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SUMMARY KEYWORDS

The role of NMDA and non-NMDA
glutamate receptors in long-term potentiation
has been intensely investigated, yet recent
evidence on the dynamics of synaptic
depolarization suggests that the original view
should be extended. NMDA receptor-mediated
currents, apart from their Ca2+ permeability,
show a marked voltage dependence, consisting
of current increase and slowdown during
membrane depolarization. During high-
frequency synaptic transmission, NMDA
current increase and slowdown are primed by
non-NMDA receptor-dependent depolariza-
tion and proceed regeneratively. Thus, NMDA
receptors make a decisive contribution to
membrane depolarization and spike-firing.
From the data obtained at the mossy fiber-
granule cell synapse of the cerebellum, we
propose that the electrogenic role of NMDA
receptors is functional to LTP induction.
Moreover, during LTP, both NMDA and non-
NMDA receptor currents are potentiated, thus
establishing a feed-forward mechanism that
ultimately enhances spike firing. Thus, NMDA
receptors exert an integrated control on signal
coding and plasticity. This mechanism may
have important implications for information
processing at the cerebellar mossy fiber-
granule cell relay.
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INTRODUCTION

Synaptic transmission at glutamatergic
synapses of the vertebrate central nervous system
is brought about by the activation ofN-methyl-D-
aspartate (NMDA) and non-NMDA receptors. In
the past decade, several investigations have
addressed the biophysical and molecular aspects
of glutamatergic transmission (for review, see
McBain, 1994; Edmonds et al., 1995; Kaczmarek
et al., 1997). In particular, the relevance of
glutamate-channel properties to synaptic plasticity
[long-term potentiation (LTP) and long-term
depression (LTD)] has been revealed (Bliss &
Collingridge, 1993; Bear & Malenka, 1994). Yet,
recent evidence on the dynamics of synaptic
depolarization suggests that an extension of the
original view is needed.

FUNCTIONAL PROPERTIES OF NMDA
RECEPTORS

NMDA receptors show complex functional
properties. NMDA receptors are associated with
an ionic channel that is blocked by Mg2+ at
negative membrane potentials (Nowak et al.,
1984; Mayer et al., 1984). Once unblocked, the
NMDA channel is highly permeable to Ca2+

(Mayer & Westbrook, 1987; Iino et al., 1990).
The permeability allows a synaptic regulation of
Ca+ influx, which is of fundamental importance
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Fig. 1: Voltage-dependent kinetics of cerebellar granule cell NMDA receptor-mediated synaptic currents (the non-NMDA
currents have been blocked by 10 pM CNQX). (A) The NMDA current shows slower kinetics as the holding
potential is increased. (B) Negative slope conductance in peak NMDA current is reduced by Mg2+ removal from the
extracellular solution ( 1.2 mM Mg2+; O no added Mg2+). Insets compare the NMDA currents measured at -40 mV
and +40 mV, before and after Mg2+ removal (scale bars 20 pA 100 ms). Single channel transitions observed after
Mg2+ removal correspond to the opening of individual NMDA channels (see Silver et al., 1992; D’Angelo et al.,
1993). (C) The NMDA current can be fitted by a double exponential function (individual exponential curves are
shown as broken lines). Voltage-dependence of the two decay time constants is reported in a semi-logarithmic plot
for three granule cells. Data partly from D’Angelo et al. (1993, 1994).
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for the induction of synaptic plasticity (Bliss &
Collingridge, 1993; Bear & Malenka, 1994). A
second property that has been less considered so
far is that NMDA receptor-mediated synaptic
currents slow down during membrane depolariza-
tion (Keller et al., 1991).

On the basis of experiments carried out at the
mossy fiber-granule cell synapse of the cerebel-
lum, we propose that NMDA current voltage-
dependent kinetics are also functional to LTP
induction.

WHOLE-CELL RECORDINGS FROM GRANULE
CELLS IN RAT CEREBELLAR SLICES

The results reported in this paper extend our
previous work on rat cerebellar granule cells
(D’Angelo et al., 1993-1995; 1997a; Rossi et al.,
1996; see also Silver et al., 1992). The present
experiments were performed using the whole-cell
configuration of the patch-clamp in cerebellar
slices (Edwards et al., 1989). Synaptic currents
were elicited by electrical stimulation of the
mossy fiber bundle. Owing to the simplified
organization of their dendritic structure and
mossy fiber input, cerebellar granule cells are
electrotonically compact, and a direct relationship
between synaptic current properties and effects on
neuronal excitability can be established.

Voltage-dependent Mg2+ block and decay
kinetics, which were revealed at the mossy fiber-
granule cell synapse of the cerebellum (D’Angelo
et al., 1993, 1994; Fig. 1), are related to the
generation of sustained depolarization during
repetitive transmission (D’Angelo et al., 1995;
Fig. 2). Recently, we demonstrated that NMDA
synaptie currents are also involved in LTP
generation (Rossi et al., 1996; D’Angelo et al.,
1997b; D’Angelo et al., unpublished; Fig. 3).

NMDA RECEPTOR-DEPENDENT REGULATION
OF SYNAPTIC TRANSMISSION

During low-frequency transmission, non-
NMDA receptors are almost entirely responsible
for synaptic depolarization (Collingridge et al.,

1988a,b; Collingridge, 1992). Nonetheless, a
contribution of NMDA receptors was revealed
(Fig. 2A) in the large-size excitatory postsynaptic
potentials (EPSP) of cerebellar granule cells, in
which the Mg2/ block is removed, and the NMDA
current slows down. In these conditions, the
NMDA current increases the EPSP amplitude and
protracts EPSP decay (D’Angelo et al., 1995). An
NMDA receptor contribution to low-frequency
EPSPs is particularly evident in immature
synapses, which show a high NMDA/non-NMDA
current ratio (D’Angelo et al., 1993, 1997a).
A critical contribution of the NMDA current

occurs in cerebellar granule cells during high-
frequency synaptic activity (Fig. 2B), when the
NMDA current sustains membrane depolari-
zation and spike firing (D’Angelo et al., 1995).
Apparently, the role of non-NMDA currents is to
prime the regenerative cycle protracting NMDA
current duration. Non-NMDA currents, however,
undergo a strong depression during the burst, so
that their direct contribution to depolarization is
small. Non-NMDA current depression is probably
due to channel desensitization (Tmssel et al.,
1993; Silver et al., 1996), whereas NMDA
current desensitization is prevented by glycine, a
coagonist of glutamate at the NMDA receptor
(Mayer et al., 1989).

It turns out that, during repetitive high-
frequency synaptic transmission, the NMDA
current greatly enhances synaptic depolarization
and spike firing (Fig. 2C). This effect is important
because repetitive high-frequency burst firing is a
common mode of information coding in neuronal
networks, simultaneously providing an adequate
stimulus for the induction ofLTP.

NMDA RECEPTOR-DEPENDENT REGULATION
OF SYNAPTIC PLASTICITY

The best known form of synaptic plasticity is
LTP, a candidate for the deposition of memory in
neuronal circuits (Bliss & Collingridge, 1993).
LTP consists of a brief induction phase, driven by
bursts of high-frequency synaptic impulses or by
various pairing procedures, followed by a long-
lasting expression phase, during which synaptic
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Fig. 2: NMDA receptor-mediated responses during mossy fiber activation of cerebellar granule cells. (A) The contribution of
the NMDA current to EPSP elicited by low-frequency stimulation was uncovered by subtracting the non-NMDA
EPSP (100 IxM APV + 50 IxM 7-chlorokinurenic acid) from control EPSP. The NMDA current slows down the EPSP
decay, and enhances EPSP peak. Two EPSPs are compared, visiting the -70/-48 mV and the -80/-63 mV membrane
potential ranges, respectively. Note the greater MDA current contribution when the EPSP traverses the higher
membrane potential range. Neither EPSP reached threshold for spike activation (-41 mV). 03) Block of repetitive
discharge during repetitive 50 Hz stimulation by NMDA receptor antagonists (100 IM APV + 50 IM 7-
chlorokinurenic acid). Note depression of residual non-NMDA responses during the stimulus train. Same scale as in
A. (C) Blocking NMDA receptors caused a strong depression of the granule cell input-output function. In this plot,
the input was the frequency of mossy fiber stimulation, the output was the frequency of granule cell spikes during the
synaptic burst. Data obtained from D’Angelo et al., 1995.
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Fig. 3: Potentiation of mossy fiber-granule cell synaptic currents. After induction, both the non-NMDA current (peak
amplitude at-70 mV) and the NMDA current (dotted line at +60 mV) were increased. Potentiation was induce by
(A) low-frequency NMDA receptor synaptic activation (0.1 Hz) paired with a 60-see application of the metabotropic
glutamate receptor agonist 20 glVl t-ACPD, or by 03) high-frequency NMDA receptor synaptic activation (8 bursts of
10 impulses at 100 Hz every 250 ms) paired with membrane depolarization to -40 mV. (C) Subtraction of control
from potentiated tracings at +60 mV showed that the NMDA current increased in a slow component (same cell as in
B). Data in A obtained from Rossi et al., 1996.
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transmission is potentiated (Fig. 3 A,B). As at
other glutamatergic synapses, LTP induction at
the mossy fiber-granule cell synapse depends on
NMDA receptors (Rossi et al., 1996; D’Angelo et
al., 1997b; D’Angelo et al., unpublished; Fig.
3C). NMDA receptors, by causing Ca2+ influx
through the associated channel, activate the
intracellular Ca2+-dependent mechanisms leading
to LTP. To unblock NMDA channels from Mg2/,
the postsynaptic neuron must be depolarized.

As at other glutamatergic synapses (see also
O’Connor et al., 1995; Clark & Collingridge,
1995; Kullman et al., 1996), during LTP expres-
sion at the mossy fiber-granule cell synapse, both
the NMDA and non-NMDA are potentiated.
Moreover, the NMDAcurrent slows down
considerably (Fig. 3C), apparemly in relation with

a selective increase in the slow component of
NMDA-EPSC decay (Rossi et al., 1996).

INTEGRATED NMDA RECEPTOR-DEPENDENT
CONTROL OF SYNAPTIC TRANSMISSION AND

PLASTICITY

It emerges that NMDA receptors, by
enhancing synaptic depolarization during high
frequency transmission, operate an integrated
control of signal coding and plasticity. The nodal
point is that NMDA receptor activation is critical
for membrane electrogenesis, simultaneously
controlling the output frequency of the neuron
and (through Ca2/ influx) the induction of LTP
(Fig. 4).
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Fig. 4: Integrated regulation of signal coding and plasticity by NMDA receptors. In this model, NMDA-receptor activation

is critical for both membrane electrogenesis and Ca/ influx. At the core of this process remains a voltage-dependent
increase in size and duration of the NMDA current during membrane depolarization, with non-NMDA receptors
priming the regenerative process. The NMDA receptors, by increasing their own responsiveness, configure the
system in feed-forward mode. Note that the final effect will be an enhancement of repetitive firing, and therefore of
the input-output function of the neuron.
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At the core of this process is the voltage-
dependent increase in the size and duration of the
NMDA current during membrane depolarization.
Non-NMDA receptors would have the important
role of priming the regenerative NMDA current
increase. Once LTP is established, the increase in
non-NMDA and NMDA currents, and the
slowdown in NMDA current, enhance membrane
depolarization and spike firing. In the model
proposed in Fig. 4, NMDA receptors increase
their own responsiveness after high-frequency
transmission. Thus, the system is configured in
feed-forward mode, rendering the potentiated
synapses particularly susceptible to develop
further LTP (Bortolotto et al., 1994). In practice,
once the induction threshold is crossed, LTP
should tend toward saturation. Although a feed-
forward mechanism is attractive because it
ensures a high reliability for LTP induction, such a
mechanism intrinsically requires a negative
control. Beside numerous LTP modulatory
mechanisms, GABA-receptor-mediated synaptic
inhibition is an interesting candidate as, by
preventing membrane depolarization, it would
break down the electrogenic mechanism that is
based on regenerative NMDA current activation.
It should be noted that most synaptic inhibition
may be effective at low frequency, but be turned
off by GABA autoreceptors at high-frequency.
Therefore, synaptic inhibition may accentuate the
all-or-none behavior of the system (Bliss &
Collingridge, 1993; Davies & Collingridge, 1997).

A WIDESPREAD PROPERTY OF
GLUTAMATERGIC SYNAPSES?

The model proposed in Fig. 4 is largely based
on observations on mature cerebellar granule
cells, in which NMDA receptors express the
NR2-A and NR2-C subunits (Ebralidize et al.,
1996; Takahashi et al., in press). Regional and
ontogenetic differences in NMDA-receptor
subunits affect NMDA receptor properties (see
Monyer et al., 1994). We present evidence below,
however, suggesting that an integrated NMDA
receptor-dependent control of synaptic trans-
mission and plasticity may be effective in different

brain areas.
In hippocampal synapses, the NMDA-

receptor-mediated synaptic current and its role in
synaptic plasticity have been very extensively
characterized. At the perforant path-granule cell
synapse, NMDA receptors contribute to synaptic
transmission (Lambert & Jones, 1990), and the
NMDA current shows marked voltage-dependent
kinetics (Keller et al., 1991). Moreover, at this
synapse, NMDA receptors are both required for
LTP induction and potentiated during LTP
expression (O’Connor et al., 1995). The perforant
path-granule cell synapse is, therefore, a good
candidate for an integrated NMDA-receptor-
mediated control of synaptic transmission and
plasticity. At the Shaffer collateral-CA1 synapse,
NMDA receptors are likewise involved in both
LTP induction and expression (Clark & Coiling-
ridge, 1995). Nevertheless, NMDA current
voltage dependence is weak (Hestrin et al., 1990),
and synaptic transmission is largely sustained by
non-NMDA receptors (Collingridge et al.,
1987a,b). The applicability of our model to the
Shaffer collateral-CA1 synapse is less clear than it
is to the perforant path-granule cell synapse.

Functional evidence for a dual role of.NMDA
receptors in signal coding and synaptic plasticity
is found in the visual system. In the lateral
geniculate nucleus, NMDA receptors sustain
high-frequency transmission of visual information
(Heggelund & Hartveit, 1990; Turner et al.,
1994). In the visual cortex, NMDA receptors are
necessary to both mediate the visual response
(Miller et al., 1989) and generate LTP (Artola &
Singer, 1992). Interestingly, ocular dominance
plasticity requires NMDA-receptor activation
during normal synaptic transmission (Kasamatsu
et al., 1998). Thus, the functional role ofNMDA
receptors in the visual system is compatible with
the model proposed here.

CONCLUSIONS

By including the dynamics of postsynaptic
membrane depolarization during repetitive high-
frequency synaptic transmission into the previous
knowledge on LTP, we have extended the
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functional implications of NMDA receptors.
NMDA receptors exert an integrated control on
signal coding and plasticity, which is especially
relevant during repetitive high-frequency synaptic
transmission. This mechanism may have important
implications for information processing at the
cerebellar mossy fiber-granule cell relay, as well
as at other central synapses.
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