′􏽨 􏽩 � E 􏽘
k

i�1
h

i
n|Ω∗,n � s′⎡⎣ ⎤⎦ + s′, (10)

Var H|Ω∗,n � s′􏼐 􏼑 � Var 􏽘
k

i�1
h

i
n|Ω∗,n � s′⎛⎝ ⎞⎠. (11)

As the number of times the server was interrupted while
a customer is in service is a Poisson random variable with
mean αns′, the sum 􏽐

k
i�1 hi

n is also a compound Poisson
variable with mean αns′, when Ω∗,n � s′. Consequently, it
can be seen that

E 􏽘
k

i�1
h

i
n|Ω∗,n � s′⎡⎣ ⎤⎦ � αns′E hn􏼂 􏼃, (12)

Var 􏽘

k

i�1
h

i
n|Ω∗,n � s′⎛⎝ ⎞⎠ � αns′E h

2
n􏽨 􏽩. (13)

Using equations (9)–(13), it can be found that

E H|Ω∗,n􏽨 􏽩 � αnΩ∗,nE hn􏼂 􏼃 +Ω∗,n, (14)

Var H|Ω∗,n􏼐 􏼑 � αnΩ∗,nE h
2
n􏽨 􏽩. (15)

Furthermore, we see that

E[H] � E E H|Ω∗,n􏽨 􏽩􏽨 􏽩

� E Ω∗,n􏽨 􏽩 1 + αnE hn􏼂 􏼃( 􏼁,
(16)

Var(H) � E Var H|Ω∗,n􏼐 􏼑􏽨 􏽩 + Var E H|Ω∗,n􏽨 􏽩􏼐 􏼑

� αnE Ω∗,n􏽨 􏽩E h
2
n􏽨 􏽩 + 1 + αnE hn􏼂 􏼃( 􏼁

2Var Ω∗,n􏼐 􏼑.

(17)

Te second moment can then be obtained as follows:

E H
2

􏽨 􏽩 � Var(H) +(E[H])
2

� αnE h
2
n􏽨 􏽩E Ω∗,n􏽨 􏽩 + E Ω2∗,n􏽨 􏽩 1 + αnE hn􏼂 􏼃( 􏼁

2
.

(18)

Finally, substituting equations (16) and (18) into equa-
tion (9) and assuming that the inequality
1> (􏽥λp,n + 􏽐

M
i�1 λi,n)E[Ω∗ ,n](1 + αnE[hn]) is satisfed, the

average waiting time can be written as follows:

W∗,n �

􏽥λp,n + 􏽐
M

i�1
λi,n􏼠 􏼡 αnE h

2
n􏽨 􏽩E Ω∗,n􏽨 􏽩 + E Ω2∗,n􏽨 􏽩 1 + αnE hn􏼂 􏼃( 􏼁

2
􏼐 􏼑

2 1 − 􏽥λp,n + 􏽐
M

i�1
λi,n􏼠 􏼡E Ω∗,n􏽨 􏽩 1 + αnE hn􏼂 􏼃( 􏼁􏼠 􏼡

,

s.t. 1> 􏽥λp,n + 􏽘
M

i�1
λi,n

⎛⎝ ⎞⎠E Ω∗,n􏽨 􏽩 1 + αnE hn􏼂 􏼃( 􏼁.

(19)

Tus, the average time that the members of the hybrid
stream spend in queue Qp,n is calculated as follows:

Q∗,n � W∗,n + E(H) � W∗,n + E Ω∗,n􏽨 􏽩 1 + αnE hn􏼂 􏼃( 􏼁.

(20)

Suppose that when task ofoading streams reach the En, En

immediately provides parallel computing services, which ofer
CPU resources with frequency fn for each ofoaded task. To
guarantee that the ofoading computing service requirement is
beyond the maximum capacity of En, the parameter Λn is used
to denote the available maximum ofoading task arrival rate
from all edge devices toEn, i.e.,􏽐

M
i�1 λi,n ≤Λn. InEn, the average

computation time for ofoaded tasks from Di is
Ci,n � E[li,∗] × ρi/fn. Considering that the data transmission
speed on the TSN wire is fast (e.g., 1000Mbps) and the of-
loaded task computation result’s volume is typically small
(maybe a few bytes), the time of computation result delivering

Table 2: IEEE 802.1Q data stream priority [32].

Priority Acronym Stream type
0 BE Best efort
1 BE Background
2 EE Excellent efort
3 CA Critical applications
4 VI “Video,”<100ms latency and jitter
5 VO “Voice,”<10ms latency and jitter
6 IC Internetwork control
7 NC Network control
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back can be neglected. Moreover, the time for the task of-
loading stream in the switch is mostly spent in Qp,n, then the
average remote computing time for all tasks ofoaded from
edge device Di to En can be written as follows:

Ti,n � Q∗,n + Ci,n. (21)

Finally, the average response time for all the tasks
generated in edge device Di can be obtained as follows:

Ti �
λi,∆ + λi,0

λi

Ti,0 + 􏽘
N

j�1

λi,j

λi

Ti,j. (22)

4. Problem Formulation and Algorithm

4.1. Game Formulation. In the TSN computation ofoading
scenario, each edge device is independent and selfsh with the
aim of utilizing the maximum ECS computing resources
possible to reduce its own response time; this represents a
suitable situation for game theory to be used to model the
competition process among all edge devices. Considering the
edge device setM � D1, D2, . . . , DM􏼈 􏼉 as the game players, the
arrival rate allocation policy set Si � (λi,0, λi,1, . . . ,

λi,N) ∈ RN+1 as the strategies of player Di (where λi � λi,∆ +

λi,0 + λi,1 + . . . + λi,N), and the Cartesian products of all indi-
vidual strategy set, i.e., S � S1 × S2 × . . . × SM, as the strategy
space, we give the multitask ofoading game as follows:

Defnition 1. Multitask ofoading game: the multitask of-
loading game,G, which is composed of the player setM, the
ofoading strategy space S, and the utility function set
Ui􏼈 􏼉,∀i ∈M, is represented as follows:

G � M,S, Ui􏼈 􏼉i∈M􏼂 􏼃. (23)

We expect that within limited rounds of decision-
making, the players can reach a certain consensus, i.e., each
player benefts most in that state. Tus, we now introduce
Nash Equilibrium as follows:

Defnition 2. Nash equilibrium [33]: the strategy profle
S∗i􏼈 􏼉i∈M is a Nash equilibrium of multitask ofoading game
G if and only if

Ui S
∗
i ,S−i( 􏼁≤Ui Si

′,S−i( 􏼁,∀Si
′ ∈ Si, (24)

where S−i is the ofoading strategies of computing devices
except Di. Tat means there is no more optimal strategy than
S∗i to get more beneft based on the utility function. Te
challenge in fully defning the game formulation (equation (23))
is to fnd an appropriate utility function, which allows all players
to maximize the benefts from their own perspectives and
achieve Nash equilibrium. Here, we adopt the exact potential
game theory as defned below to design the utility function.

Defnition 3. Exact potential game [34]: the multitask of-
loading game, G, is an exact potential game if and only if
there exists a potential function F(S): S⟶ R that satisfes

Ui si, s−i( 􏼁 − Ui si
′, s−i( 􏼁 � F si, s−i( 􏼁 − F si

′, s−i( 􏼁,

∀si, si
′ ∈ Si;∀s−i ∈ S−i;∀i ∈M.

(25)

As the existence of Nash equilibrium is a fundamental
property of exact potential games, we construct a potential
function, F and a utility function, Ui, to ensure that the
multitask ofoading game, G, is an exact potential game
using the backward method [34]. We let F(S) denote the
whole system benefts that can be achieved via task of-
loading computing rather than the situation in which all
tasks are locally executed. F(S) can be represented in
computation time, as the greater beneft is equated with a
lesser time cost. Tus, we see that.

F(S) � 􏽘
M

k�1
T

l

k,0 − 􏽘
M

k�1

λk,∆ + λk,0􏼐 􏼑Tk,0

λk

− 􏽘
M

k�1
􏽘

N

j�1

λk,jTk,j

λk

. (26)

Subsequently, considering equations (1)–(22), a de-
composition can be obtained as follows:

F Si,S−i( 􏼁 � 􏽘

M

k�1
T

l

k,0 −
λi,∆ + λi,0􏼐 􏼑Ti,0

λi

− 􏽘

M

k�1,k≠ i

λk,∆ + λk,0􏼐 􏼑Tk,0

λk

− 􏽘
M

k�1
􏽘

N

j�1

λk,jQ∗,j

λk

− 􏽘
N

j�1

λk,jQ∗,j

λk

− 􏽘
M

k�1,k≠ i

􏽘

N

j�1

λk,jCi,j

λk

� −
λi,∆ + λi,0

λi

∙
ρ2i λi,∆E l

2
i,∆􏽨 􏽩 + λi,0E l

2
i,∗􏽨 􏽩􏼐 􏼑

2􏽢f
2
i − 2􏽢fiρi λi,∆E li,∆􏽨 􏽩 + λi,0E li,∗􏽨 􏽩􏼐 􏼑

−
ρi λi,∆E li,∆􏽨 􏽩 + λi,0E li,∗􏽨 􏽩􏼐 􏼑

λi
􏽢fi

− 􏽘

M

k�1
􏽘

N

j�1

λk,j

λk

W∗,j + E Ω∗,j􏽨 􏽩 1 + αjE hj􏽨 􏽩􏼐 􏼑􏽮 􏽯 − 􏽘

N

j�1

λi,jE li,∗􏽨 􏽩ρi

λifj

+

􏽘

M

k�1
T

l

k,0 − 􏽘
M

k�1,k≠ i

􏽘

N

j�1

λk,jE lk,∗􏼐 􏼑ρk

λkfj

− 􏽘
M

k�1,k≠ i

λk,∆ + λk,0􏼐 􏼑Tk,0

λk
􏽼√√√√√√√√√√√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√√√√√√√√√√√􏽽

Non−contributing termϕi S−i( )

.

(27)
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Ten, we can obtain the utility function of the potential
game with Ui(Si,S−i) � F(Si,S−i) − ϕi(S−i), where
ϕi(S−i) is a noncontributing term from the perspective of

player Di. Tus, the utility function of the exact potential
game G is given as follows:

Ui Si,S−i( 􏼁 � −
λi,∆ + λi,0

λi

∙
ρ2i λi,∆E l

2
i,∆􏽨 􏽩 + λi,0E l

2
i,∗􏽨 􏽩􏼐 􏼑

2􏽢f
2
i − 2􏽢fiρi λi,∆E li,∆􏽨 􏽩 + λi,0E li,∗􏽨 􏽩􏼐 􏼑

−
ρi λi,∆E li,∆􏽨 􏽩 + λi,0E li,∗􏽨 􏽩􏼐 􏼑

λi
􏽢fi

− 􏽘
M

k�1
􏽘

N

j�1

λk,j

λk

W∗,j + E Ω∗,j􏽨 􏽩 1 + αjE hj􏽨 􏽩􏼐 􏼑􏽮 􏽯 − 􏽘
N

j�1

λi,jE li,∗􏽨 􏽩ρi

λifj

.

(28)

4.2.TeAlgorithm. Based on the utility function Ui, the best
response strategy of each edge device is described.

Defnition 4. Best response strategy: let S−i represent the
strategies of all the edge devices except device Di, the best
response strategy of Di is given by

S
∗
i � argmax

Si

Ui Si,S−i( 􏼁, (29a)

λi,∆ + 􏽘

N

j�0
λi,j � λi, (29b)

􏽘

M

k�1
λk,j ≤Λj, (29c)

1> λi,∆ + λi,0􏼐 􏼑E Ci,0􏽨 􏽩, (29d)

1> 􏽥λp,n + 􏽘

M

i�1
λi,n

⎛⎝ ⎞⎠E Ω∗,n􏽨 􏽩 1 + αnE hn􏼂 􏼃( 􏼁. (29e)

Equation (29a) represents the choice of Di to pursue
minimal time cost. Te constraint equation (29b) guar-
antees that the decision of the task arrival rate allocation
meets the total arrival rate requirement for each edge
device. Te constraint equation (29c) ensures that the
workload of ECSs providing remote computing services is
not beyond the upper limit of its capacity. Equations (29d)
and (29e) guarantee that the queuing system is in a ser-
viceable state.

According to the aforementioned system model and
game formulation, the distributed and sequential deci-
sion-making algorithm for multi-task ofoading (DSDA-
MO) was designed. A summary of this algorithm is given
in Algorithm 1. After the strategies of each edge device
are initialized, a token is passed among edge devices, and
the device in possession of the token calculates its best
response strategy based on all the decisions of the other
devices. Te algorithm runs (line 3–8) until the
MSE(S∗(R),S∗(R− 1)), the mean square error between the
strategy of the current round and the strategy of the
previous round, is less than accuracy parameter ξ (e.g.,
ξ � 10− 10). MSE(S∗(R),S∗(R− 1)) is defned as follows:

MSE S
∗(R)

,S
∗(R− 1)

􏼐 􏼑 �
􏽐

M
i�1 􏽐

N
j�1 λ∗ Ri( )

i,j − λ∗ Ri− 1( )
i,j􏼒 􏼓

2

M

.

(30)

In each round of Algorithm 1, the equations (29a)–(29e).
Problem could been solved via the Lagrange multiplier
method with the algorithm of iterative search in feasible
region, and the complexity is O(MN(log1/δ)2), where δ is
the search interval. Tus, the complexity of Algorithm 1 is
O(RMN(log1/δ)2), where R is the number of rounds mainly
determined by the accuracy parameter ξ in line 9.

5. Numerical Results

In this section, the results of numerical experiments are
reported to evaluate the proposed system model and the
DSDA-MO algorithm. In the simulation setup, we consider
M edge devices (D1, D2, . . . , Di, i� 1, 2, . . ., M) and N ECSs
(E1, E2, . . . , Ej,j� 1,2, . . ., N) with the following parameters:
λi � 3.4 + 0.1(i − 1), λi,∆ � 0.5 + 0.05(i − 1), E[li,∆] � 5
+(i − 1)Mbit, E[l2

i,∆] � 1.5(E[li,∆])
2, E[li,∗] � 100

+(i − 1)Mbit, E[l2
i,∗ ] � 1.6(E[li,∗])

2, ρi � 1 + 0.1
(i − 1)BI/Mbit, E[gp,j] � 40 + 0.5(j − 1)Mbit, E[g2

p,j]

� 1.3(E[gp,j])
2, E[hj] � 0.01 + 0.001(j − 1)s, E[h2

j] �

1.1E[hj]
2, αj � 0.03 + 0.001(j − 1), 􏽥λp,j � 1.2 + 0.1(j − 1),

Λj � 7 + 0.5(j − 1), 􏽢fi � 0.8 + 0.1(i− 1) GHz, fj � 3.2+

0.2(j − 1)GHz, and v � 1000Mbps, for all 1≤ i≤M,
1≤ j≤N. Te simulation is constructed on MATLAB
platform.

5.1. Nash Equilibrium of the Game. First, we setM� 6, N� 5
to evaluate the results of Nash equilibrium, i.e., the fnal
optimal strategy S∗i � (λ∗i,0, λ

∗
i,1, . . . , λ∗i,N) for 1≤ i≤M.

Figure 2 shows the curves describing the utility of the edge
devices (D1, . . . , D6) found at each round of the DSDA-MO
algorithm. It seems that the utilities fuctuate wildly in the
initial rounds of calculations and then enter a stable zone
with low variation. Figure 2 shows the average time cost at
each round, and it illustrates that the average time cost of
each device remains near a stable value after about 200
rounds. Te results in Figures 2 and 3 verify that the game
reaches the approximate Nash equilibrium after fnite
rounds of calculation in the proposed algorithm.

To further evaluate the speed of convergence of the Nash
equilibrium, we list the strategies, i.e.,
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(λ∗ (R)
5,0 , λ∗ (R)

5,1 , . . . , λ∗ (R)
5,5 ) and (λ∗ (R)

6,0 , λ∗ (R)
6,1 , . . . , λ∗ (R)

6,5 ),
from 30 to 90 rounds in Tables 3 and 4, and give the curves of
strategies at each round (as shown in Figure 4) by using the
edge device D5 and D6 as examples. Te results in Tables 3
and 4 and Figure 4 show that (λ∗i,1, . . . , λ∗i,N) changes sig-
nifcantly in each round at the early stage until round
number 200; from this point on, the optimal strategy re-
mains in a stable state, which is consistent with the fndings
presented in Figures 2 and 3. As discussed earlier in Al-
gorithm 1, the round number to get approximate Nash
equilibrium mainly depends on the accuracy parameter ξ.
Table 5 presents the relationship between the round number
and the value of ξ, listed as 10−1, 10−2, . . . , 10−10. It shows
that the round number increases with the improvement of
the accuracy requirement. Tat is to say, a smaller value of ξ
leads to a greater round number. We can select the ap-
propriate parameters according to the application demand
with the appropriate balance between the Nash equilibrium
accuracy and the algorithm running time.

5.2. Beneft of the Game. In this subsection, we focus on
analyzing the beneft that edge devices obtain from the
proposed game. Let accuracy parameter ξ � 10−8; after 220
rounds of calculation in Algorithm 1, we obtain the fnal
optimal strategy profle S∗. Figure 5 presents the arrival rate
of the un-ofoadable tasks (known parameter), the sum of the
optimal arrival rates of the tasks ofoaded from Dm to all
ECSs (i.e., 􏽐

N
j�1 λ
∗
m,j, 1≤m≤M), and the optimal arrival rate

of the ofoadable local computing tasks (i.e., λ∗m,0) in edge
devices. It is found that 􏽐

N
j�1 λ
∗
m,j increases as the arrival rate

of all tasks generated on each edge device increases with λi �

3.4 + 0.1(i − 1) in our experiment settings. In other words,
the amount of the ofoaded tasks increases as the compu-
tation workload ascends in edge devices. Figure 6 illustrates
the average time with the decision of all locally-computed
tasks versus the average time with optimal strategy profleS∗
obtained by Algorithm 1. Compared with the method of all
tasks computing locally, our proposed algorithm brings
signifcant time-saving advantages for each device, where D6
obtains 13.03% decrement in time cost.

To study the proftability of the proposed approach, we
defne the task ofoading proportion R(i, n) ∈ [0, 1], as

R(i, n) �
􏽐

n
j�1 λ
∗
i,j

􏽐
n
j�0 λ
∗
i,j

, (31)

where 􏽐
N
j�1 λ
∗
i,j is the sum of the arrival rates of the tasks

ofoaded to E1, E2, . . . , EN from Di, and 􏽐
N
j�0 λ
∗
i,j is the sum

of the arrival rates of all ofoadable tasks on Di. Te larger
R(i, n) means more benefts obtained from task ofoading
for Di. Figure 7 illustrates that the task ofoading propor-
tions of D1, D2, . . . , D6 increase in order as their compu-
tation workload increases accordingly, and the task
ofoading proportion increment of D6 reaches more than
25%.

We also study the workload of the edge computing
servers in the game. Figure 8 illustrates the fnal amount of
the workload in the target ECS set N, i.e., E1, E2, ..., EN􏼈 􏼉,
and the fnal decision that how many tasks on each edge
device will choose each ECS.Te decision is indicated by the
arrival rate 􏽢λj from all edge devices to Ej, 1≤ j≤N. From
Figure 8, we can see that although the processing frequencies
of the members of set N increase successively in our ex-
periment settings, the sum of the task arrival rates from the
edge devices to ECSs, i.e., 􏽢λ1, 􏽢λ2, . . . , 􏽢λN, descends gradually.
In other words, ECSs gradually lost their attraction to the
tasks ofoaded from edge devices as the processing fre-
quency increases successively. Tis is because each ofoaded
task needs to consider both the computation time and the
transmission time and makes a decision based on the sum of
them. Although high processing frequency of the target ECS
leads to low computation time for the ofoaded task, the
sum of the task arrival rates may also be small due to a
possible high transmission time cost. In our experimental
settings, it is assumed that the busy degree of the TSN links
to E1, E2, . . . , EN increase successively. Tat is to say, the
average interrupted time of the TSN output queues corre-
sponding to each target ECS, i.e., E[hn], increases orderly.
Tis experiment setting results in an increase in the
transmission time of the same task to E1, E2, . . . , EN orderly.
Hence, the number of the tasks selected to be ofoaded to
ECSs, namely, the task arrival rates to ECSs, gradually de-
creases in Figure 8. Especially, almost none of the edge
devices here decided to ofoad their task to E5.

To analyze the infuence of the number of the edge devices,
M, and the number of ECSs,N, on the task ofoading decision-
making result, we construct an experiment with
M � 10, 15, 20, 25, 30{ }, N � 20, 25, 30{ }, and ξ � 10−5. Fig-
ure 9 shows the average response time of the tasks in the edge
devices with diferent M and N, which refects the impact on
the performance of the entire edge computing system. Ob-
viously, the average response time of the edge computing
system increases asM increases when N is fxed. Inversely, the
average response time decrease asN increases whenM is fxed.

Mobile Information Systems 9



-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

U
til

ity
 

20 40 60 80 100 120 140 160 180 2000
Round Number

-0.1052

-0.105

-0.1048

-0.1046

-0.1044

-0.1042

-0.104

-0.1038

-0.1036

-0.1034

-0.1032

55 60 65 70 75 8050

D1
D2
D3

D4
D5
D6

Figure 2: Utility of the edge devices obtained using the proposed algorithm at each round. Te curves of utility from round 50 to 80 are
zoomed.

0.114

0.115

0.116

0.117

0.118

0.119

0.12

0.121

0.122

0.123

Av
er

ag
e T

im
e C

os
t (

s)

50 100 150 200 250 3000
Round Number

D1
D2
D3

D4
D5
D6

Figure 3: Average time cost of the edge devices at each round.

10 Mobile Information Systems



Input: λi, λi,∆, ρi, E[li,∆], E[l2
i,∆], E[li,∗], E[l2

i,∗ ], E[hj], E[h2
j], 􏽥λp,j, fi, E[gp,j], E[g2

p,j], αj, 􏽥λp,j, Λj, v and 􏽢fj, for all
1≤ i≤M and 1≤ j≤N

(1) Initialization:S∗ (0)
i � (λ∗(0)

i,0 , λ∗(0)
i,1 , . . . , λ∗(0)

i,N ) and Ri← 0 for all 1≤ i≤M, and give the token to frst edge device D1.
(2) Repeat:
(3) Player Di waits for the token
(4) Player Di collects and updates all the other edge devices’ decisions, S∗−i

(5) Ri←Ri + 1
(6) Player Di calculates the best response strategy

S
∗ (Ri)
i ← argmaxUi(Si,S−i),

Subject to (29b)–(29e)
(7) Player Di broadcasts S

∗
i to all the other edge devices

(8) Player Di sends the token to the next node
(9) UntilMSE(S∗(R),S∗(R− 1))< ξ
(10) Output:S∗ ← (S

∗ (R1)
1 ,S

∗ (R2)
2 , . . . ,S

∗ (RN)
N )

ALGORITHM 1: Distributed and sequential decision-making algorithm for multitask ofoading (DSDA-MO).

Table 4: Convergence of the Nash equilibrium in example D6.

Round λ∗6,0 λ∗6,1 λ∗6,2 λ∗6,3 λ∗6,4 λ∗6,5

30 2.9683538 0.165065 0.178211 0.188503 0.196666 0.2032013
40 2.9652401 0.157901 0.175636 0.189742 0.201114 0.2103667
50 2.9598825 0.150956 0.173430 0.191459 0.206121 0.2181514
60 2.9591486 0.142797 0.170189 0.192285 0.210342 0.2252379
70 2.9594829 0.134183 0.166648 0.192932 0.214463 0.2322909
80 2.9605833 0.125198 0.162884 0.193462 0.218540 0.2393330
90 2.9608394 0.116203 0.159237 0.194203 0.222882 0.2466355

Table 3: Convergence of the Nash equilibrium in example D5.

Round λ∗5,0 λ∗5,1 λ∗5,2 λ∗5,3 λ∗5,4 λ∗5,5

30 2.9813121 0.1348270 0.1525576 0.1665572 0.1778081 0.1869380
40 2.9681589 0.1289364 0.1517291 0.1698735 0.1846137 0.1966883
50 2.9622163 0.1212920 0.1493441 0.1717868 0.1901334 0.2052274
60 2.9623449 0.1122118 0.1456737 0.1725337 0.1945440 0.2126918
70 2.9628887 0.1029620 0.1419134 0.1732544 0.1989031 0.2200784
80 2.9641592 0.0936193 0.1380922 0.1739339 0.2031423 0.2270532
90 2.9642554 0.0847129 0.1346802 0.1749801 0.2076104 0.2337610
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Figure 4: Optimal strategy of the arrival rate obtained by using the proposed algorithm at each round: edge device D5 and D6 as examples.
(a) Edge device D5 and (b) edge device D6.
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Table 5: Round number with the value of accuracy parameter ξ.

Accuracy parameter ξ Round number
10− 1 3
10− 2 12
10− 3 21
10− 4 35
10− 5 64
10− 6 127
10− 7 177
10− 8 220
10− 9 289
10− 10 327
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Figure 5: Optimal strategies of the task arrival rate consisting of the arrival rate of the unofoadable tasks (known parameter), the arrival
rate of the ofoadable local computing tasks, and the arrival rate of the tasks ofoaded to ECSs.
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6. Conclusion

In this paper, we adopt the queueing theory to establish a
time-cost model for task ofoading stream transmission to
resolve the problem of task ofoading decision-making for
edge computing in TSN. Meanwhile, we construct a utility
function with the backward method to formulate the task
ofoading competition among edge devices as a game
model. To fnd the Nash equilibrium of the proposed game,
we design a distributed and sequential decision-making
algorithm for multitask ofoading. Finally, the exist of Nash
equilibrium, the speed of convergence of Nash equilibrium,
and the relationship between the number of calculation
rounds and accuracy parameter ξ are investigated through
numerical experiments. Furthermore, to study the beneft of
the proposed game theoretic approach, we analyze and
compare the optimal strategy of task arrival rate, average
time cost, and task ofoading proportion among each edge
device. Te experiment results demonstrate that the TSN
edge devices can obtain the optimal multi-task ofoading
strategies within fnite rounds of calculation, which signif-
icantly reduce the average time cost of task computation, by
utilizing the proposed model and approach.

7. Future Work

For future work, we will study the scenario where the tasks
are generated in the queues of edge devices and are pro-
cessed in the queues of ECSs, involving a multilevel queuing
system. Te goal is to develop efcient algorithms for each
edge device to fnd the best response in games considering
the fuence to TSN transmission. In addition, we will jointly
allocate the task arrival rates and computing resources (such
as computing memory and storage space) to further pro-
mote the application of edge computing technology in TSN.

Data Availability
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available within the article.
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