
Research Article
ISort: SSD Internal Sorting Algorithm for Big Data

Yang Liu ,1 Wenhan Chen,1 Xuran Ge,1 Zhiguang Chen,2 Yang Ou ,3 and Nong Xiao1

1Institute for Quantum Information, State Key Laboratory of High Performance Computing, College of Computer,
National University of Defense Technology, Hunan Province, Changsha City 410000, China
2Sun Yat-sen University, Guangzhou Province, Guangzhou City 510000, China
3Institute of Computing Technology, College of Computer, National University of Defense Technology, Hunan Province,
Changsha City 410000, China

Correspondence should be addressed to Yang Ou; michaelouyang@163.com

Received 20 May 2022; Revised 20 November 2022; Accepted 26 November 2022; Published 15 December 2022

Academic Editor: Yugen Yi

Copyright © 2022 Yang Liu et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As a basic algorithm for big data processing, external sorting sufers from massive read and write operations in the external
memory. Recent works separate part of the data processing work from the host side to the solid state drive (SSD) to reduce data
transmission. However, the internal memory of the SSD is limited, and undesirable data retention could occur during the merge
phase.Terefore, to improve the efciency of memory, we propose an algorithm named ISort. Specifcally, we build an index table
between the memory and the address. Te index table determines the order of pages being read in the merge phase according to
their minimum values, which are read into memory sequentially to reduce the data residing in memory and improve memory
efciency. Since themerge phase is performed inside the SSD, ISort can take advantage of the high IO bandwidth within the SSD to
speed up the execution of the merge phase. We search for the optimal ratio of read and write channels by comparing the
“specialized channel” and the “hybrid channel” for data of read and write performance because the utilization of the channel will
directly infuence performance. Experimental results show that ISort can maintain better data processing speed when SSD
memory is limited, outperforming other robust algorithms. In addition, the algorithm’s performance using the crossover strategy
is better than that using the specialization strategy.

1. Introduction

Te development of storage technology and cloud com-
puting has made it possible to process terabytes and peta-
bytes of data [1]. However, the widespread use of data-
intensive applications and personal mobile devices generates
massive amounts of data, estimated to reach 185 zettabytes
in 2025 [2]. Terefore, how to quickly mine valuable in-
formation frommassive data has become an urgent problem
to be solved in the era of rapid data growth.

External sorting is one of the most fundamental algo-
rithms in data management systems, being used to deal with
the situation that the main-memory capacity cannot hold all
the data when data volume is too large. For example, in the
MapReduce framework of Hadoop, a large number of ex-
ternal sorting is exploited to sort intermediate data and the
fnal data in both operations of mapping and reducing [3].

Another instance is that external sorting plays a critical role
in the database query procedure since a large amount of data
is often involved in fnding the desired results [4]. External
sorting contains two phases: the run generation and the run
merge. In the frst phase, the input data are divided into
blocks that can hold the memory capacity and then loaded
into the memory for sorting. Sorted data blocks (Run) are
then written back to the storage device. In the second phase,
multiple runs are merged into a fully sorted chunk of data
[5], which will require lots of I/O operations, resulting in I/O
overhead. Terefore, the I/O time is critical in the external
merge sorting elapsed time.

Traditional external sorting algorithms are mainly
designed for hard disk drives (HDDs) characterized by slow
speed, high power, and poor earthquake resistance. In
contrast, SSDs have more obvious advantages such as no
robotic arm, random access, high read and write bandwidth,

Hindawi
Mobile Information Systems
Volume 2022, Article ID 3354935, 9 pages
https://doi.org/10.1155/2022/3354935

mailto:michaelouyang@163.com
https://orcid.org/0000-0002-5508-7161
https://orcid.org/0000-0002-5609-3571
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3354935


earthquake resistance, low energy consumption, high sta-
bility, long service life, and no noise. [6]. With the devel-
opment of fashmemory technology and the price reduction,
SSDs are gradually replacing HDDs in the storage market
[7]. However, external sorting is I/O-intensive because there
are many read/write operations on storage devices in the
execution process, which afects the performance of the
algorithm and the service life of the SSD. To solve this
problem, experts have tried to transfer computing to the
SSD, called computing and storage fusion.

Many eforts have been made towards external sorting.
Reference [8] makes use of the computing resources in SSD
to accelerate deep learning. Te blueDBM architecture [9]
accelerates data queries in SSD computing. Reference [10]
unloaded the external sorting work to SSD. In Reference
[11], source data are divided into multiple blocks and sorted
separately in memory, and the merge work begins when
there is an access request. Tis approach uses the channel
parallelism of SSD but does not consider the situation that
the data are partially sorted. All the above methods sufer
from the issue that when the pages of big and smaller data
are read simultaneously, the big data will remain in memory
for a long time, reducing the memory utilization. To tackle
this issue, we build an index table to record the minimum
value of each run for each block that is sequentially read to
the input bufer and merged within the SSD. Te channel
congestion problem caused by the read/write rate is also
discussed. In summary, our major contributions can be
summarized as follows:

(i) We present a new external sorting algorithm named
ISort that implements rapid sorting within the SSD.
For partially sorted data, it records the minimum
values of sorted blocks and indexes them to de-
termine the order for merging. By avoiding the
extended storage of large values in memory, ISort
can enhance the internal memory utilization of SSD
and signifcantly improve external sorting
performance.

(ii) Te specifc proportion adjustment of SSD hard-
ware equipment is carried out during the operation
of ISort algorithm. We fnd the best ratio of parallel
channel read-write numbers by comparing the ef-
fects of diferent ratios of the read/write channel on
external sorting.

(iii) Te experimental results show that ISort has better
read and write performance than previous works.
For example, ISort improves the read and write
performance when the total amount of data in-
creases. ISort also improves the performance when
the data size remains the same and the memory size
increases.

Te rest of this paper is organized as follows. Te
background and motivation are introduced in Section 2.

Section 3 describes the detailed implementation of ISort and
diferent channel strategies. Simulation experiments are
presented in Section 4. Section 5 provides an overview of the
related work. Te conclusion is presented in Section 6.

2. Background and Motivation

In this section, we frst describe the basic external sorting
algorithm and general architecture of a typical SSD, then we
discuss the motivation of this work.

2.1.ExternalSorting. Traditional external sorting is generally
divided into two phases, as illustrated in Figure 1. Source
data are initially in the storage device. Te frst phase divides
the data into accommodating blocks according to the input
bufer size. Ten, each block is loaded into host memory for
sorting, and the sorted data blocks are written back to the
storage device. Te second phase merges the sorted data
blocks generated in the frst phase into a sorted output
through several iterations [5]. After these iterations, the
merge operation will produce multiple read and write op-
erations for the storage devices, resulting in high I/O
overhead. Because of the large performance gap between
DRAM and storage devices, the I/O times are decisive in the
elapsed time of external merge sorting. A critical evaluation
factor is for data-intensive applications, whether the data can
be processed quickly and allow a response to the results.

2.2. Solid StateDrives (SSDs). With the development of fash
memory technology and price reduction, SSDs have grad-
ually become the mainstream type of high-performance
storage media. SSDs based on fash memory have been
widely studied by industry and academia because they
provide random access, high speed, high throughput, and
low energy consumption.

Considering the architecture, fash memory can be di-
vided into single-level cell fash memory (SLC) and multi-
level cell fash memory (MLC) [12]. MLC allows a single
storage unit to hold twice as much data, making it cheaper to
manufacture. MLC has a slower writing speed, higher power
consumption, shorter life, and higher error rate than SLC.
SSD can be divided into NOR fash memory and NAND
fash memory according to the type. Te random read speed
of NOR fash memory is fast, but the erase and the pro-
gramming operation is slow, and its fash capacity is rela-
tively small. NOR fash memory allows random storage, is
suitable for frequent read and write situations, and is usually
used to store program code. Compared with NOR fash
memory, NAND fash memory has a lower cost, higher
density, higher capacity, and faster erase and write speed,
being suitable for data storage. Tis article only discusses
NAND fash memory, which provides three basic
operations:

2 Mobile Information Systems



(i) Read/write operations: Te basic unit of read/write
operations is the page, but the erase operation’s basic
unit is the block. Te write operation of fash
memory is generally 200–700 µs, approximately ten
times that of the read operation.

(ii) Erase operation: Te erase operation sets all values
on the target block to 1. However, if a fash page has
been written, and we want to write the block again,
we need to erase it frst. Tis process is called erasing
before writing [13]. Te delay of the erase operation
is about 2–3ms longer than that of the I/O operation.
Terefore, frequent erase operations will afect the
overall performance.

Flash memory can only be subjected to a limited number
of erasures. If the data block is erased frequently, it can no
longer be used. Te SSD controller adds a transformation
layer named the fash translation layer (FTL) to avoid
writing after erasure. Flash memory does not support
overwriting. FTL writes the new data to other free pages
when updating data, and the original data are marked in-
valid. FTL has three main functions: address mapping, load
balancing, and garbage collection [14]. Address mapping can
be divided into page mapping, block mapping, and hybrid
mapping [15]. Te mapping table for block mapping is tiny,
being able to reduce memory overhead and ofer an excellent
response to read requests. Load balancing can improve the
performance of the SSD and prolong its service life. Garbage
collection [16] periodically reclaims space occupied by in-
valid data and erases appropriate blocks to recycle free pages.

Figure 2 illustrates the general architecture of a NAND
SSD, which is composed of a master controller chip, a set of
DRAM, multiple interfaces, and an array of NAND fash
memory chips connected to fash controllers by multiple
channels.

2.3. Motivation. In our practical application, source data
usually have data locality. Te most recent research algo-
rithms mainly focus on reducing the amount of data
transferred between memory and out-of-memory devices.
Reference [10] takes advantage of SSDs’ internal computing
power but does not consider their limited internal memory
resources. Completely ignoring the data’s characteristics will
lead to a large amount of data being stuck in the memory for

Block1 Block3Block2

Block1 Block3Block2

Block4 Block6Block5

Block1' Block3'Block2'

Block1' Block3'Block2'

Block4' Block6'Block5'

Block1" Block3"Block2"

Block4" Block6"Block5"

Block1' Block4'Block2'

Sort SortSorted Data

All Sorted Data
Unsorted Data Partially Sorted data

DRAM

1 2 3 4

SSD

1
2
3
4

: Read unsorted data to DEAM
: Write back sorted run to SSD
: Read sorted run to DRAM
: Write back sorted data to SSD

Figure 1: External sorting phases.

Host interface (SATA\SAS\PCIe...)

ECC

DRAM

DRAM

DRAM

DRAM

microcontroller

D
RA

M
 In

te
rfa

ce

D
RA

M
 In

te
rfa

ce

NAND Interface

DRAM

DRAM

DRAM

DRAM

Flash 
controller

Ch
an

ne
l 0

Flash 
controller

Ch
an

ne
l 1

Flash 
controller

Ch
an

ne
l 2

Flash 
controller

Ch
an

ne
l 3

array array array array

FTL

Media
Management

WL

GC

BBM

Figure 2: Te internal architecture of SSD.

Mobile Information Systems 3



a long time. Terefore, we hope to make full use of the
internal resources of the SSD and the characteristics of the
data itself to achieve the acceleration of the external sorting
algorithm.

3. ISort Design

We present ISort, an external sorting, that performs data
merging by exploiting the internal hardware infrastructure
of SSDs. We introduce its architecture and elaborate on its
design techniques.

3.1.Overall Architecture. We propose a new external sorting
mechanism called ISort that performs data merging by
exploiting the internal hardware infrastructure of SSDs. Te
traditional external sorting algorithm cannot be transferred
to SSD because it uses FTL to process the host-side data
request [17], as described in Figure 2. Terefore, we need to
change the SSD standard software architecture layer.
However, the direct use of the merge sort algorithm will
result in the high consumption of memory resources in the
SSD, which will signifcantly impact SSD performance. To
solve this problem, we built a page min index to record the
minimum values of all pages. Te minimum values deter-
mine the order of pages entering the input bufer. Te whole
process of ISort is shown in Figure 3, where the gray block

represents unsorted data, the yellow and blue block repre-
sent the internal ordered data, and the green block repre-
sents fully sorted data. We divide ISort into two phases. Te
frst is the run generation phase, which difers from the
traditional external sorting in that the data are written back
to the storage device. Te run merge phase performs op-
erations inside the SSD.

Table 1 defnes notations for ISort. Te size of the key in
the record is Q. Keys are allocated in B blocks, each rep-
resented as bi with 0≤ i≤B − 1. We use M to denote the host
memory size assigned to perform the sort. Te record is
divided into R � T/M parts, indicating the number of runs.
P indicates the number of pages in a block; C represents the
number of channels; D represents fully sorted datasets; CK1
represents the minor C pages; and CK2 represents the
second minor C pages.

3.2. Run Generation Phase. Algorithm 1 aims to generate
intermediate sorted fles called runs. We discard the value in
the record because we only need to sort the key. We split Q

into Si, each of which is the size of an input bufer (see lines 2
and 3 in Algorithm 1). To accelerate the speed of writing
storage, ISort activates multiple fash channels simulta-
neously, making full use of the parallelism of the SSD.
However, when the key value is skewed in the run, the
channel will be blocked, resulting in slower read operations.
We slice each run into the page using interlaced write be-
tween channels. During the write-back process, we recorded
the page minimum index table in the SSDmemory, recorded
the page’s minimum value in each run, and built an index
called page index.

3.3. Run Merge Phase. Algorithm 2 describes the run merge
phase of ISort. Te min index order recorded by Algorithm 1
reads CK1 into the SSD’s internal memory input bufer.
Unlike traditional sorting methods, we do not look for a

Host memory

SSDMemory

Input buffer Input buffer Input buffer
sorting

sorting

Second run

Figure 3: Te process of ISort.

Table 1: Algorithm parameters.

Notation Defnition
Q Size of the unsorted keys in the record
P Number of pages
B Number of blocks
p

j
i Page with identifer i in run j

bi Block with identifer 0≤ i≤B − 1
C Number of channels
M Available main memory (blocks)
D Sorted dataset
R Number of runs
CK1 Te smallest C pages
ri Te ith run, 1≤ i≤R

CK2 Te second smallest C pages

channel 3

p4
0 p4

1 p4
2p4

1 p4
2 p4

3 p4
4 p4

5

p3
0 p3

1p3
1 p3

2p3
2 p3

3 p3
4 p3

5

p2
0 p2

1p2
0 p2

1 p2
2 p2

3 p2
4 p2

5

p1
0 p1

1p1
1 p1

2p1
2 p1

3 p1
4 p1

5

p0
0 p0

1p0
0 p0

1 p0
2 p0

3 p0
4 p0

5

p5
1 p5

2 p5
3 p5

4 p5
5p5

0p5
1p5

0 channel 1

channel 2

channel 4

channel 5

channel 6

Input buffer Flash chips

The process 2
The process 1

Figure 4: Te status of the input bufer and the layout of the fash
chips.

4 Mobile Information Systems



minor page every run. It is also possible that the parallel page
read simultaneously is from the same run. In ISort, the order
in which pages are loaded into the SSD’s internal memory
only follows the min page index. Because of the partial or-
dering of the data, a page we would like to see may be in high-
value runs that will not be read for a long time.Tese data will
not be output after they are read into memory but instead will
be output when a more extensive page is encountered. Next,
we read CK2 to the input bufer in order as the bufers for
CK1. By doing so, the data transmission capacity can be better
matched with computing power. When a page is consumed,
we can supplement the data without afecting the sorting of
CK1. When ISort is satisfed such that there are C pages in
memory, the merging process starts synchronizing with the
bufer data transfer process.Teminor key in the input bufer
is copied to the output bufer in each iteration. We used a
qsort in memory, and the computational complexity is O(n).
We fush the output bufer to a fash chip if the output bufer
becomes full. Te same run is interlaced on a diferent
channel.Terefore, this process will not occur when a channel
does not have a page, except in the fnal phase. However,
parallel read/write operations may cause channel congestion,
which is discussed in the experiment section.

Figure 4 illustrates an example. For the convenience of
demonstration, we draw six channels and six input bufers to
illustrate the merge phase of the ISort algorithm in more detail.
Suppose there are six runs interleaved across six channels. We
represent them in diferent colors.TeCK1 in the fash chips is
transferred to the input bufer in parallel, as shown in process 1.
CK2 is transferred to the input bufer in parallel, as shown in
process 2. When a page in CK1 is exhausted, the CK2 page of
the same channel in CK2 is immediately converted to CK1. At
the same time, the reading of the next page is triggered. CK2
will be continuously converted into CK1 as it is consumed. At
best, CK1 is distributed on a diferent channel, and we can
implement the concurrent reading of the channel, as shown in
process 1. In the worst case, CK1 is distributed on the same
channel, and we can only read it serially, as in the traditional
method. Because our data are partially ordered, and the data of
each run are cross-placed on a diferent channel, and the worst-
case probability is negligible.

Figure 5 shows six sorted runs. Each run consists of three
pages, and each page contains three keys. Let us assume that
the input bufer can drop 12 pages, as shown in 4.Temiddle
of Figure 5 shows the traditional method of reading the
minimum page of each run into the input bufer. When a
page with large values and a page with decimal values appear
in the input bufer simultaneously, it will cause long-term
retention in memory, thereby reducing memory utilization.
Te lower part of Figure 5 shows our method. Based on the
page-min-index, ISort reads sequentially to avoid the oc-
currence of pages in the input bufer and improve input
bufer space utilization.

4. Experimental Results

4.1. Evaluation Design. Tis section describes the experi-
mental platform setup and the methodology to evaluate
ISort.

In the following experiments, we used SSDsim [18],
an open-source solid state simulation system that follows
the ONFI protocol, having high accuracy and modula-
rization advantages. Te hardware confguration pa-
rameters of the SSDsim simulator used in this paper are
shown in Table 2.

We take ActiveSort as the baseline that includes an
additional write-back operation than ISort. Te comparison
is conducted from the perspective of dataset size and
memory. We also evaluate the impact of SSDmemory and I/
O trace on performance. Also, we use diferent channel
ratios to test the performance of a specialized channels and
hybrid channels.

4.2. Experimental Results. Since external sorting is an IO-
intensive algorithm, read and write requests are initiated
frequently and alternately in the merging phase, as shown in
Figure 6. When more channels are used for writing, both the
read time (RT) and write time (WT) of ActiveSort increase
evidently, while ISort decreases, indicating the superior
performance of ISort.

If the read-write request separation processing is
carried out and the number of reading channels increases,
it will lead to writing request processing congestion.
Similarly, reducing the number of reading channels can
reduce read request processing congestion. To avoid idle
channels and improve channels’ resource utilization, we
can make all channels read and write requests during the
merge phase.

2
4

7

1256
32

82 92
85
91

28
41
43

85
88
9298

96
25
41
42

48
51
53

81
88
94

21
24

4

328
6

12 22
15
19

38
41
53

55
58
6228

26
200
400
612

618
641
843

850
880
920

run 0 run 1 run 2

run 3 run 4 run 5

7

56
32

2
4

12

25
41
42

4

8
6

21
24
32

200
400
612

Traditional read order

1
2

4
3

5

18
17
16
15
14

page_min_index

2

4
4

6
7
8

12
12
15

19

22
21

24
32
32

41
42
56

Isort read order

25

sort
output buffer

p2
0 p2

1 p2
2

p2
3 p2

4 p2
5

p1
0 p1

1 p1
2

p1
3 p1

4 p1
5

p0
0 p0

1 p0
2

p0
3 p0

4 p0
5

p4
1

p2
0

p2
1

p2
2

p2
3

p2
4

p2
5

p1
1 p1

2

p1
3

p1
5

p1
0 p1

1 p1
2 p1

3 p1
4 p1

5

p0
0

p0
1

p0
1

p0
2

p0
3

p1
3

p0
0

p0
3

p0
4

p0
4

p0
5

p0
0 p0

1 p0
2 p0

3 p0
4 p0

5

Figure 5: ISort algorithm running diagram.

Mobile Information Systems 5



As shown in Figure 7, DRAMwithin SSD can cache read
and write requests. With the increase of DRAM capacity, the
hit rate of read and write requests can be improved.

Figure 8 shows the results of diferent data sets. We can
fnd that ISort has a relatively more stable performance
improvement than ActiveSort.

(1) Input: Unsorted data Q

(2) Output: Sorted runs r0, . . . , rR−1
(3) S← S0, . . . , SR−1|Si � split(Q)􏼈 􏼉

(4) for i from 0 to R − 1 do
(5) Ri←SortInHostMemory(Si)

(6) p
j
i← p0

0, . . . , p
j
i |p

j
i � split(Ri)􏽮 􏽯

(7) end for
(8) W←P/C
(9) for i from 0 to R − 1 do
(10) for k from 0 to W − 1 do
(11) Open Channels
(12) write from p

j
i to p

j

i+C

(13) InsertIndexToMinIndex (minimum (p
j
i ), page.id)

(14) SortMinIndex()
(15) end for
(16) end for� 0

ALGORITHM 1: Pseudo-code for the run generation phase.

Ti
m

e (
s)

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

16:16 8:8 6:10 4:1212:4 10:6
Channel R (W) Ratio

Avg RT
Avg WT

Baseline RT
Baseline WT

Figure 6: Te average response time varying channel R/W ratio.

ISort RT Isort WT Baseline RT Baseline WT

Ti
m

e (
s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 M
2 M
4 M
8 M

16 M
32 M
64 M
128 M

Figure 7: Te average response time varying DRAM size within
SSD.

ISort RT ISort WT Baseline RT Baseline WT

Ti
m

e (
s)

0

1

2

3

4

5

6

7

8

100 M
200 M
400 M

800 M
1 GB

Figure 8: Te average response time when varying datasets.

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
Page Size

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e (
s)

Read Time
Write Time

Figure 9: Te average response time varying page size.

6 Mobile Information Systems



Figure 9 shows the results of diferent page sizes. When
page size is 4 kB or 8 kB, ISort has better performance.
However, the performance will degrade as the page size
increases or decreases. When the page size is relatively large,
it will cause channel congestion and increase the request
processing time.

5. Related Work

When source data are too large, it is necessary to use external
sorting when it is impossible to load all the data into limited
memory for sorting at one time. External sorting can be
divided into HDD-based external sorting, embedded fash
memory-based external sorting, SSD-based external sorting,
and NVM-based external sorting.

Te external sorting based onHDD generally reduces the
search time and rotation delay by optimizing the algorithm
and reducing the random access to the external memory
device. Reference [19] staggered placement and a new
reading strategy are proposed, speeding up the execution of
the external sorting algorithm based onHDD and improving
the performance. Reference [20] proposed an external
sorting algorithm based on HDD. Tis external sorting al-
gorithm does not require additional disk space and does not
generate intermediate data. Te main idea is to use quick
sorting and a particular merging strategy to reduce the
number of comparisons in the sorting process to improve
execution performance.

Compared with HDD, fash-based SSD has no disk head
and a mechanical arm, so there is no seek time and rotation
delay [21]. Reference [22] designed an FTL (FTL-SS) based
on a single channel and single way and extended the FTL to
the case of multichannel and multiways, thus verifying the
versatility and efectiveness of this method. References
[23–26] make full use of the internal parallelism of SSD
through two phases and request rescheduling and dynamic
write request mapping to improve the performance of SSD.
Reference [27] proposes a channel striping technology to
improve the resource utilization of the channel. FMsort
makes full use of SSD’s fast access delay and high random.
Te I/O bandwidth is able to speed up the execution of
external merge sorting [28]. Montres [29] takes advantage of
the performance of SSD to speed up external sorting pro-
cessing. ActiveSort implements the merging operation of
external sorting inside SSD by using Active SSD [10]. Active
SSD is a special kind of SSD [30]. Kang et al. proposed a
multichannel storage system based on NAND fash memory.
Te storage system has a plurality of independent channels,
with each channel having a plurality of NAND fashmemory
chips [31].

With the development of new storage technology, new
storage technology such as PCM, STT-RAM, and ReRAM
have been widely used. PCM [32, 33] is a new nonvolatile
storage medium with byte-addressable, high density, and
high persistence. NVM is a nonvolatile storage device with
byte-addressable, nonvolatile, random access, high density,
low energy consumption, and high access speed [34].
However, NVM also has some limitations. Te service life of
NVM is limited, and the reading and writing performance is
asymmetric [35–37]. Ahmed Khernache et al. proposed
MONTRES-NVM, which is an external sorting algorithm
based on the PCM and DRAM hybrid storage system [38].

6. Conclusion

Te amount of data has increased exponentially in recent
years, and our demand for data processing speed has
gradually increased. Te emergence of ActiveSSD provides a
new possibility for us to process data in the near data
segment. Traditional sorting algorithms need to be adjusted
to better adapt to changes in memory size. Tis paper

(1) Input: Partial sorted runs r0, . . . , rR−1
(2) Output: Sorted data
(3) Read CK1 and CK2
(4) while has not yet processed all pages do
(5) if there are C pages in the memory then
(6) Sort (CK1)

(7) Output minimum key into bufer
(8) if the output bufer is full then
(9) Flush the output bufer to fash chip
(10) end if
(11) end if
(12) end while� 0

ALGORITHM 2: Pseudo-code for run merge phase.

Table 2: Experimental set-up.

Parameter Value
DRAM size 8MB
Channel number 16
Chip number 32
Die number 2
Plane number 2
Block number 64
Page number 64
Subpage page 4
Page capacity 4096
Subpage capacity 1024

Mobile Information Systems 7



analyzes the latest algorithms and concludes that the large
numerical data generated in memory will remain in memory
for a long time, afecting memory utilization. Te main idea
of ISort is to use the computing resources within SSD to deal
with the merging phase. We use each page’s minimum order
to read the data to solve the problem of limited internal
memory in SSD. To further improve the speed, we adopt the
interleaving strategy in the write back part of the run
generation phase. Many IO operations will produce varying
degrees of read and write congestion; we have carried out
diferent channel read-write ratio tests. We evaluated the
performance of diferent read-write channel ratios, data size,
page size, and SSD memory size. Compared with active
sort +write, the performance of ISort reduces execution time
by more than 36%. As a perspective for future work, it is
signifcant to work to study the infuence of diferent storage
devices on various algorithms. For benefts from data access
according to the characteristics of other storage devices and
to further reduce the time overhead, this paper only dis-
cusses channel-level parallelism. In future in-depth research,
we can continue to explore the deeper level of parallelism. At
the same time, in future research, we will continue to study
that data placement leads to increased garbage collection
load. During the merge phase of the outer sort, writing the
ordered data back to SSD can continue to explore where the
output structure is written back when compared with the
efect of opening up new space and allocating piecemeal
space, which is better.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by National Key R&D Program of
China under Grant no. 2021YFB0300103, National Natural
Science Foundation of China (no. 61872392, U1911401), and
the Major Program of Guangdong Basic and Applied Re-
search (No. 2019B030302002).

References

[1] A.Tusoo, S. Zheng, S. Anthony et al., “Data warehousing and
analytics infrastructure at facebook,” in Proceedings of the
ACM SIGMOD International Conference on Management of
Data, SIGMOD 2010, A. K. Elmagarmid and D. Agrawal, Eds.,
ACM, Indianapolis, IA, USA, pp. 1013–1020, June 2010.

[2] J. Boukhobza and P. Olivier, Flash Memory Integration:
Performance and Energy Issues, ISTE Press - Elsevier, London,
UK, 1st edition, 2017.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplifed data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[4] G. Graefe, “Implementing sorting in database systems,” ACM
Computing Surveys, vol. 38, no. 3, p. 10, 2006.

[5] W. Dobosiewicz, “Replacement selection in 3-level memo-
ries,”Te Computer Journal, vol. 27, no. 4, pp. 334–339, 1984.

[6] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim, “A Case for Flash
Memory Ssd in enterprise Database Applications,” in Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, pp. 1075–1086, Van-
couver, BC, Canada, June 2008.

[7] A. M. Caulfeld, J. Coburn, T. Mollov et al., “Understanding
the impact of emerging non-volatile memories on high-
performance, io-intensive computing,” in Proceedings of the
SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–11, New Orleans, LA, USA,
November 2010.

[8] S. M. Vikram, Z. Qureshi, W. Liang et al., “Deepstore: in-
storage acceleration for intelligent queries,” in Proceedings of
the Te 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-52), pp. 224–238, Columbus, OH,
USA, August 2019.

[9] S. Jun, M. Liu, S. Lee et al., “Bluedbm: distributed fash storage
for big data analytics,” ACM Transactions on Computer
Systems, vol. 34, no. 3, pp. 1–31, 2016.

[10] Y. Lee, L. C. Quero, S. Kim, J. Kim, and S. Maeng, “Activesort:
efcient external sorting using active ssds in the mapreduce
framework,” Future Generation Computer Systems, vol. 65,
pp. 76–89, 2016.

[11] Y. Liu, Z. He, Y. P. P. Chen, and T. Nguyen, “External sorting
on fash memory via natural page run generation,” Te
Computer Journal, vol. 54, no. 11, pp. 1882–1990, 2011.

[12] J. Seol, H. Shim, J. Kim, and S. Maeng, “A bufer replacement
algorithm exploiting multi-chip parallelism in solid state
disks,” in Proceedings of the 2009 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems,
CASES 2009, J. Henkel and S. Parameswaran, Eds., ACM,
Grenoble, France, pp. 137–146, October 2009.

[13] J. Lee, S. Kim, H. Kwon et al., “Block recycling schemes and
their cost-based optimization in nand fash memory based
storage system,” in Proceedings of the 7th ACM & IEEE In-
ternational conference on Embedded software, EMSOFT 2007,
pp. 174–182, Salzburg, Austria, September 2007.

[14] C. Dirik and B. Jacob, “Te performance of pc solid-state disks
(ssds) as a function of bandwidth, concurrency, device ar-
chitecture, and system organization,” ACM SIGARCH -
Computer Architecture News, vol. 37, no. 3, pp. 279–289, 2009.

[15] H. Kim and S. Lee, “A new fash memory management for
fash storage system,” in Proceedings of the 23 Annual In-
ternational 1999 COMPSAC’99, pp. 284–289, Phoenix, AZ,
USA, October 1999.

[16] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding in-
trinsic characteristics and system implications of fash
memory based solid state drives,” ACM SIGMETRICS -
Performance Evaluation Review, vol. 37, no. 1, pp. 181–192,
2009.

[17] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a fash translation
layer employing demand-based selective caching of page-level
address mappings,” ACM SIGPLAN Notices, vol. 44, no. 3,
pp. 229–240, 2009.

[18] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang,
“Performance impact and interplay of ssd parallelism through
advanced commands, allocation strategy and data granular-
ity,” in Proceedings of the 25th International Conference on
Supercomputing, 2011, pp. 96–107, Tucson, AZ, USA, May
2011.

8 Mobile Information Systems



[19] L. Zheng and P. A. Larson, “Speeding up external mergesort,”
IEEE Transactions on Knowledge and Data Engineering, vol. 8,
no. 2, pp. 322–332, 1996.

[20] R. Islam, N. Adnan, N. Islam, and S. Hossen, “A new external
sorting algorithm with no additional disk space,” Information
Processing Letters, vol. 86, no. 5, pp. 229–233, 2003.

[21] C.-H. Wu and K.-Y. Huang, “Data sorting in fash memory,”
ACMTransactions on Storage, vol. 11, no. 2, pp. 1–25, 2015, 25.

[22] S.-H. Park, S.-H. Ha, K. Bang, and E.-Y. Chung, “Design and
analysis of fash translation layers for multi-channel NAND
fash-based storage devices,” IEEE Transactions on Consumer
Electronics, vol. 55, no. 3, pp. 1392–1400, 2009.

[23] S. Park, E. Seo, J. Shin, S. Maeng, and J. Lee, “Exploiting
internal parallelism of fash-based ssds,” IEEE Computer
Architecture Letters, vol. 9, no. 1, pp. 9–12, 2010.

[24] Y. Chen, J. Li, and H. Gao, “Fssort: external sort for solid state
drives,” in Proceedings of the 2021 IEEE/ACM 21st Interna-
tional Symposium on Cluster, Cloud and Internet Computing
(CCGrid), pp. 71–80, Melbourne, Australia, May 2021.

[25] K. Myung, S. Kim, H. Y. Yeom, and J. Park, “Efcient and
scalable external sort framework for nvme ssd,” IEEE
Transactions on Computers, vol. 70, no. 12, pp. 2211–2217,
2020.

[26] Y. Chen, J. Li, and H. Gao, “Finding the optimal execution
scheme of external mergesort on solid state drives,” World
Wide Web, vol. 24, no. 3, pp. 781–804, 2021.

[27] L. Chang and T. Kuo, “An adaptive striping architecture for
fash memory storage systems of embedded systems,” in
Proceedings of the Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 187–196, San
Jose, CA, USA, September 2002.

[28] J. Lee, H. Roh, and S. Park, “External mergesort for fash-
based solid state drives,” IEEE Transactions on Computers,
vol. 65, no. 5, pp. 1518–1527, 2016.

[29] A. Laga, J. Boukhobza, F. Singhof, and M. Koskas, “Montres:
merge on-the-run external sorting algorithm for large data
volumes on ssd based storage systems,” IEEE Transactions on
Computers, vol. 66, no. 10, pp. 1689–1702, 2017.

[30] D. Tiwari, S. Boboila, S. Vazhkudai et al., “Active fash: to-
wards energy-efcient, in-situ data analytics on extreme-scale
machines,” pp. 119–132, 2013.

[31] J.-Uk Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A multi-
channel architecture for high-performance nand fash-based
storage system,” Journal of Systems Architecture, vol. 53, no. 9,
pp. 644–658, 2007.

[32] B. C. Lee, P. Zhou, J. Yang et al., “Phase-change technology
and the future of main memory,” IEEE Micro, vol. 30, no. 1,
p. 143, 2010.

[33] Y. Fu, “Caram: A Content-Aware Hybrid Pcm/dram Main
Memory System Framework,” 2020, https://arxiv.org/abs/
2007.13661.

[34] H. Li and Y. Chen, “Emerging non-volatile memory tech-
nologies: from materials, to device, circuit, and architecture,”
in Proceedings of the 2010 53rd IEEE International Midwest
Symposium on Circuits and Systems, pp. 1–4, Seattle, WA,
USA, August 2010.

[35] J. S. Meena, S. M. Sze, U. Chand, and T. Tseng, “Overview of
emerging nonvolatile memory technologies,” Nanoscale Re-
search Letters, vol. 9, no. 1, p. 526, 2014.

[36] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, “Evaluating
phase change memory for enterprise storage systems: a study
of caching and tiering approaches,” ACM Transactions on
Storage, vol. 10, no. 4, pp. 1–21, 2014.

[37] T. Roy and K. Kant, “Enhancing endurance of ssd based high-
performance storage systems using emerging nvm technol-
ogies,” in Proceedings of the 2020 IEEE International Parallel
and Distributed Processing SymposiumWorkshops (IPDPSW),
pp. 1070–1079, IEEE, New Orleans, LA, USA, May 2020.

[38] M. B. Ahmed Khernache, A. Laga, and J. Boukhobza,
“MONTRES-NVM: an external sorting algorithm for hybrid
memory,” in Proceedings of the IEEE 7th Non-Volatile
Memory Systems and Applications Symposium, NVMSA 2018,
pp. 49–54, IEEE, Hakodate, Sapporo, Japan, August 2018.

Mobile Information Systems 9

https://arxiv.org/abs/2007.13661
https://arxiv.org/abs/2007.13661



