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Vehicular edge computing (VEC) has greatly enhanced the quality of vehicle service with low latency and high reliability.
However, in some areas not covered by roadside infrastructures or in cases when the infrastructures are damaged or fail, the
ofoaded tasks cannot have the chance to be performed. Even in the areas deployed with infrastructures, when a large number of
ofoaded tasks are generated, the edge servers may not be capable of processing them in time, owing to their computing resources
constraint. Based on the above observations, we proposed the idea of parked vehicle cooperation in VEC, which uses roadside
parked vehicles with underutilized computational resources to cooperate with each other to perform the compute-intensive tasks.
Our approach aims to overcome the challenge brought by infrastructure lacking or failure and make up for the shortage of
computing resources in VEC. In our approach, frstly, the roadside parked vehicles are managed as diferent parking clusters.
Ten, the optimal amount of resources required for each ofoaded task is analyzed. Furthermore, a task ofoading algorithm
based on deep reinforcement learning (DRL) is proposed to minimize the total cost, which is composed of the task execution delay
and the energy consumption overhead of the parked vehicles for executing the task. A large number of simulation results show
that, compared with other algorithms, our approach not only has the highest task completion execution successful rate, but also
has the lowest task execution cost.

1. Introduction

In recent years, with the rapid development of Internet of
vehicle (IoV), more and more vehicles are equipped with
wireless devices, trip computer, as well as a serial of sensors.
Tese vehicles are called intelligent vehicles. Consequently,
many feasible applications (e.g., real-time driving moni-
toring, dangerous vehicle recognition, and autonomous
driving) over IoV are emerging to facilitate the drivers. IoV
is expected to change the way we drive and improve our
driving experience greatly in the near future.

Some applications over IoV demand a lot of computing
resources and are delay sensitive, such as real-time road
condition analysis and recognition, and the voice-based
human vehicle dynamic interaction [1, 2].Tese applications
usually involve complex calculation, which are called
compute intensive tasks. In addition, these applications

often have strict delay limitation, which need to obtain the
processing results in real time. Nevertheless, the charac-
teristics of the on board equipment of vehicles such as in-
sufcient computing capacity and limited storage capacity
seriously afect the quality of the vehicle service, thus af-
fecting the driving experience and vehicle safety.

Cloud computing can usually provide users with suf-
cient and secure computing and storage services. In cloud
computing, vehicles can access the cloud platform and then
use the huge resources on the network, which makes up for
the shortage of resources in the vehicle itself. However, the
transmission of data usually results in high delay in this
method. Terefore, it still cannot solve the problem of task
delay limitation. Vehicular edge computing (VEC) [3] is an
efcient way to resolve the abovementioned problem. In
VEC, multi-access edge computing (MEC) is introduced
into the IoV, that is, by placing the server with powerful
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computing capability at the edge of the road, compute-in-
tensive tasks can usually be ofoaded to the nearby edge
server for efcient execution.

Many studies [4, 5] have been focused on VEC and
showed that VEC enhances the service quality of vehicle
greatly. However, most of the existing studies generally
assumed that the edge servers are deployed near roadside
units (RSUs), and the task ofoading is realized on such
framework. Tis edge server deployment approach has the
following disadvantages:

(i) Te construction of RSUs and edge servers will
incur high cost, and RSU has limited communi-
cation range. Tus, it is not possible for them to
cover every area of the city.

(ii) RSUs may be damaged accidently. Tey may also
fail in a disaster. For example, in July 2021, the 48
hours of heavy rain in Henan province of China
incurred great damage to the communication in-
frastructures, which resulted in a long time of
communication interruption in Zhengzhou, China.

(iii) Te computing capacity of the edge servers is
limited in VEC. When a large number of ofoaded
tasks are generated, the edge servers may not be
capable of processing them in time owing to their
computing resources constraint.

We fnd that there are a large number of parked vehicles
in the city. Tese parked vehicles have stable and unused
computing and storage resources. Meanwhile, many com-
pute intensive tasks support distributed computing [6, 7].
Based on the above facts, in this paper, we propose the idea
of parked vehicle cooperation in VEC, which uses parked
vehicles on and of the street to cooperate with each other to
perform compute-intensive tasks, that is, roadside parked
vehicles are organized into static service nodes and multiple
vehicles are utilized to process a task request in parallel.
Specially, under the condition that infrastructures are not
deployed or damaged, parked vehicles could still work.
Meanwhile, as natural edge servers, organized parked ve-
hicles can also provide assistance to the edge servers
deployed in practice to perform ofoaded tasks handling,
with the aim of solving the problem of resource shortage of
the edge servers.

Te main contributions we have made in this paper are
summarized as follows:

(i) We propose the idea of parked vehicle cooperation
in VEC for task ofoading. Our approach could
overcome the challenge brought by the inadequate
deployment of RSUs or the damage of RSUs when
accidents or disasters happen, and make up for the
shortage of resources in physical deployed edge
servers.

(ii) We organize the parked vehicles within a certain
range on the road into parking clusters, and then
analyze the task execution delay and the energy
consumption of parked vehicles when performing
the task.

(iii) We establish an optimization model to analyze the
optimal amount of resources allocated to each
ofoaded task by the parking cluster, and propose a
task ofoading strategy based on deep reinforce-
ment learning (DRL) [8].

(iv) Experimental results show that the proposed
strategy has better ofoading performance com-
pared with other ofoading strategies.

2. Related Work

In recent years, scholars at home and abroad have conducted
a lot of researches on task ofoading in VEC, and these
works basically fall into two categories.

Te frst one only uses physically deployed edge servers
to handle the ofoaded task. For example, given that a single
MEC server cannot meet the large number of task ofoading
requirements, Zhang et al. [9] designed a joint task of-
loading scheme, which forwards tasks to surrounding edge
servers when a server is overloaded. Tang et al. [10] used
deep reinforcement learning to realize task ofoading, so as
to deliver the task efciently to the target edge server.

Moreover, in [11], the authors combineMEC technology
with social network to improve the service quality and user
experience. In [12], the authors prove that the minimization
of task execution delay is NP hard and propose a greedy
algorithm to deal with task ofoading. Troughout these
works, the help of the edge servers relieves the resources
shortage in vehicle to some extent. Nevertheless, owing to
the computing resources constraint of the edge servers,
when a large number of ofoaded tasks are generated, some
tasks may not be processed within the constrained time.

Te second one handles the task requests of vehicle users
through resources expansion. In [13, 14], the authors present
the collaboration between MEC and remote clouds to
provide users with powerful computing and storage ca-
pacity. As we have illustrated above, the delay of data
transmission in cloud computing is intolerable for many
vehicle applications. In [15], the authors show the fog
computing system they designed, in which the mobile buses
are used to perform the task shared by roadside units.
Similarly, in [16–18], the authors put forward the assistance
from the moving vehicles to execute the tasks ofoaded to
edge server. However, due to the high mobility of vehicles
and the variable trafc conditions, the communication be-
tween the edge servers and the moving vehicle as well as
among the moving vehicles are not stable, which makes the
task difcult to be completely ofoaded. Moreover, Wu [19]
propose an edge computing task ofoading framework based
on parked vehicle to solve the problem of overloading in
edge servers. Huang et al. [20] propose to dispatch the
parked vehicles on demand through the deployed MEC
server. However, these two works neglect the efcient or-
ganization of the parked vehicles and systematic manage-
ment of their computing resources, which is of vital
importance in task ofoading.

At present, there are many studies [21–25] using deep
neural network to solve the task ofoading problem in VEC.
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Xu et al. [26] conduct an exhaustive survey on utilizing AI in
edge service optimization in IoV. However, the shortcoming
of most of these works is that the assumption of the scenario
is generally too simple, and the situation space is quite small.
For example, in [21], the authors only considered the sce-
nario that one vehicle ofoads tasks to multiple nearby edge
servers. In fact, there are many vehicles on the road generate
tasks, and one vehicle may generate more than one task
simultaneously.

In this paper, we add the underutilized roadside parked
vehicles to VEC, and consider the actual situation in which
multiple mobile vehicles generate multiple tasks at the same
time. As far as we know, this is the frst attempt to solve the
simultaneous task ofoading from multiple vehicles to
parked vehicles using DRL.

3. Framework Overview

3.1. Assumptions.

(1) We assume each ofoaded task can only be processed
on only one edge server, as researchers in [4, 27].Te
edge server we focus on in this paper is the virtual
server formed by the parked vehicles within an area.

(2) Since the computing resources of the vehicle are
limited, we assume that only one task can be pro-
cessed in a parked vehicle at a time.

(3) We assume that some parked vehicle owners have
the willingness to share the resources of their vehicle.
In [28, 29], the authors proposed that the parked
vehicles with rich and underutilized computation
resources in city areas could be explored for the
purpose of providing third-party services. Further-
more, literature [30] attempted to use parked ve-
hicles to assist content distribution in vehicular ad
hoc networks. We believe that there will appear
efective incentive mechanisms, such as task of-
loading priority, free parking or monetary reward,
which would encourage the vehicle owners to share
their vehicle resources(computation and storage)
while parking.

3.2. SystemFramework. Te system framework in this paper
is given in Figure 1, which includes moving vehicles on a
road and parked vehicles on the roadside. Data transmission
between vehicles is carried out in vehicle-to-vehicle (V2V)
mode [31]. In order to organize the parked vehicles efec-
tively and make them cooperate well with each other, the
parked vehicles on a street are managed as diferent parking
clusters. Parking clusters serve as virtual edge servers to
perform the computing tasks ofoaded from surrounding
moving vehicles. In order to reduce the task transmission
delay, the maximum length of a parking cluster is limited to
Lmeters. For each parking cluster, one vehicle located in the
middle of the cluster is elected as the cluster head. After the
cluster head is determined, other remaining vehicles are
acted as cluster members.

Let the set of parked vehicles in a parking cluster be
SeV� {1, 2, . . ., M}, each element in the set marks a parked
vehicle in this cluster, and the total number of parked ve-
hicles is M. Members of the parking cluster regularly send
beacon messages to tell their status and information, such as
ID number, remaining battery capacity, and whether a task
is being performed to the cluster head. Te cluster head
manages vehicles member and maintains the cluster
structure according to the received information. Te cluster
head is also responsible for collecting task requests from the
moving vehicles on the road where the cluster is located and
responsible for the allocation of resources of members. Since
the cluster head may move away at any time, a neighbor of
the cluster head is used as a backup cluster head to maintain
a copy of the information stored by the cluster head to
enhance the robustness of the cluster.

Assuming that the task set generated by moving vehicles
is Q� {1, 2, . . ., N}, and each task is associated with a
quadruple. For example, task Qi is represented as
(ci, si, yi, ti

max), where the four parameters indicate the size
of the task, the amount of resources required to execute the
task (number of CPU cycles), the size of the result returned
by the task, and the maximum delay tolerated by the task,
respectively. According to literature [11], the relationship
between these four parameters can be expressed as follows:

si � αci,

yi � βci,
(1)

where α represents the computational complexity of the task
and β is the ratio between the size of the task completion
result and the size of the task. In order to simplify the model,
α as well as β is assumed to have the same value for all the
computational tasks in this paper.

In Figure 1, intelligent vehicles moving on the road
generate computing tasks randomly. Te source vehicles
have limited computing and storage capabilities. Tus, for
some tasks that the local executing time doesn’t exceed the
maximum tolerated delay, they could be processed locally.
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Figure 1: System framework.
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For other tasks that cannot be completed locally within the
maximum tolerated delay, they should be ofoaded to the
parking cluster for execution.

Te source vehicle will send the driving speed, current
location, and the task information carried by itself to the
cluster head of the parking cluster in its range (phase 1 in
Figure 1). Based on the collected requests, the cluster head
analyzes the optimal amount of resources required by the
task and determines the optimal location for each task to be
ofoaded according to the DRL-based task ofoading policy
described in Section 5. Te task ofoading is performed
accordingly (phase 2 in Figure 1). When the available re-
sources in the parking cluster are not sufcient to perform a
task, this task is executed locally. If the time required to
obtain the task result exceeds the maximum allowable delay
of the task, the task execution is considered to be failed.

3.3. Stability Analysis. Te status of the parked vehicles on
the road is dynamic. Te reason is that the parked vehicles

may join or drive away from the cluster anytime. In order to
provide reliable computing support for ofoaded tasks, the
parking cluster must be relatively stable. In this section, the
distribution function model of the change of vehicle
numbers in the parking cluster is established.

Literature [32] proved that the number of members
joining and driving away from the parking cluster followed
the Poisson process of B cars per second and K cars per
second, respectively. Let the number of cars joining and
driving away be B(t) and K(t) with the probability distri-
bution as follows:

P(B(t) � b) �
(Bt)

b

b!
e

− Bt
, b � 0, 1, 2 . . . ,

P(K(t) � k) �
(Kt)

k

k!
e

− Kt
, k � 0, 1, 2 . . . .

(2)

Ten, the probability of n more members joining in the
cluster, that is, the probability of B(t) − K(t)� n is as follows:

P(B(t) − K(t) � n) � 􏽘
∞

i�0
P(B(t) � i + n)P(K(t) � i) � 􏽘

∞

i�0

(Bt)
i+n

(Kt)
i

(i + n)!i!
e

− (B+K)t
. (3)

Similar to equation (3), the probability of n members
missing in the cluster within this time is as follows:

P(K(t) − B(t) � n) � 􏽘
∞

i�0

(Bt)
i
(Kt)

i+n

(i + n)!i!
e

− (B+K)t
. (4)

Figure 2(a) describes the distribution function of in-
creasing number of parked vehicles after diferent time t.
According to literature [29], B� 0.000 and K� 0.0003, that
is, on average, 3 cars enter the parking cluster every hour and
1 car drives away from it. Figure 2(b) describes the distri-
bution function of the reduction of parked vehicles number
after diferent time t, where b� 0.0008 and K� 0.0013. As
shown in Figure 2, after 20 seconds, the probability of in-
creasing or decreasing 1 car in the cluster is less than 2%, and
after 60 seconds, the probability of increasing or decreasing 1
car in the cluster is less than 5%. Terefore, the members of
the parking cluster are relatively stable, and the change of the
vehicle numbers in the parking cluster has slight infuence
on the calculation of the ofoading tasks.

4. Task Execution Cost Calculation

4.1. Task ExecutionDelay. For the task Qi, if it is executed by
the vehicle terminal locally, the execution delay is as follows:

Ti � T
local
i �

si

f0
, (5)

where f0 is the computing capability of the moving vehicle.
If Tlocal

i does not exceed the maximum tolerated delay of
the task ti

max, the task can be successfully executed locally.
Otherwise, the task should be ofoaded to the parking
cluster. And multiple parked vehicles in the parking cluster

will execute the task in parallel to speed up the execution of
the task.

If task Qi needs to be ofoaded, the task should be di-
vided into several subtasks according to the resources ob-
tained from the parking cluster. Te execution delay of each
subtask is composed of three parts, namely, data ofoading
delay T

up
ij , calculation delay T

compute
ij on parked vehicle j, and

result return delay Tdown
ij . Te task is completed only when

all subtasks are fully calculated and the execution result is
returned to the moving vehicle. Terefore, the maximum
execution delay of each subtask is taken as the task execution
delay. Te completion delay of this task is expressed as
follows:

Ti � max
j

T
up
ij + T

compute
ij + T

down
ij􏼐 􏼑. (6)

Te delay of each subtask is calculated as follows:

T
up
ij � 􏽘

hij

k�1

cij

Cvel
+

lij − hR

vj

,

T
compute
ij �

sij

fj

,

T
down
ij � 􏽘

hij ’

k�1

yij

Cvel
+

lij’ − hij’R
vj

.

(7)

where fj represents the computing capacity of parked ve-
hicle j, and Cij is the size of subtask ofoaded on the vehicle
j, and sij is the total computing resources required by the
subtask. Tese two parameters can be obtained according to
Section 5.1, lij is the distance between the moving vehicle
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generating the task and the parked vehicle j performing the
task, and lij′ is the distance between the parked vehicle j and
the moving vehicle when the task results are returned, which
can be predicted by the speed and initial position of the
moving vehicle. Data is transmitted in a store-and-forward
way among vehicles.Te subtask reaches the parked vehicle j
after hij hops between vehicles, and the task result is
returned after hij

′ hops after completion of calculation. Cvel
represents the throughput of data forwarding between ve-
hicles, R is the transmission radius of vehicles, vj is the
average speed of moving vehicles on the road where the
parking cluster is located. For the hop number hij, we have
the following formula:

hij �
ρlij 􏽒

R

0 ρe
− ρzdz 􏽒

R

0 zρe
− ρzdz

R
�

lij

R
1 − e

− ρR
􏼐 􏼑, (8)

In the above formula, ρ is the vehicle density on the street
where the parking cluster is located, which can be obtained
from the electronic map of vehicle equipment. Te calcu-
lation method of hij

′ is similar to equation (8).

4.2. Energy Consumption Analysis of Parked Vehicles. If the
task is ofoaded to the parked vehicle for execution, the
parked vehicle will receive the task data, execute the task,
and output the results, and the energy consumption of the
parked vehicle is the sum of all the three parts of energy
consumption. For the owners of parked vehicles, they
want to reduce their energy consumption as much as
possible while performing tasks. Moreover, if the battery
energy is exhausted due to the execution of tasks, the
vehicle cannot be started, resulting in serious conse-
quences. Tus, the energy saving in parking vehicles
should be considered.

Given that the vehicle transmits power Pu and the ve-
hicle receives power Pd, the total energy consumption of the
parked vehicle for performing task Qi is as follows:

E‘i � 􏽘
j

P
u
T
up
ij + δf

2
jT

compute
ij + P

d
T
down
ij􏼐 􏼑, (9)

where δ represents the calculated energy consumption co-
efcient of the task.

4.3. Task Execution Cost. Te proposed task ofoading
scheme should pursue the smallest task completion delay.
Meanwhile, considering the battery capacity of the parked
vehicle, it is necessary to try to reduce the energy con-
sumption of the parked vehicle when performing the task.
Terefore, the execution cost of each task is defned as the
weighted sum of the two, and the corresponding execution
cost of task Qi is calculated as follows:

costi � λTi + (1 − λ)Ei, (10)

where λ represents the weight factor. Ten, the total task
execution cost is as follows:

cost � 􏽘
N

i�1
costi, (11)

where N represents the total number of all the tasks, while Ti

and Ei could be obtained by equations (6) and (9)

5. Task Offloading Scheme

5.1. Optimal Resources Determination. In order to realize
reasonable task ofoading, it is necessary to determine the
optimal resources allocated to each ofoading task. Assume
that each task has a resource set R � 1, 2 . . . , rm

i , . . . rmax􏼈 􏼉,
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Figure 2: Distribution function of change number of vehicles in cluster (a) vehicle increasing (b) vehicle decreasing.
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where rmax is the maximum computing resources that can be
assigned to each task.When the resources assigned to taskQi

is rm
i , the execution time is ci/rm

i . In this paper, the resource

allocation problem is expressed as the following optimiza-
tion problem, with the purpose of minimizing the execution
time of all of the tasks ofoaded in total.

P: min f � 􏽘
N

i�1
􏽘

rmax

m�1

ci

r
m
i

x
m
i ,

s.t. x
m
i ∈ 0, 1{ },∀i ∈ 1, 2, . . . N{ },∀m ∈ 1, 2, . . . , rmax( 􏼁,

􏽘

N

i�1
􏽘

rmax

m�1
r

m
i x

m
i ≤Rj,

􏽘

rmax

m�1
x

m
i ≤ 1,∀i ∈ 1, 2, 3, . . . N{ }.

(12)

In the above optimization model, constraint (12) indi-
cates that xm

i can only be 0 or 1, where xm
i � 0 indicates that

the resource item is not selected and xm
i � 1 otherwise.

Constraint (12) guarantees that the sum of resources ob-
tained by the tasks from the parking cluster does not exceed
the available resources of the parking cluster. Rj in this
formula represents the maximum available resources of
parking cluster j. Constraint (12) ensures that each task can
only take at most one source item from set R.

If each parking cluster is regarded as a knapsack, and the
maximum weight constraint of knapsack j is Rj, then P is a
knapsack problem as follows: within the limit of the max-
imum weight of the knapsack, for each task, one element is
selected from its resource set and put into the backpack, so
that the total value in the knapsack is minimized. In this
paper, as shown in Algorithm 1, a greedy algorithm is used
to solve this problem.

Assuming that the set of tasks is T, the maximum re-
sources can be assigned to each task is rmax, and the total
available resources of the parking cluster is Rj. We used R as
the current available computing resources of the parking
cluster, which is initialized as Rj. As depicted from line 3 to
line 14, as long as there are still some tasks in T, the task i0
and resource item m0 with minimized execution time are
selected for resources allocation.

Since we assume that only one task can be processed in a
parked vehicle at a time, after the optimization scheme is
solved, the number of total parked vehicles assigned to each
task can be obtained, and therefore the number of subtasks
of the ofoaded task is gotten.

5.2. Task Ofoading Algorithm Based on DRL. Compared
with traditional machine learning methods, deep rein-
forcement learning (DRL) is capable of dynamic learning,
which could learn new handling strategies based on new
complex situations encountered by the vehicles, and even
generalize to other similar situations. It will also constantly
adjust the ofoading strategy to achieve the best return.
Terefore, here, DRL is used to assign ofoaded tasks to
parked vehicle members in parking cluster. Te main ele-
ments of DRL model used in this paper are as follows:

(1) Agent: as an intelligent agent in the deep rein-
forcement learning model, it is responsible for
making action decisions while interacting with the
environment. In the hypothetical scenario of this
paper, the cluster head acts as the agent of the model.
It collects characteristic information of moving ve-
hicles and tasks, assigns specifc parked vehicles to
the ofoaded task, and keeps learning in an iterative
way to achieve the optimal task ofoading with
minimized total costs.

(2) State: an appropriate representation of feature states
is crucial for DRL models. In this model, the size of
the task, the maximum tolerant delay, the current
position and speed of themoving vehicle all afect the
ofoading decision, so si � (Ci, Li, Vi, Di) is used to
represent the state characteristics of the environ-
ment, where Ci, Li, Vi, Di is the set of task size,
moving vehicle position, driving speed and maxi-
mum tolerable delay in the current state,
respectively.

(3) Action: the action set in the state of si is repre-
sented as ai � (ai1, ai2, . . . , aiM), where 1,2, . . ., M
indicate the serial number of parked vehicles
within the parking cluster. We have aij ∈ 0, 1{ },
and aij � 1 indicates that task Qi would be of-
loaded to the parked vehicle j. Subject to the
tolerated delay, each task might be performed
locally or ofoaded to the parked vehicles. If the
task is executed locally, we have 􏽐

M
j�1 aij � 0. If

multiple parked vehicles are selected as the des-
tination of an ofoaded task, we have 􏽐

M
j�1 aij > 1.

Generally in DRL, the sum of aij is either 1 or 0.
However, in our DRL model, the sum of aij is
greater than 1, which is diferent from any other
works based on DRL.

(4) Reward: Every time the agent makes a decision, it can
get an immediate reward. Considering that we wish
the task completion rate is as high as possible while
the task execution cost is minimized, the reward
calculation method of task Qi is as follows:
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ri �

τs rate
λTi +(1 − λ)Ei

if Ti ≤ ti
max

,

0 else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

where s_rate represents the completion rate of the
task after the end of the current iteration cycle, and
the larger the completion rate, the better the decision
of the current round. τ is the expansion factor of the
reward, with the aim of preventing the reward value
from being too small to lead to the slow gradient
descent speed. In this paper, the value of τ is 100.

(5) Policy: due to the large action space, it is difcult to
get a good result by predicting action value through
neural network. Terefore, this paper directly takes
softmax output of neural network as a strategy, and
the probability of choosing parking vehicle j to ex-
ecute the task in state si is as follows:

πθ si, aij􏼐 􏼑 � P aij si, θ
􏼌􏼌􏼌􏼌􏼐 􏼑. (14)

Te actions are chosen according to the above for-
mula in the actual decision. For example, if the task is
divided into three subblocks, then the three actions
with the highest probability are chosen.

(6) Objective function: the objective of the proposed
scheme in this paper is to fnd the optimal ofoading
strategy π∗ and maximize the expected reward value
of future multiple scheduling cycles (i.e., minimize
the task execution cost). Terefore, the objective
function based on strategy entropy [33] is adopted to
update the parameter θ by gradient descent. Te
objective function is as follows:

L(θ) � − Ei Qπ si, ai( 􏼁Ej logπθ si, aij􏼐 􏼑􏼐 􏼑􏽨 􏽩 , (15)

where Qπ(si, ai) represents the action value obtained by
executing action ai in state si, and the calculation method is
as follows:

Qπ si, ai( 􏼁 �
ri if si is the terminated state,

E ri + cQπ si+1, ai+1( 􏼁( 􏼁 else.
􏼨 (16)

In the above equation, c is the attenuation factor.
Performing the action ai in state si will get an immediate
reward ri. Te next state is denoted as si+1. Te pseudo-code
of DRL based task allocation in this paper is shown in
Algorithm 2.

Tis DRL based task ofoading algorithm use the feature
vector φ(si) of state si as the input of the neural network and
use the softmax output of the neural network as the
probability of selecting each action. As depicted in line 13,

the parameters θ of the neural network are updated using
batch gradient descent algorithm.

6. Simulation Results

In order to evaluate the performance of the proposed
DRL-based task ofoading strategy, simulation experi-
ments in Python are conducted in this section. In the
simulation, the road is a two-way lane, and the length of

(1) Input the set of tasks T, the maximum resources can be assigned to each task rmax, and the total available resources of the parking
cluster Rj.

(2) use R as the current available computing resources of the parking cluster, initialize R� Rj.
(3) while T! � ∅ do
(4) if R> 0 then
(5) for each task i in set T do
(6) for each m (m≤ rmax and m<R) do
(7) Select the i and m with minimized ci/rm

i , denoted as i0 and m0
(8) end for
(9) end for
(10) else
(11) break;
(12) allocate m0 resources to task i0
(13) T:�T − i0
(14) R:�R − m0
(15) end if
(16) end while

ALGORITHM 1: Te optimal resources allocation.
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the parking cluster is 1000 meters. Te speed of moving
vehicles obeys the uniform distribution among [40 km/s,
80 km/s]. Te vehicle-to-vehicle communication com-
plies with IEEE 802.11p protocol, and the communica-
tion radius is 250m. Each moving vehicle generates
calculation tasks randomly. Te size of each task obeys
the uniform distribution of [2Mb, 4Mb]. Te computing
resources of each vehicle is 0.4 GHz, and the vehicle
transmission and reception power is Pu � Pd � 0.1W. For
the resources required by the calculation task and the
return size of the result, α � 1.25, β � 0.1. Te weight
parameters of time cost and energy cost are 0.6 and 0.4,
respectively. Te neural network model used in this
paper includes 2 hidden layers, and the number of
neurons is 512 and 256, respectively. Relu is selected as
the activation function, and diferent state features are
placed in the same order of magnitude through nor-
malization before training, so as to reduce the infuence
of features with large variance on the model.

In the process of training, the learning rate controls
the step size of gradient descent. Too large learning rate
may make the model exceed the optimal value and fail to
converge; too small learning rate may lead to low model
optimization rate and even make the model fall into local
optimal. Terefore, it is very important to choose an
appropriate learning rate. In Figure 3, the training efects
of the model proposed in this paper under diferent
learning rates are analyzed. As can be seen from Figure 3,
when the learning rate is 0.001, the completion rate of
computational tasks does not change signifcantly with the
progress of training. Obviously, the model converges
slowly owing to the fact that the learning rate is too small.
When the learning rate is 0.1 and 0.05, although the model
converges quickly in the early stage, the completion rate
fuctuates greatly in the later stage, this is because the
learning step is too large, which leads to the model os-
cillating around the optimal value. When the learning rate
is 0.01, although the model converges slowly in the early
stage, certain optimization efect can still be achieved in
the later stage. Terefore, as shown in Figure 3, the

learning rate used in this paper gradually decreases with
the training. Te initial value of learning rate is 0.1, and it
decreases by 0.005 after 1000 training cycles, which not
only ensures the model optimization rate in the early
stage, but also ensures stable convergence in the later
stage.

Attenuation factor is also an important hyper pa-
rameter in the deep reinforcement model, this can be
explained by the fact that in a decision problem with a
long period, it is necessary to consider not only the im-
mediate reward but also the future reward. Figure 4 re-
fects the infuence of diferent attenuation factors on
model training. It can be seen from the fgure that when
the attenuation factor is small, the model in this paper can
achieve better training efect.

After parameter adjustment, the important hyper
parameter settings of DRL network model proposed in
this paper are shown in Table 1.

Te performance of the proposed scheme is verifed by
comparing with other two task ofoading schemes, which
are local computing and random ofoading.

Local computing (LC): all tasks are executed locally. If
the completion time exceeds the maximum allowed
delay, the task fails to be executed.
Random ofoading (RF): the task is executed locally if
the local execution time meets the delay requirement.
Otherwise, several parked vehicles are randomly se-
lected to execute the task. If the completion time ex-
ceeds the maximum delay, the task fails to be executed.

6.1. Impact of Computing Resource Quantity on Ofoading
Performance. Tis group of experiments mainly evaluate the
impact of task computational complexity on the perfor-
mance of each task ofoading scheme. Te computational
complexity of the task, that is, the amount of resources
required per bit of data, varies from 900 round/bit to
1200 round/bit. Te experimental results are shown in
Figures 5 and 6.

(1) Initialize step length Step, attenuation factor c, sample number of gradient descent batch size.
(2) Initialize the parameters θ of the neural network randomly and initialize the experience replay bufer D.
(3) for each episode do
(4) Initialize the environment state, get its feature vector φ(s0).
(5) for each iteration do
(6) Use φ(si) as the input, obtain the softmax output of the neural network. Select action ai according to equation (14)
(7) Execute the action ai, observe the new environment state si+1, and gets the corresponding immediate reward ri

(8) Put the quadruple φ(si), ai, ri,φ(si+1) into the experience replay bufer
(9) if si+1 is the terminated state then
(10) break; //end this iteration
(11) end if
(12) end for
(13) Obtain batch size samples from the experience replay bufer D, and update the parameters θ of neural network through

minimizing the objective function in equation (16) using batch gradient descent algorithm.
(14) end for

ALGORITHM 2: DRL based task ofoading.
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As can be seen from Figure 5, with the increase of task
computational complexity, the task completion rates of the
three schemes declined. Tis is because when the local
computing resources and the computing resources of parked
vehicles remain unchanged, the more computing resources

required by a task, the longer the computing time is required
by each task and subtask. It results in an increase in the task
execution delay. Terefore, the task completion rate keeps
decreasing when the task tolerance delay is constant. When
the computational complexity is 1200 round/bit, the task
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Figure 3: Efects of diferent learning rates on model training.
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Figure 4: Efects of diferent decay factors on model training.

Table 1: Hyper parameters of task ofoading model.

Parameter Value Annotation
Batch_size 80 Size of the training batch
c 0.2 Attenuation factor
Learning_rate 0.1 Initial value of learning rate
Step 80 Step
Layer 1 512 Number of neurons in the frst layer
Layer 2 256 Number of neurons in the second layer

Mobile Information Systems 9



completion rate of the local computing scheme is only 9%
and that of the random unloading scheme is 22%, while that
of the scheme proposed in this paper is 45%. It can be seen
that the task ofoading success rate of the strategy proposed
in this paper is always higher than that of the comparison
strategy. Compared with random ofoading scheme and
local execution scheme, the task completion rate of the
proposed scheme is increased by 23% and 36%, respectively.
Tis shows that even with the increasing computational
complexity, the strategy proposed in this paper can allocate
parking resources better through reinforcement learning,
thus improving the task completion rate.

Figure 6 shows that with the increase of task compu-
tational complexity, the total task execution costs of the three
ofoading schemes all show an upward trend.Tis is because
when the computational complexity increases, the task
calculation time increases and the resulting calculation
energy consumption of parked vehicles increases. It can also
be seen from Figure 6 that the total task cost of the algorithm
proposed in this paper is the lowest. When the computa-
tional complexity is the highest, compared with the local
execution scheme, the total consumption of random of-
loading scheme is reduced by 40, while the total cost of the
scheme proposed in this paper is reduced by 90. As can be
seen from Figures 5 and 6, the scheme proposed in this paper
can guarantee the success rate of the task and at the same
time have a low energy consumption of parked vehicles.

6.2. Impact of Task Number on Ofoading Performance.
Tis group of experiments mainly discuss the changes of
two performance indexes, task completion rate and total
execution cost of each strategy while the number of tasks
changes. In the experiment, the computational com-
plexity of tasks remained at 1000 round/bit, and the
number of tasks gradually increased from 8 to 80.

While the number of tasks is increasing, the limited
parking vehicle resources are not enough to provide task
ofoading and computing services for the excessive tasks.
Terefore, in Figure 7, as the number of tasks increases,
the task completion rate of LC, random ofoading and
the strategy proposed in this paper presents a downward
trend, while the completion rate of the strategy proposed
in this paper is far higher than other strategies. As
Figure 8 shows, in the case of constant computational
task complexity, with the increase in computing tasks,
the total task execution cost of the three schemes in-
creases. While the number of tasks is less than 10, the
diference among the total cost of the three schemes is
not big. However, with the increase of number of tasks,
the gap of the total task execution cost of the proposed
scheme and that of the two comparison schemes is more
and more big. When the number of tasks is greater than
48, the reduction rate of the completion rate of the
proposed ofoading scheme in Figure 7 is signifcantly
accelerated, and the total task execution cost of the three
schemes in Figure 8 increases at approximately the same
rate. Te reason is that when there are too many tasks, the
parked vehicles on the roadside cannot meet the task
execution request. As a result, computing tasks can only
be executed locally. By comparing the changes of total
cost and completion rate of the three schemes with the
number of tasks, it can be seen that the scheme proposed
in this paper can better cope with a large number of tasks
and complete as many tasks as possible with a smaller
cost.

6.3. Impact of Vehicle Speed on Ofoading Performance.
Tis group of experiments studies the infuence of moving
vehicle speed on ofoading performance. Te experimental
results are shown in Figures 9 and 10. In the experiment, the
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Figure 5: Relationship between task completion rate and com-
putational complexity.
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Figure 6: Relationship between total execution cost and compu-
tational complexity.
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computational complexity of tasks is kept at 1000 round/bit,
the number of tasks is 80, and the value range of moving
vehicle speed is [40 km/h, 80 km/h]. As shown in Figures 9
and 10, when the moving vehicle speed increases, the task
completion rate of the scheme proposed in this paper in-
creases frst and then decreases, while the total execution cost
decreases frst and then increases. When the moving vehicle
speed is about 50 km/h, the task completion rate is the highest
and the execution cost is the lowest. Tis is because when the
vehicle speed is low, with the increase of the speed, the
connectivity between vehicles is enhanced and the trans-
mission delay becomes smaller, so the execution time of the

task is reduced and the completion rate is increased. However,
when the speed exceeds 50 km/h, due to the excessive speed,
the moving vehicle will be far away from the signal range of
the parked vehicle performing the task quickly, and the task
result needs multiple hops to return, which leads to exces-
sively long transmission delay and transmission energy
consumption. Tis group of experiments shows that the
ofoading scheme in this paper can make maximum use of
the resources of the parking cluster to complete the ofoading
task and efectively control the execution cost of the task.
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Figure 7: Relationship between task completion rate and task
number.
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Figure 8: Relationship between total execution cost and task number.
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Figure 9: Relationship between task completion rate and vehicle
speed.
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7. Conclusion

Inspired by the widespread distribution of parked vehicles
with a large number of idle computing resources in urban
areas, this paper proposes to make parked vehicles cooperate
with each other to perform compute-intensive tasks in VEC.
Specially, our approach could still work in the event of a lack
of infrastructure or infrastructure failure due to disasters.
Meanwhile, it could also solve the problem of resources
constraints of the edge servers. For task scheduling and
allocation, an optimization model is proposed to analyze the
optimal amount of resources allocated to each ofoading
task by parking clusters, and a task ofoading algorithm
based on DRL is elaborately designed to determine the
ofoaded destination of each subtask. Te simulation results
show that the proposed algorithm can efciently utilize the
parked vehicle resources, improve the ofoading success rate
of the task, and reduce the execution cost of the task. In the
future, the DRL algorithm and model structure will be
optimized, and complex environmental factors such as radio
interference will be considered to cope with the complex and
changeable IoV environment.
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