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Tis paper investigates a cross-scale space semantic feature coherent image inpainting approach since it is challenging for the
existing image inpainting methods to fuse the semantic feature information efectively. Firstly, we learn the feature semantic
relevance step-by-step from the high-level semantic feature map’s attention mechanism and then we apply what we have learned
to the preceding low-level feature map. In order to preserve the visual and semantic coherence of image repair, the missing content
can be flled by changing attention from deep to shallow in a multiscale manner. A broader receptive feld is generated by partial
convolution, and semantic feature relevance is achieved using a multiscale cross feature space feature attention mechanism based
on semantic attention. Tis technique improves the extensibility and continuity of the restored images by reconstructing the
semantic information of diferent feature spaces, not only taking into account the reuse of existing semantic space features but also
including across feature spaces. Te experimental results demonstrated an improvement in PSNR, SSIM, and L1 performance by
10.50%, 0.13%, and 47.09%, respectively, with clear benefts.

1. Introduction

In order to make the restored image look very natural and be
difcult to tell apart from the undamaged image, image
inpainting requires the algorithm to fll up the missing areas
of the image in accordance with the image itself or the
training set information. According to existing researches, it
will be quite obvious as long as there is even a tiny dis-
crepancy between the flled content and the undamaged
area. As a result, in order to achieve high-quality image
inpainting, it is necessary for both the content semantics and
the generated image texture to be sufciently real and clear.

Currently, there are two primary categories in which
image inpainting techniques fall: the frst is the traditional
texture generation method. Te fundamental concept is to
fll in the missing area by selecting identical pixel patches
from the area of the image that is undamaged. Te alter-
native approach uses deep learning to encode the image as a
feature of highly dimensional hidden space, which is sub-
sequently decoded to provide a fully recovered image. Te

missing areas of the damaged image must be flled in with
appropriate information in order to achieve high-quality
image inpainting. Te present approaches either generate
semantically consistent patches from the context of the
region or fll the region by replicating image patches,
oblivious to the importance of both visual and semantic
credibility. As a result, these two techniques have some
drawbacks when it comes to maintaining adequate se-
mantics and distinct texture.

Te motivation of this research is to further enhance the
semantic consistency of image restoration, gradually un-
derstand the regional semantic relevance from the attention
in the high-level semantic feature map, and apply the un-
derstood attention to the prior low-level feature map. It can
guarantee the visual and semantic coherence of image repair
since the missing content can be flled by moving attention
from deep to shallow in a multiscale manner. Besides, at-
tention mechanism in neural network is a resource opti-
mization allocation scheme that assigns computing
resources to more important tasks frst and solves the
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problem of information overload when computing resources
are limited, especially for the automobile systems [1, 2] in
self-driving application.

We have developed a robust strategy for learning se-
mantic feature maps across feature spaces. For missing areas,
the generation model can produce results with semantic
consistency. We proposed a framework for multiscale image
inpainting based on a deep learning model; it emphasizes a
cross-scale semantic correlation image inpainting technique
that takes into account both the current feature scale space
and the cross-scale feature space. By utilizing a cross feature
space feature attention mechanism and semantic attention
mechanism, we achieved semantically-coherent image
restoration.

Tis approach achieves high-quality images by realizing
image restoration from a semantic standpoint and com-
bining multiscale feature space information. Additionally,
the results of the experiment demonstrate that our technique
performs better in terms of PSNR, SSIM, and L1 perfor-
mance metrics. Our primary contributions are as follows:

(1) In this paper, a cross-scale method for semantically-
coherent image restoration with four scales is pro-
posed. Cross-scale semantic feature extraction is
realized with our novel method. High-quality image
restoration with semantics coherence is achieved
through our search and generation strategy.

(2) A reconstruction module called cross-scale coherent
semantic attention (CCSA) is proposed. Attention
score to reconstruct the sibling features of the lower-
level semantic network module is calculated. Rea-
soning operations is utilized to depict the useful
regions.With this technique, the semantic features of
several feature spaces can be combined, and the
feature information is then transferred to the sub-
sequent layer for feature fusion. Te experimental
results demonstrate that the cross-scale recon-
struction technique improves PSNR, SSIM, and L1
performance by 5.34%, −0.14%, and 33.86%,
respectively.

(3) A semantic residual attention (SRA) module is
proposed, which could further enhance the net-
work’s performance and increase the semantic co-
herence of image restoration through the semantic
residual structure, as well as reducing network re-
sidual error. Tis approach enhances PSNR and L1
performance by 3.43% and 27.51%, respectively.

2. Related Research

Te approaches for image restoration could mainly be di-
vided into two types. Te frst one is the classical texture
synthesis method, while the second is the deep learning
method [3].

2.1. Classical Matching Approach. Training set is not re-
quired for such method, for example, the DIP approach [4].
Only one damaged image is needed for the entire procedure,

which may then be utilized for image restoration. Te TV
(total variation) model [5] was enhanced with the CDD
model [6], which addresses the issue with the TV model’s
inability to restore the visual connectedness of images.When
attempting to fnd the best match using Criminsi’s tradi-
tional violent block matching method [7, 8], the outcome is
not always pleasing. Because we only consider how closely
the portion outside the hole matches the other images when
looking for the best match. Barnes’ PatchMatch [9] is a very
clever patch matching technique that accelerates patch
matching by taking use of the local correlation of images.
Although this technique can attain the overall approximate
optimal, it cannot guarantee that every patch will fnd the
best match. Because they require a lot of processing to
achieve pixel level flling and patching, these traditional
approaches are typically slow. Te absence of semantic
knowledge and in-depth understanding of visuals are an-
other signifcant faw in such methods. Te restoration of
complicated semantic scenes cannot be handled by this
strategy, and it is difcult to produce semantically plausible
solutions.

2.2. Deep Learning-Based Regular Filling. An unsupervised
visual feature learning system driven by context-based pixel
prediction is Pathak’s context-encoder [10–12]. It can
generate acceptable results for semantic flling and it is used
to generate content for any image area based on its sur-
roundings. Global and local discriminators are introduced
by the GL technique [13, 14]. Local and global consistent
images can be produced using this technique. Any shape of a
missing region can be flled using the entire convolution
neural network. Tis strategy has greater benefts than
patch-based approaches such as PatchMatch [9]. Te color
diference, blurring, and other faws are improved by Liu’s
partial convolution technique [15, 16]. Tere are certain
benefts to this paradigm for irregular holes.

2.3. Deep Learning-Based Progressive Filling. For instance,
edge guided repair methods [17, 18] needs the determination
of the edge in advance, and various parameters will result in
varied edge features, which will infuence the repair results.
Te prior one shot fll model is not the same as the RFR
model [19]. Te RNN framework and this network are
comparable. Te frst input to the RFR module is the feature
map, and the second input to the RFR module is the output
results. After a number of cycles, the subsequent stage of
feature fusion will be initiated in this manner. In Zhang’s
PGN [20], progressive flling at the image level was ac-
complished by connecting GANs together using LSTM.
With partial convolution and expansion methods, Guo’s
FRRN [21] stacks 8 full resolution residual modules to
achieve progressive flling. Tese processes frequently re-
quire a lot of computational resources and are time-
consuming.

2.4. Attention-Based Deep Learning. Te deep learning
model could produce semantically consistent results for
missing areas by utilizing advanced semantic feature
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learning. Nevertheless, it remains difcult to get aesthetically
realistic outcomes from small potential features. Using the
similar texture of the feature map source area to fll in the
target area, Yu’s Deepfllv1 [22] method, for instance,
proposes an improved GCA structure based on contextual
attention [23]. Te content learned from the contextual
attention layer is the key feature information which is could
be used to repair the missing area for a damaged image.
Gated convolution is used in the enhanced Deepfllv2 [24].
When the damaged area is in free form, the gated convo-
lutions are optimized to produce gaps near the flling edge. It
is suggested to divide the image into patches and then
identify each local region using a spectral normalized dis-
criminator. Te attention transfer network (ATN), which is
designed to transfer the features of the known area to the
missing area to achieve a better flling impact, is used in the
pyramid type layer-by-layer repair [25], the generator adopts
the structure of encoding and decoding, and the encoder
adopts the pyramid type encoder. Diversifed repair [26–28]
developed a novel framework based on the probability
principle that combines prior conditions and potential
variables and has several parallel paths in order to produce
multivariate results with appropriate confdence. Te image
is changed into a hidden space by a variational automatic
coder [29, 30], and an image restoration operation is then
carried out in the hidden space. According to the realistic
and diversity dynamic balancing repair approach [30], pixels
near the hole center should have more degrees of freedom
while those close to the hole edge should be more pre-
dictable. It can dynamically balance the authenticity and
diversity within the missing area [31], making the generated
content more diversifed towards the hole center and the
hole boundary more similar to the adjacent image content.
By learning this patch match behavior to a generator without
attention through joint training to assist context recon-
struction tasks, Zeng et al. [32] proposed the context re-
construction assisted repair and encouraged the generated
output to be reasonable even when it is reconstructed from
the surrounding areas. Wide-ranging focus [33], a novel
attention perception layer (AAL), is introduced to better use
the high-frequency properties of long-distance correlation in
order to enhance the appearance consistency between the
visible region and the generated area.

Few studies have been conducted on multiscale semantic
feature fusion, and the majority of approaches now in use
only take into account of image restoration with one scale.
Terefore, it is important to investigate semantic consistency
image inpainting techniques from a cross-scale space
perspective.

3. Our Method

3.1. Overall Structure of Our Method. Figure 1 depicts the
overall structure of our network, which is primarily com-
posed of several basic blocks as shown in Figure 2 (BBs)
connected by cross-scale coherent semantic attention
(CCSA) and semantic residual attention (SRA) blocks. Te
present scale’s feature information is learned by each BB
individually, and the semantic coherent attention module

and semantic residual attention module connect several
scale space. We split each input into two paths in each BB
structure. Pixel-wise concat is used to combine the output
from last two BB blocks. To restore more information while
maintaining visual performance, the two channels are
pooled maximum and on average.

Te semantic correlation attention method in the
backbone network realizes the cross-scale semantic corre-
lation learning. Tis cross-scale semantic correlation can
make use of feature at several scales. Te main purpose of
this structure is to achieve the cross-scale propagation of
feature information between two adjacent BBs. In our
network, four BBs are included, each BB represents a distinct
scale space and essentially satisfes the requirements, and
three cross-scale attention structures are consequently
needed to enable semantic feature transmission.

In order to further reduce the semantic residuals be-
tween modules and enhance network performance, the
semantic residual attention module mainly realizes the
transmission of semantic residuals across adjacent BB
modules. Te experimental results demonstrate that the
introduction of the semantic residual module improves the
network’s overall performance, demonstrating the semantic
residual module’s value in raising the semantic residual of
the network.

Search and generation are the two key steps in the re-
alization of semantic attention learning. Image restoration
with semantic cross scale and associated functionality is
realized. Our network does not directly employ the
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Figure 1: Overall structure of our cross-scale coherent semantic
attention network.
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Figure 2: Structure of our basic block.
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convolutional layer for feature learning. Instead, we employ
partial convolution to achieve a bigger receptive feld and
boost learning efectiveness even more.

3.2. Feature Reconstruction Based on Semantic Coherent
Attention. We believe that it is insufcient to reconstructM
solely by taking into account the relationship betweenM and
M′ (which represent the known area and the missing area in
the feature map, respectively) in the feature map, as this
ignores the correlation between the generated image
patches, particularly the semantic correlation, which may
result in lacking ductility and continuity in the restoration
results.

We investigate the semantic residual and semantic
correlation between the generated restoration image blocks
in order to resolve this weakness and propose a SCA layer.
As for illustration, the SCA layer implementation includes
search and generation steps. Figure 3 illustrates how the SCA
layer works, with M and M′ representing, respectively, the
known area and the missing area in the feature map.

In order to initialize mi during the search, the RSA layer
searches for the closest matching context patch mi in the
known region M for the ith patch mi in M.

Ten, in order to recover the mi during generation, we
set mi as the primary component and all previously gen-
erated patches as the secondary part. Te two sections’
weights are determined using the following cross-correlation
measures:

Dmaxi �
〈mi, mi
′〉

mi

����
���� · mi
′

����
����

,

Dadi �
〈mi, mi−1〉
mi

����
���� · mi−1

����
����

,

(1)

where Dadi denotes the similarity between two created
adjacent patches and Dmaxi represents the similarity be-
tween mi and the context area’s most similar patch mi

′. Te
weights of the context patch part and all previously created
patch parts are normalized as Dmaxi and Dadi, respectively.
Te following are the two steps.

3.2.1. Search. In order to apply the convolution flter to M,
we frst extract the patch from M and transform it to a
convolution flter. We can fnd the correlation between each
patch in M and every patch in M by using this procedure.
Based on this, we initialize each generated patch mi with the
context patchmi, which is the most comparable to it and, for
the subsequent operation, we give it the maximum cross-
correlation value Dmaxi.

3.2.2. Generation. We start the generation process from the
upper left patch ofM (marked withm1 in Figure 3).Dad1 is 0
and m1 has never had a patch, so we simply replace m1 with
m1′, making m1 � m1′. Although the preceding patch, m1,
serves as an additional reference for the subsequent patch,
m2, we treat m1 as a convolution flter in order to get the
cross-correlation measure, Dad2, between m1 and m2. Ten,
to update the m2 value, Dad2 and Dmax2 are merged and
adjusted to weights of m1 and m2, respectively. Te steps of
the generation process, fromm1 tomn, can be summed up as
follows:

m1 � m1′, Dad1 � 0,

mi �
Dadi

Dadi + Dmaxi

× mi−1 +
Dmaxi

Dadi + Dmaxi

× mi
′, i≥ 2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Tis process is a recursive process.Temethod described
above can be used to determine the repair area.

3.3. Image Reconstruction Based on Cross-Scale Semantic
Coherent. We propose employing the semantic correlation
feature between high-level and low-level semantic modules
to reconstruct feature maps in order to preserve as much
low-level semantic information as possible. We utilize some
reasoning operations to depict the useful regions since we
are confdent that the high-level semantic network module
must deal with smaller missing regions (relative to low-level
regions). In more detail, the low-level semantic module’s
feature map’s patches are deconvoluted using the similarity
score, which is then used to reconstruct the flled feature

map based on the features from the high-level semantic
module.

Formally, we assume that the cross-scale semantic fea-
ture reconstruction network’s i-layer feature of the jth net-
work module is fij. Te following defnition enumerates the
sibling features shared by nearby modules:

simi,j

x,y,x′,y′ �〈
f

i,j
x,y

f
i,j
x,y

�����

�����
,

f
i,j

x′ ,y′

f
i,j

x′ ,y′′

������

������

〉, (3)

where simr,i,j

x,y,x′ ,y′ is the measure of similarity between (x, y)
and (x′, y′) that is unknown. Te adjacent pixels are
smoothed to further enhance the continuity and smoothness
between them:
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simr,i,j

x,y,x′ ,y′ �
􏽐p,q∈ −k,...,k{ }sim

i,j

x+p,y+q,x′,y′

k × k
. (4)

Te output mapping of hierarchical modules represents
various semantic levels for various semantic properties. In
order to keep the semantic information from the preceding
module, we additionally include a trainable parameter λ.

scorei,j

x,y,x′ ,y′ � λ · scorei,j

x,y,x′ ,y′ +(1 − λ) · scorei,j−1
x,y,x′ ,y′ . (5)

Finally, the fnal attention score was used to reconstruct
the sibling features of the lower-level semantic network
module as follows:

􏽢f
i,j−1
x,y � 􏽘

x′∈ 1...W},y′∈ 1...H{ }

scorei,j

x,y,x′ ,y′f
i,j−1
x′,y′ . (6)

3.4. Multiscale Feature Selection and Fusion. A deeper
module is then employed to extract features from the feature
map. Cross-scale procedures can keep the deep network’s
low-level semantic information fowing. It might, however,
include some deceptive background details. With this
technique, we intended to use multiscale feature extraction
to extract information from a wide receptive feld. Four
distinct scales are employed to extract features. To preserve
the balance between performance and efciency, we spe-
cifcally use distinct expansion rates for diferent scale ex-
tractions to obtain a 3× 3 convolution kernel. We consider
the convolution operation gk

r , which has a kernel size of k
and an expansion rate of r. Tus, the following is a defnition
of the feature selection operation:

ff
i,j
x,y � 􏽘

k,r∈ 1,2,4,8{ }

g
k
r f

i,j
x,y􏼐 􏼑, (7)

where ff
i,j
max andff

i,j
mean are the maximum and average

values for each channel that must also be determined, re-
spectively. Te computation of each scale’s attention score
s

k,i,j
r,x,y may then be performed, where the scale and the value

are [1, 2, 4, 8]. Finally, the following formula can be used to
get the cumulative output:

􏽢F
i,j

x,y � g
k
r f

i,j
x,y􏼐 􏼑 × s

k,i,j
r,x,y. (8)

Low-level semantic information may be lost and low-
level semantics may be destroyed when feature mapping
travels through low-level semantic modules. In order to
ensure that low-level semantic information can be trans-
mitted throughout the network, the high-level semantic
module must be paired with the low-level semantic feature
module. In order to achieve this purpose, we reconstruct the
feature as well as the feature from the high-level semantic
module to link through the channel, and the core size is 1× 1
as the output feature. Te output characteristic can be
expressed as follows, assuming that the original input
characteristic is given as F:

F
i,j
x,y � Φ F

i,j
x,y, 􏽢F

i,j

x,y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (9)

4. Experiment Results

4.1. Training Platform, Data, and Evaluation Metrics. Tis
research compares regularly used test datasets in order to
validate our image inpainting strategy. Urban100 [34], DTD
[35], and CelebA [36], are the test datasets. Te main
training performance evaluation metrics are PSNR [37],
SSIM [38], and L1 error. PSNR is a peak signal-to-noise ratio
that serves as an objective measure for image evaluation.
PSNR is the most popular and widely used approach for
evaluating image quality objectively. Te structural simi-
larity index (SSIM) is an image quality evaluationmetric that
compares image brightness, contrast, and structure. Te
training platform and related parameters employed in this
technique are shown in Table 1.

Training settings: Adam, learning_rate� 0.0001, β1 � 0.9,
β2 � 0.999, and Keras 2.7 training platform.

In the experiments comparing the performance of other
methods, the comparison methods were replicated

M

m1 ...

Dmax1 Dmax2 Dmax3

m3m2m1

m2 m3

M

(a)

M

...

xDmax1 xDmax2 xDmax3
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xDad1 xDad2

m1 m3m2m1

m2

m3

M

(b)

Figure 3: Schematic diagram of semantic correlation calculation procedure. (a) Search. (b) Generation.
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according to the literature, and the training process was
conducted on the same platform and data sets. Te number
of iterations of each training procedure is 500, and the total
training epoch is 1000.

4.2. Comparison with Existing Methods. Our proposed
method shows good results on various datasets, as shown in
Table 2. Almost all of the metrics are optimal on the testing
datasets. For PSNR metric, our method achieves the best in
all data sets for diferent mask ratios. For SSIM metric, our
method achieves the best in all data sets for diferent mask
ratios, except on Urban100 dataset with mask ratio 0.4, our
method ranks second with 0.9883, while PSR method ranks
frst with 0.9884. For L1 error, our method has the best
performance, except on CelebA dataset, ranking second with
mask ratios 0.3 and 0.4.

From this, it can be stated that, while the new tech-
nique does not produce the best results in all datasets, it
does so in the majority of them, and its performance is
signifcantly enhanced when compared to the original
methods, demonstrating the new method’s clear benefts.

Te table compares the PSNR, SSIM, and L1 perfor-
mance metrics of several approaches to more clearly illus-
trate the impact of comparison between them. CelebA is one
of them, and it serves as the training data set. 30000 pairs of
training data are obtained after preprocessing, of which 10%
are used as the test data set.

Model size and inference time for the image with a size
of 128 ∗ 128: Inference time for our method is 4.69ms,
which is slightly higher than that of the Pconv method and
PSR method. Te estimated inference time for the image
with a resolution of 720P (1080 ∗ 720) should be less than
263.8ms (56.25 patches with a resolution of 128 ∗ 128).
Inference time details of diferent methods are shown in
Table 3.

5. Ablation Experiment

Te single variable control principle serves as the theo-
retical foundation. We control the modifcation of the
single variable and leave the other variables unaltered in
each group of trials so that the impact of a single variable
or single structure on system performance can be
examined.

Four groups of comparison experiments were designed
in order to verify the operation of each module of the cross-
scale semantic feature restoration approach. RES0ATT0 is
set as the baseline, followed by RES1ATT1, RES0ATT1,
RES1ATT0, and RES0ATT0. RES1ATT1 stands for using
cross-scale feature attention and semantic residuals. Similar
to semantic residuals, cross-scale semantic reconstruction is
not included in RES0ATT0. Te impact of utilizing cross-
scale feature reconstruction and semantic residuals is

demonstrated in RES1ATT1. Te results demonstrated that
the network’s PSNR, SSIM, and L1 performance has im-
proved as a result of the addition of the aforementioned two
components. Te PSNR, SSIM, and L1 metrics have im-
proved by 10.5%, 0.13%, and 47.09%, respectively, over the
benchmark technique RES0ATT0, with the PSNR and L1
indicators showing the most improvement. Te detailed
results are shown in Table 4.

Te result that RES1ATT1 has a benefcial performance
when compared to RES0ATT1 and RES1ATT0 indicates that
the two new structures play an important role in promoting
the network performance. However, with a single structure,
the PSNR, SSIM, and L1 indicators improved by 5.34%,
−0.14%, and 33.86% and 3.43%, −0.10%, and 27.51%, re-
spectively, in comparison to the benchmark network.
Among them, both PSNR and L1 performance metrics have
improved signifcantly, especially the L1 performance, while
SSIM indicators have decreased slightly, but the decline is
almost negligible.

Figure 4 illustrates the PSNR results for various ex-
periment settings. Semantic residual structure is added in
the RES1ATT1 and RES0ATT1 strategies. When compared
to the other two, PSNR of RES0ATT1 increased more
quickly in the beginning, but after around 400 epochs, the
rate of growth slowed down and RES1ATT1 overtook it.
Similar to the RES1ATT0 approach, the RES1ATT1 method
overtook the RES1ATT0 method after around 500 epochs.
Te RES0ATT0 approach performs the worst out of all the
strategies, showing that the cross-scale semantic feature
learning structure and the semantic residual structure both
work well in promoting the network performance.

In Figure 5, similar fndings are also illustrated. Te
similarity of two fgures can be explained by L1 error since it
indicates the overall level of inaccuracy between images.Tis
study demonstrates the beneft of incorporating semantic
residual structure and cross-scale feature attention structure
by demonstrating that the L1 error of RES1ATT1 is caused
by other settings.

Naturally, the SSIM indications show comparable re-
sults. Te SSIM indicators are less distinguishable between
the outcomes than the previous two indicators because they
have been approaching saturation for a long period. As a
result, no in-depth comparison of SSIM is provided here, but
Table 3 shows the average value of the last 20 outcomes.

5.1. Visual Performance Comparison. Tis experiment in-
vestigates the visual experimental results of RDN, Deepfll,
PCONV, RFR, PSR, and other approaches in order to further
validate the comparison of the visual performance of various
image restoration techniques. With 500 iterations of each
epoch, the epoch is set as 1000 and all models run on the
same training and validation datasets. PSNR, SSIM, and L1
are the primary performance evaluation metrics. Te results

Table 1: Training platform and related parameters.

CPU Intel i9 12900K GPU RTX3080
CPU memory 64G, DDR5, 4800MHz GPU memory GDDR6 12G
Operation system Windows 10 Training platform Keras 2.7
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of the experiments demonstrate that the strategy based on
cross-scale semantic feature attention produces the best
performance.

As an illustration, Figure 6 shows that our novel tech-
nique generates results that are 33.518, 0.982, and 0.014,
while the RFR method and PSR method yield results that are
29.602, 0.930, and 0.023 and 32.372, 0.966, and 0.016, re-
spectively. Te outcomes demonstrate that our strategy

outperforms other methods in terms of performance met-
rics. Figures 6∼9 display the similar outcomes.

6. Conclusions

In view of the difculty in semantic level image inpainting
in previous image repair methods, this paper proposes a
cross-scale semantic feature image repair method to

Table 3: Model parameters for image inpainting with size of 128 ∗ 128. Inference time is taken from the average of 20 inference tests.

Method Parameter size (M) Inference time (ms)
Pconv 196 3.90
RFR 119 10.15
PSR 110 3.12
OUR 100 4.69

Table 2: Comparison result of diferent methods.

Index Dataset Urban100 DTD CelebA
Mask ratio 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

PSNR↑

RDN 25.8047 26.0044 27.5418 24.8502 26.1248 28.5307 25.3175 27.4980 29.2314
DeepFill 24.9095 24.1774 24.8977 22.9332 25.4656 25.6100 28.4158 29.3279 28.8496
Pconv 20.5415 20.1884 20.2059 21.1439 21.1842 20.5190 24.2375 24.0591 24.8409
RFR 34.0451 37.3325 33.4948 29.9784 28.3995 30.6775 35.5869 32.5108 29.2596
PSR 34.2673 36.6664 36.5071 35.8867 35.2267 34.9433 37.7040 33.6886 34.2690
Our 34.6323 39.3942 37.8651 37.6460 36.2432 35.9936 38.6528 37.4934 36.6306

SSIM↑

RDN 0.8207 0.8203 0.8689 0.7442 0.8024 0.8571 0.8251 0.8752 0.9086
DeepFill 0.7659 0.7274 0.7610 0.6847 0.7490 0.7344 0.8815 0.8982 0.8639
Pconv 0.6405 0.6081 0.6229 0.6126 0.6365 0.6845 0.7659 0.7585 0.8067
RFR 0.9747 0.9788 0.9512 0.9259 0.9092 0.9513 0.9288 0.9570 0.7723
PSR 0.9798 0.9884 0.9834 0.9767 0.9746 0.9756 0.9845 0.9713 0.9779
Our 0.9856 0.9883 0.9846 0.9794 0.9777 0.9773 0.9851 0.9813 0.9797

L1↓

RDN 0.0261 0.0316 0.0233 0.0379 0.0308 0.0234 0.0259 0.0195 0.0141
DeepFill 0.0412 0.0494 0.0480 0.0520 0.0505 0.0431 0.0274 0.0250 0.0231
Pconv 0.0743 0.0847 0.0733 0.0769 0.0722 0.0812 0.0480 0.0470 0.0453
RFR 0.0178 0.0177 0.0192 0.0173 0.0148 0.0159 0.0182 0.0145 0.0131
PSR 0.0163 0.0148 0.0133 0.0125 0.0116 0.0161 0.0107 0.0119 0.0134
Our 0.0135 0.0096 0.0109 0.0100 0.0114 0.0107 0.0127 0.0132 0.0116

Table 4: Ablation experiment result.

Method Res Attention PSNR↑ SSIM↑ L1↓

RES1ATT1
√ √ 37.6460 0.9794 0.0100
Improvement compared with

baseline 10.50% 0.13% 47.09%

RES0ATT1
× √ 35.8867 0.9767 0.0125
Improvement compared with

baseline 5.34% −0.14% 33.86%

RES1ATT0
√ × 35.2383 0.9771 0.0137
Improvement compared with

baseline 3.43% −0.10% 27.51%

RES0ATT0 × × 34.0685 0.9781 0.0189
— — —

↑ means the bigger, the better; ↓ means the smaller, the better.
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Figure 4: PSNR result for diferent setting.
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Figure 5: L1 error result for diferent setting.
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Figure 6: Inpainting result of Image 3 from dataset CelebaA.
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improve the lack of ductility and continuity of the existing
methods.

Tis approach can capture semantic feature infor-
mation from various scale space in addition to the se-
mantic feature information of the current scale space,
which can help the image inpainting process. Higher

quality image restoration is possible using the semantic
feature information. Te results of the experiment indi-
cated that integrating the cross-scale semantic feature
restoration method can accelerate the spread of semantic
features, which is advantageous for the application of
semantic level image restoration.
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Figure 7: Inpainting result of Image 14 from dataset CelebaA.

0

20

40

60

80

100

120

11.205/0.148/0.157

Input RDN Deepfill PCONV RFR PSR OUR HR

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
31.413/0.940/0.010 33.165/0.949/0.015 24.182/0.826/0.050 25.996/0.943/0.020 30.218/0.911/0.022 35.954/0.984/0.013 PSNR/SSIM/L1

0

10

20

30

40

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
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Figure 9: Inpainting result of Image 219 from dataset CelebaA.
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