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ABSTRACT

In this minireview, we discuss different
strategies to dissect genetically the keystones of
learning and memory. First, we broadly sketch
the neurogenetic analysis of complex traits in
mice. We then discuss two general strategies to
find genes affecting learning and memory:
candidate gene studies and whole genome
searches. Next, we briefly review more recently
developed techniques, such as microarrays and
RNA interference. In addition, we focus on
gene-environment interactions and endopheno-
types. All sections are illustrated with examples
from the learning and memory field, including
a table summarizing the latest information
about genes that have been shown to have
effects on learning and memory.

INTRODUCTION

Learning and memory has always been one of
the most captivating fields in the life sciences. As
in most--if not allmcomplex traits, genes play an
important role in the regulation of learning and
memory. Already in the 1920s, Tryon (1929)
showed that rats could be selectively bred for their
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performances in learning a complex maze to find
food, thereby establishing a genetic component to
learning and memory. Questions concerning the
nature of these genes and the proteins they
encoded remained a mystery until the early 1970s,
when Benzer and Kandel’s groups launched their
respective studies on two invertebrate models.
Whereas Benzer et al. (Tully, 1996) carried out
genetic screens in Drosophila, Kandel and
colleagues (Mayford & Kandel, 1999) used
Aplysia, a marine snail, to identify the neuronal
circuitry controlling learning and memory. Using
different techniques, in time both studies
converged, which resulted, among others, in the
discovery of the cAMP response element binding
protein (CREB) (Silva et al., 1998). In both
species, this cAMP-responsive transcription factor
plays an important role in the conversion of short-
term to long-term memory. An obvious next step
was to extend these findings to the more complex
learning taking place in the mammalian brain.
Of all mammalian models, the mouse is presently

the most popular one in the search for genes
underlying complex traits like learning and memory.
Three reasons for this development are
1. the rise ofmolecular biology,
2. the suitability of the mouse embryo to specific

genetic manipulations, and
3. the large number of available mouse strains.

The combination of these factors has resulted in an
increasing number of genetically modified strains.
Knockouts, knockins, and transgenics now belong
to the tool kit of most behavioral neuroscientists,
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and the application thereof has revolutionized the
genetic dissection of learning and memory.

We start this minireview with a general outline
of the neurogenetic analysis of complex traits in
mice because the approach and methodology to
dissect learning and memory are similar to those
applied in the genetic dissection of other complex
traits. Subsequently, we discuss two general
strategies to identify genes affecting learning and
memory: candidate gene studies and whole genome
searches. Next, we discuss the more recently
developed techniques, including microarrays and
RNA interference and briefly pay attention to
gene-environment interactions. Last, but certainly
not least, we focus on endophenotypes. All
sections are illustrated with examples from the
learning and memory field.

FROM TRAIT TO GENE AND BACK:
A GENERAL OUTLINE

Before boarding the latest flight to genetic
wonderland, we should address two important
issues. First, what is the exact phenotype that is to
be dissected genetically? Like most complex traits,
learning and memory can be measured in many
ways. This approach is true not only for humans
but also for animal species, including mice, for
which multiple learning and memory pa radigms
exist, varying from complex problem-solving tasks
to simple learning tasks (for an enumeration see,
for instance, Crusio, 1999). The choice of test is,
therefore, crucial because the genetic analysis of
one learning and memory task will lead to the
identification of a different set of underlying genes
than the dissection of another task. It is, for
instance, very well possible that a gene explaining
variation in Morris water-maze learning will not
explain variation in radial-maze performance. On
the other hand, there will also be genes that affect
both types of learning. Clearly, the optimal strategy
would be to refine the trait under study by using a

combination of multiple measures of the trait that
best capture a common underlying genetic factor.
An example of such an approach is the ongoing
search for the genes influencing the infamous g
factor. This factor refers to the substantial overlap
that exists between individual differences in
diverse cognitive processes in humans, although its
existence in mice is more controversial (Galsworthy
et al., 2002; Loctirto et al., 2003). Importantly (see
below), the g f actor appears to be substantially
heritable (for more information about the g factor,
see Galsworthy et al., 2002; Plomin, 1999, 2001;
Plomin & Craig, 2001; Plomin & Spinath, 2002;
Williams et al., 2002).

An important caveat in the study of learning
and memory is that such processes cannot be
measured directly but rather are inferred from
performance variables. This approach can some-
times lead to interpretational difficulties. For
instance, in the water-maze navigation task, motor
coordination deficits (or differences) could
increase the escape latency of the tested subjects, a
measure that is often used as an index of memory
performance. Likewise, stress and anxiety levels
can also shape the results of learning tasks (an
anxious animal would freeze for instance) but need
not actually involve learning capabilities per se. In
fact, a detailed analysis of mouse behavior in the
Morris maze reveals that differences in spatial
learning abilities explain only about 15% of the
total behavioral variation observed (Wolfer et al.,
1998). Another problem that can be encountered in
tasks depending on visual abilities (such as the
water navigation or radial maze tasks) is that blind
animals can perform poorly because they are
unable to orient themselves. Nevertheless, blind
animals sometimes do not perform significantly
worse than normal subjects (Lindner et al., 1997).
In addition, the tests can be designed in such a way
that they tax the visual system as little as possible,
for instance by placing distinctive visual cues
close to the maze (Crusio, 1999a). For instance,
animals carrying a mutation causing retinal
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degeneration (such as C3H mice) have a greatly
reduced visual acuity and become blind eventually.
By making a spatial radial maze task visually as
easy as possible and testing animals at an age of
about 3 months, when they are not yet completely
blind (Nagy & Misanin, 1970), C3H animals can
learn this task very well (Crusio et al., 1987;
Schwegler et al., 1990). In short, the results of
behavioral phenotyping have to be interpreted
cautiously and, if necessary, adequate control tests
should be performed to avoid potential artifacts in
phenotypic analyses (Crawley, 2000).

The third issue to address is to establish
whether the complex trait of interest--for example,
learning and memorymis under the influence of
genetic variation. To this end, two strategies are
used in animal studies. The first is the comparison
of inbred strains that are generated by repeatedly
mating close relatives. Animals of the same inbred
strain are. like cloned individuals--they are almost
genetically identical after a minimum of 20

generations of inbreeding (many inbred strains
have been inbred for over 100 generations; Green,
1966; Staats, 1985). Within an inbred strain,
nearly all trait variability will be caused by the
environment, whereas differences among strains
will be virtually genetic in origin (apart from
maternal influences; see for example, van Abeelen,
1980). Thus, when in a controlled testing
environment multiple strains are compared for a
specific behavior, the extent to which among-
strain differences exceed the pooled within-strain
variability provides a test of the existence of
genetic influence. A good illustration of the
variation present in inbred strains is provided by
radial-maze learning in mice. This is a task that
mice will learn readily, as fast as or even faster
than most rat strains (Whishaw & Tomie, 1996).
As shown in Fig. 1, radial-maze performance
varies enormously among strains and the between-
strain variation is much larger than that within
strains.
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Fig. 1: Mean numbers of errors (repeat arm entrances) made by male mice from nine different inbred strains in the

eight-arm radial maze on the fifth trial, one trial/day, six males per strain (data from Schwegler et al., 1990).
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Another useful technique to show that a
specific trait is genetically influenced is selective
breeding or artificial selection. This technique is
based on the observation that the offspring of
animals with a desired quality are more likely to
demonstrate that quality than will the progeny of
random individuals. Mice can be bred for varying
behaviors like learning performances or aggression.
Usually, animals are selected for opposite directions
of the desired behavior (bidirectional selection),
such as the previously mentioned ’maze-bright’
and ’maze-dull’ rat lines (for recent information on
these lines, but also on learning and memory in
inbred strains, see Plomin, 1999, 2001; Plomin &
Spinath, 2002). To our knowledge, such selected
mouse lines do not exist.

If heritability has been demonstrated, then
searching for the actual genes that explain the
genetic variation becomes feasible. Finding the
genes, however, is a difficult task for several
reasons, one being the vast number of genes
involved. Generally, two distinct approaches can
be distinguished.

Candidate gene studies can be used when
previous experiments have identified a specific
gene that codes for a protein involved in a
pathway known to be relevant to the variation
of the trait under study. This approach applies
only to genes with known location and
function and to pathways that we already
partially understand.
Whole genome searches. When no prior
information exists about the genes affecting
the trait, then whole genome searches are the
standard way to go (Phillips et al., 2002). The
searches are used to establish the most likely
location in the genome of genes that influence
the trait under study. Such genes can be those
that were identified but not suspected as linked
to the trait, or they may be new genes
altogether. Until now and despite much effort,
this strategy has resulted in the identification
of only a very few genes affecting behavior

(for an exceptional example, see Fehr et al.,
2004; Shirley et al., 2004), but the development
of new tools (for example, vastly expanded sets
of recombinant inbred strains; Peirce et al.,
2004) gives hope that such efforts will be more
successful in the future.

Once a gene has been identified, several
strategies are available to explore the exact
biological pathway by which the gene influences
variation in the neurophysiological or behavioral
trait, including, among others, gene expression
studies, transgenic approaches, and RNA inter-
ference. Also possible is the performance of gene-
by-environment studies, in which the differential
effects of environmental manipulation on different
genotypes can be directly tested. Most important,
the structural (for example, size of the hippocampal
cell population) and functional aspects of the brain
(for example, electrophysiological response to a

stimulus) can be compared to uncover the actual
biological pathways connecting genes and behavior.

Candidate gene studies

Two fundamentally different approaches are
used to study candidate genes in mice. The first
approach makes use of naturally occurring variants
of the gene(s) under investigation and is similar in
design to classic association studies in humans. In
mice, however, the availability of specific strains
and genomic data2 allows us to scale up mutation
detection and screen through several genes for
variation at the same time. Hence, instead of
individually following up the loci identified as
relevant to a particular trait, a systematic survey
can identify multiple alleles of many genes and
entire pathways associated with the trait of
interest. Such an approach is currently in progress

see for example, www.jax.org
see for example, www.ensembl.org/Mus_musculus and

www.ncbi.nlm.nih.gov/mapview/map_search,cgi?chr=mouse_
chr.inf)
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at the Institute ofPsychiatry in London, where Leo
Schalkwyk and coworkers are testing a large
number of male mice from a heterogeneous stock
in various learning and memory paradigms. This
study focuses on more than 50 target genos from
the serotonin, dopamine, and N-methyl D-aspartate
(NMDA) receptor signaling pathways, which are
known to be associated with learning and memory.

The second approach is aimed at actively
manipulating the gene in question. Genes can, for
instance, be inactivated (knockout models) or an
extra copy or copies can be inserted (transgenic
animals) to investigate the scope of the gene’s
effects and its way of operation. The development
of targeted gene disruption has been one of the
more important advances in mouse behavioral
genetics. The aim is to inactivate a gene of interest
selectively (namely, to disrupt a targeted gene) and
to compare this so-called knockout mouse with a
control or wildtype animal that has all its genes
intact. The observed differences can then be
attributed to the gene in question. Hence, by
comparing the behavior and underlying neuronal
processes of knockouts and wildtypes, one can
deduce the function of the gene and determine its
effects on complex traits. Many genes that affect
learning and memory have been identified using
the knockout technique (see Table 1).

Two facts are worth mentioning. First, as is
sometimes believed, knocking out a gene does not
necessarily lead to impairment in learning and
memory. Sometimes an improvement in learning
and memory can be observed as well. Second,
sometimes the same mutation can be found to have
opposite effects in different tests (for example,
Dere et al., 2003), which once again emphasizes
the importance ofthe definition of the trait.

A number of comments on knockout studies
should be made. First, the possibility always exists
that the knockout and the wildtype differ in more
than one gene. This so called ’flanking gene’
problem results from the technical procedure per se

and can lead to false positives or to false negatives

(Crusio, 2004; Wolfer et al., 2002). A second
problem is the genetic background of the knockout,
which is either randomized or, at best,
homogeneous. In the latter case, the knockout is
repeatedly crossed back to mice from the same
inbred strain. After a number of back-crosses,
usually 10 or more, in which the presence of the
mutated allele is checked in every generation, the
background is said to be homogeneous. A
comparison between the knockout and the inbred
strain will then yield information on the effect ofthe
knocked out gene on a specific genetic background.

Also possible, however, is that an inactivated
gene affects a trait on one background, whereas it
has no effect or a different effect on another back-
ground. This phenomenon, in which (a) a gene(s)
influence(s) the effect of another gene (namely, the
background genes interact with the knockout gene)
is called epistasis and has been found in animal
models of mental retardation as well. A good
example is provided by inactivation of the Fmrl
gene. The lack of expression of the human
homolog is associated with the development of the
Fragile-X syndrome, leading to mental retardation.
On a C57BL/6 background, knocking out the Fmrl
gene leads to a smaller intra- and infrapyramidal
mossy fiber projection (Mineur et al., 2002). The
size of this projection is strongly correlated with

spatial learning abilities in mice (Crusio et al.,
1993; Schwegler & Crusio, 1995) and, indeed,
Mineur and colleagues (2002) reported impairment
in radial-maze learning in their mice. When the
very same mutation was backcrossed onto an FVB
background (Ivanco & Greenough, 2002), the
mutants were found to have increased sizes oftheir
intra- and infrapyramidal mossy fiber projections.

Perhaps the third comment is the most

profound. Traditional knockouts are constitutive
they lack expression of the gene in every cell and
tissue and from conception on. This phenomenon
means that in practice one cannot study the effects
of genes that on the one hand affect complex traits

but that are also essential for normal development.
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Such knockouts simply die at or before birth. In
addition, during development compensational
processes sometimes work to obscure any effects
ofthe induced mutation.

Joe Tsien (Tsien et al., 1996) at Princeton
University was the one who developed a method
that gets around these problems. He bumped into
this problem when he knocked out various
subunits of the NMDA receptor. This receptor is
thought to increase the synaptic strength between
two nerve cells, a process called long-term
potentiation (LTP), which is fundamental for
learning and memory. Therefore, he engineered
NMDA knockout mice that lacked the subunit in a
specific section of the hippocampus termed the
CA1 region, which appears to be essential for
memory. Hence, these so-called conditional,
regionally restricted knockouts lack an essential
’memory’ gene, but only in a specific part of the
brain and nowhere else in the body. As expected, it

appeared that these animals demonstrated not only
decreased LTP but also poor spatial memory.

Genetic engineering can be used not only to

knock out genes but also to insert extra copies of a
gene. This method is called transgenic integration.
One of the more convincing behavioral examples
comes from the same laboratory that developed the
conditional NMDA knockouts. Instead of inactivating
a gene, the researchers inserted an extra copy of
another ’memory’ gene. The second gene codes
for an NMDA subunit called NR2B, which is more

strongly expressed in young people and stays open
longer than "old people’s" NR2A, a phenomenon
that might explain the age-related differences in
learning and memory. Indeed, transgenic mice that
had an extra copy of the gene for this receptor
learned better in certain tasks than did normal
mice (Tang et al., 1999).

The development of such techniques has
certainly deepened our knowledge about the effects
of specific genes on complex traits. Nevertheless,
besides more pragmatic problems (flanking gene
effects, genetic background, and temporal and

spatial limits), another, more theoretical pitfall
exists. Fundamentally, two types of genes
polymorphic and monomorphic---coexist in nature.
Polymorphic genes show natural variation in a
population, whereas monomorphic genes do not.
Hence, when studying the latter type, we will
generally deal with the underlying mechanisms
common to most or even to all members of a
species. In contrast, when studying polymorphic
genes, we are investigating the mechanisms
underlying spontaneous individual differences.
Analysis of this natural genetic variation, such as
the above mentioned ’Schalkwyk approach’, can
thus enable us to identify genes that modify
behavioral and neural function to a degree that is
not grossly disadvantageous to the individual
carrying such alleles. In short, whereas one type of
question addresses, for example, how animals
store information, the other type of question asks
why in a given task certain individuals perform
better than others. One should therefore realize
that knockout or transgenic studies generally do
not contribute to the explanation of naturally
occurring inter-individual variation. In fact, in
natural populations, most null mutations are not
found to occur spontaneously.

Whole genome searches

Contrary to candidate gene studies, whole
genome searches do not require a priori
knowledge on the biology underlying the complex
trait under investigation. Their major strength is

that all relevant genes can be detected, including
unknown genes (Kruglyak, 1999). In mice, whole

genome searches usually start with a cross
between strains or lines that differ markedly in the
trait under investigation. As a result, the F
generation is heterozygous at all genes that differ
in the parental strains. From this point on there are

two ways to go. Either one can intercross the F
generation to obtain an F, or one can backcross
the F to one of the parental inbred strains. Both
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types of crosses--and this is the important
message--produce a generation that segregates
genetically. In such segregating populations, some
animals are homozygous for a particular marker
allele from progenitor strain A, some for a
particular marker allele from strain B, whereas
others are heterozygous.

Markers are just landmarks in the genome;
they need not be part of a functional gene. What
we have to know, however, is their exact location
on the genome (on which chromosome and where
on that chromosome) and whether they are
informative. The latter refers to the different
allelic variants of the marker in question. In the
above-mentioned example, for instance, only those
markers that differ between progenitor A and B
should be genotyped. Markers can be mutations in
a single base pair (single nucleotide polymorphisms
or SNPs) or a variable number of repeats of two or
more base pairs (microsatellites).

When a particular marker is situated near a
gene influencing the trait of interest, then the
marker and the gene will more likely be
transmitted together (co-segregate) to the next
generation than if they are distant or on different
chromosomes. Hence, the closer the marker and
the gene are physically, the chance of linkage
between the marker and the gene increases. By
examining many individuals and by correlating the
presence of certain marker alleles with the score of
these animals for the trait of interest, one can
identify chromosomal regions that contain one or
more of the genes contributing to the phenotypic
difference. These chromosomal regions are called
quantitative trait loci (QTLs) because they are
likely to result in dimensions (quantitative continua)
rather than disorders (qualitative dichotomies;
Plomin et al., 1994). Linkage analysis assigns a
probability value (expressed as LOD scores) to all
markers, and a LOD-score profile is obtained for
each chromosome. Evidence for linkage is said to
be present when the maximal LOD-score exceeds
a predefined threshold, which depends on the size

of the genome and the number of genotyped
markers.

Success in detecting QTLs largely depends on
the number and location of the markers genotyped,
on the effect size of the QTL, and on the number
of animals used. In an ideal experiment, the two
progenitor strains should differ not only pheno-
typically to a large extent but also genetically.
Genetically distinct progenitor strains make it
more straightforward to choose and maximize the
number of markers to be genotyped. As much as
possible, markers should be chosen that are evenly
dispersed throughout the entire genome. The more
markers genotyped and the more they are equally
scattered over the genome, the smaller the chromo-
somal region that can be shown to harbor the
gene(s) of interest (namely, the narrower the
QTL). This restriction is vital because it makes the
next step (fine mapping, see below) less demanding.

The effect size is also of critical importance as
genes are generally found more easily if they
explain more of the variance in a trait. Gene
finding is, therefore, relatively simple if only a
single gene affects the trait. In such instances, a
simple Mendelian segregation of a limited number
of phenotypes is observed for all possible
genotypes at a specific locus. Many rare diseases
or disorders (but also Huntingtons Disease and the
Fragile X Syndrome, which affect cognition) are
caused by defects in a single gene only, and the
genes in question were mapped through linkage
analysis even before many of the currently used
sophisticated molecular-genetic techniques became
available. Unfortunately, most complex traits
learning and memory are no exception--are
influenced by many genes. Consequently, most if
not all these polygenes have only a small effect on
the trait in question and are therefore difficult to
detect through linkage analysis. Further compli-
cations are the possible interactions between genes
(epistasis), gene-environment interactions, and
environment-environment interactions. Suffice to
say that the statistical power for the detection of
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such QTLs remains a major concern to date. An
obvious solution is the use of large numbers of
animals and the application of large numbers of
evenly dispersed markers. Other solutions to boost
power are the use of selected individuals with very
high or very low values for the trait or a refinement
of the trait by using a combination of multiple
measures that best capture a common underlying
genetic factor.

Once a QTL with a significantly high LOD-
score has been detected, the search for the actual
gene(s) can start. This process, also called fine
mapping, is essentially a repetition of the same
procedure, but now with all markers concentrated
in the area of interest on a single chromosome. If
the region containing the putative gene is small,
then the DNA in the entire region can be sequenced
in full (positional cloning). Because genes have a
specific structure, this procedure identifies all
genes in the region. Comparing all base pairs in
these genes in a number of different animals
identifies the sites of allelic variationnalso called
polymorphisms--within these genes. Comparing
the polymorphisms between, for instance, good
and poor learning animals can then reveal which
allelic variant is responsible for an increase or
decrease in learning and memory.

Because of the ongoing sequencing of the
entire mouse genome, a draft sequence of the
genome covering 96% of the euchromatic, non-Y
chromosome sequence is now available (Waterston
et al., 2002). This feat will speed up gene hunting
immensely because positional cloning and mutation
analyses have become more and more redundant.
Yet, the need to identify first the region of interest
in a genomic search and then to narrow down that
region by (repeated steps of) fine mapping remains.
Only after the region is sufficiently small (for
example < 100 genes) does the candidate gene
approach become feasible. Repeated fine mapping
is expensive and laborious, particularly when the
low statistical power of each repeated search step
is taken into account. Various strategies are

available, constructing congenic strains being one
of them. Such strains are produced by repeatedly
backcrossing a strain with the mapped QTL (donor)
to another strain (recipient) while checking each
backcross for the presence of the QTL using
flanking DNA markers. After a number of
predefined backcrosses, one has developed a strain
that except for the QTL area is genetically
identical to the recipient strain. Phenotypic
comparisons between congenic and recipient
strains might then verify the existence of the QTL,
its impact, and possible interactions with other
QTLs. Once the existence of the QTL has been
proved by means of congenic lines, the actual fine
mapping can commence. Fine mapping is done by
phenotyping substrains that are recombinant at
various places in the QTL area.

Other strategies to fine map QTL are the use
of recombinant inbred strains, the production of
recombinant congenic strains, advanced intercross
lines (AILs), or interval-specific congenic strains
(ISCS). For a detailed review of these strategies,
their pros and cons, the reader is referred to the
specialized literature.

NEW TECHNOLOGIES:
MICROARRAYS AND RNA INTERFERENCE

Another way to gain insight into the genetics of
learning and memory is the application of DNA
microarray technology, in particular commercially
available high-density oligonucleotide arrays, such
as those produced by Affymetrix. This technique
allows the simultaneous analysis of expression
levels of thousands of genes (Schena, 2003) and is
therefore, to a certain extent, a combination of a
candidate gene approach and a whole genome
search. High-density microarrays are also called
DNA chips, and the latest mouse versions consist of
more than 12,000 genes or expressed sequence tags

www.affymetrix.com
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(ESTs), which are represented by probes (cDNAs or
oligonucleotides) immobilized on a solid substrate.

In general, the experimental sample (trans-
criptome) is prepared by extracting RNA from the
tissue sample---for example, from the hippocampus
of several inbred mouse strains known to differ in
various learning and memory paradigms. The RNA
is then reverse transcribed and labeled with
fluorescent tags. The labeled target is then hybrid-
ized to the array, and the detected fluorescent
signal correlates with the expression level of the
genes of interest in the experimental sample.
Hence, each sample has its own expression profile.
This ’signature’ can be used as a detailed
molecular phenotypewwhich, for instance, can be
correlated with more classic phenotypes, including
behavioral scoresmto nominate candidate genes
for complex traits. For instance, Femandes et al.
(2004) correlated the baseline hippocampal gene-
expression profiles of eight inbred strains with the
aggression scores of these strains and identified
two candidate genes for this complex trait. A
similar expression-correlation approach but using
learning and memory scores instead of aggression
measures is likely to yield candidate genes that
determine individual differences in learning and
memory.

Other microarray procedures are also possible.
Thus, two samples can be labeled with different
fluorescent nucleotides, after which they are
simultaneously co-hybridized to the same array.
Genes expressed at equal levels in both samples
contain a mixture of both fluorescent nucleotides
hybridized, whereas genes expressed at different
levels between both samples display predominant
hybridization of one or both fluorescent
nucleotides. For more information on microarrays,
the technological and statistical concerns, the
advantages and disadvantages, see, among others,
Feldker et al. (2003), Steinmetz and Davis (2004),
and the Nature Genetics Supplement, 2002.2

http://www.nature.com/ng/supplements/index.html

The availability of a draft sequence of the
mouse genome (Waterston et al., 2002) has not only
facilitated fine-mapping of QTLs (see above) but
also opened the door to nucleic-acid-based
approaches that act to silence gene expression in a
sequence-specific manner. One of its latest
additions is RNA interference (RNAi). RNA
interference, first discovered in the nematode
Caenorhabditis elegans (Fire et al., 1998), is a
process by which double-stranded RNA (dsRNA)
silences specifically the expression of homologous
genes through the degradation of their related
mRNA. Hence, this technique is essentially a

knockout approach. The primary advantages of
RNAiuespecially over the classic knockout
technologymare the ease of making dsRNAs that
mediate RNAi and the flexibility of inhibition.
Hence the user can spatially and temporally control
the interference reaction. he disadvantages are that
the level of functional reduction is unpredictable
and difficult to measure experimentally. These
small interfering RNAs can also mediate an
interferon response as a secondary effect. The ease
of use, however, makes RNAi one of the most

promising methods applied in the genetic dissection
of complex traits today. For more information on

siRNAs, their applications and potential as thera-
peutics, the reader is referred to Dorsett and
Tuschl (2004). To the best of our knowledge, this

promising technique has not yet been applied to

learning and memory in any organism.

GENE-ENVIRONMENT INTERACTIONS

In the previous sections, we have shown that
individual differences in behavior can be explained
by genotypic variation. Obviously, this explanation
is only partly true; differences in the environment

also play an important role. This section focuses
on the borderland of both sources of variation:

gene-environment interactions.
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Generally, the term gene-environment inter-
action refers to the phenomenon that the behavioral
expression of the genotype depends on its
environment. The study of gene-environment inter-
actions is becoming more and more prominent in
the analyses of complex traits (Barr et al., 2003;
Caspi et al., 2002, 2003, 2004; Murphy et al.,
2003; Sluyter et al., 2002; Tsuang, 2000; Tully et
al., 2004a, b).

A clear example of the importance of gene-
environment interactions in the learning and
memory field comes from the performance of the
previously mentioned NMDA receptor subunit
knockouts. When raised under normal laboratory
conditions, such mice do not perform well in
learning and memory tasks. When exposed to an
enriched environment for an extended period,
however, the animals improve markedly and do as
well as ’normal mice’ do in various tasks. This
behavioral enhancement is reflected anatomically:
the number of connections between hippocampal
cells has actually increased. Hence, in such mice,
the enriched environment compensates for a
genetically engineered memory defect (Rampon et
al., 2000).

The hippocampus is a good place to look for a
candidate endophenotype meeting these stringent
criteria because many lesion studies have shown
this brain structure to be involved in learning and
memory. Apparently, the variation in the size of
one particular hippocampal structure, the intra-
and infra-pyramidal mossy fiber (IIPMF) terminal
fields, correlates positively with performance in a
radial maze (Crusio & Schwegler, 1991; Crusio et

al., 1993; Crusio et al., 1987; Jamot et al., 1994;
Schwegler et al., 1990). Hence, animals with
larger IIPMF projections generally perform better
on spatial learning tasks, as has been shown in
different laboratories at different time points.
Moreover, this correlation appears to be genetic
because the significant correlation between inbred-
strain means (see Fig. 2) suggests that the same
(set of) gene(s) affect(s) the variation of the IIPMF
sizes and spatial memory (Crusio, 2000). These
findings strongly suggest that the genetically
determined neuroanatomic variations in a defined
brain structure, the hippocampus, may explain
variation in learning and memory.

CONCLUSION

ENDOPHENOTYPES

Until now, we have not dealt with the inter-
mediate neuronal structures through which genes
modulate learning and memory. The intermediate
traits, also called endophenotypes, are becoming
more important because identifying the effect of a
gene on a more elementary (neuro)biological trait
is easier than identifying its effect on a complex
trait, including learning and memory. In animal
models, endophenotypes should be continuously
quantifiable and meet the following criteria:
reliability, stability, heritability, causality, and
phenotypic and genetic correlation (de Geus, 2002;
de Geus et al., 2001).

In recent years, genetic methods have led to the
identification of many genes that are implicated in
learning and memory processes. This achievement
has given rise to considerable optimism that many
questions regarding learning and memory will soon
be solved. Despite all the progress, however, we
would like to sound a word of caution. In our view,
most likely many problems regarding learning and
memory processes will prove to be unsolvable using
single-gene approaches such as knockout and trans-
genie studies. One reason for this view is that, for
instance, different types of memory depend on
different brain structures. Why this is so, will have
to be tackled on a systems level. As one of us has
put it before (Crusio, 1999b):
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Fig. 2: Correlation between numbers oferrors (repeat entrances) on the fifth daily trial in an 8-arm radial maze and
hippocampal intra- and infrapyramidal mossy fiber extent (IIPMF). Data from Schwegler et al. (1990). Points

represent means of6 animals per strain.

Sooner or later, single-gene analysis will certainly
help us to clarify basic cellular mechanisms of
information storage and there is very clearly a

great potential for exploiting this technique to

develop new therapeutic tools. However, defining
thefunction ofthe hippocampus, or explaining the
existence ofmultiple memory systems wouM be a

very daunting task ifit were to be done by single-
gene analysis only, and would take reductionism
toofar. This can be likened to trying to deduce the
orbit of the earth around the sun using only
knowledge about subatomicparticles.

REFERENCES

Andreasson KI, Savonenko A, Vidensky S, Goellner
JJ, Zhang Y, Shaffer A, et al. 2001. Age-
dependent cognitive deficits and neuronal
apoptosis in cyclo-oxygenase-2 transgenic mice. J
Neurosci 21" 8198-8209.

Angelo M, Plattner F, Irvine EE, Giese KP. 2003.
Improved reversal learning and altered fear
conditioning in transgenic mice with regionally
restricted p25 expression. Eur J Neurosci 18:
423-431.

Balogh SA, McDowell CS, Tae Kwon Y, Denenberg
VH. 2001. Facilitated stimulus-response associative



GENETIC DISSECTION OF LEARNING AND MEMORY IN MICE 233

learning and long-term memory in mice lacking
the NTAN1 amidase of the N-end rule pathway.
Brain Res 892: 336-343.

Balschun D, Wolfer DP, Gass P, Mantamadiotis T,
Welzl H, Schutz G, et al. 2003. Does cAMP
response element-binding protein have a pivotal
role in hippocampal synaptic plasticity and hippo-
campus-dependent memory? J Neurosci 23"
6304-6314.

Barr CS, Newman TK, Becker ML, Parker CC,
Champoux M, Lesch KP, et al. 2003. The utility
of the non-human primate; model for studying
gene by environment interactions in behavioral
research. Genes Brain Behav 2: 336-340.

Berger-Sweeney J, McPhie DL, Arters JA, Greenan J,
Oster-Granite ML, Neve RL. 1999. Impairments
in learning and memory accompanied by neuro-
degeneration in mice transgenie for the carboxyl-
terminus of the amyloid precursor protein. Mol
Brain Res 66:150-162.

Bjorklund M, Sirvio J, Riekkinen M, Sallinen J,
Scheinin M, Riekkinen P Jr. 2000. Over-
expression of alpha2C-adrenoceptors impairs
water maze navigation. Neuroscience 95:481--487.

Bolivar VJ, Scott Ganus J, Messer A. 2002. The
development of behavioral abnormalities in the
motor neuron degeneration (mnd) mouse. Brain
Res 937: 74-82.

Bontekoe CJ, Mcllwain KL, Nieuwenhuizen IM,
Yuva-Paylor LA, Nellis A, Willemsen R, et al. 2002.
Knockout mouse model for Fxr2: a model for
mental retardation. Hum Mol Genet 11" 487-98.

Bozon B, Davis S, Laroche S. 2003a. A requirement
for the immediate early gene zif268 in reconsoli-
dation of recognition memory after retrieval.
Neuron 40:695-701.

Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S,
Laroche S. 2003b. MAPK, CREB and zif268 are
all required for the consolidation of recognition
memory. Philos Trans R Soc Lond B Biol Sci
358: 805-814.

Brennan PA, Hancock D, Keveme EB. 1992. The
expression of the immediate-early genes c-fos,
egr-I and c-jun in the accessory olfactory bulb
during the formation of an olfactory memory in
mice. Neuroscience 49: 277-284.

Buhot MC, Wolff M, Savova M, Malleret G, Hen R,
Segu L. 2003. Protective effect of 5-HT1B
receptor gene deletion on the age-related decline

in spatial learning abilities in mice. Behav Brain
Res 142:135-142.

Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW,
Wotjak CT, et al. 2004. Conditional ablation of
the neural cell adhesion molecule reduces precision
of spatial learning, long-term potentiation, and
depres-sion in the CA1 subfield of mouse
hippocampus. J Neurosci 24:1565-177.

Caspi A, McClay J, Moffitt TE, Mill J, Martin J,
Craig, IW, et al. 2002. Role of genotype in the
cycle of violence in maltreated children. Science
297: 851-854.

Caspi A, Moffitt TE, Morgan J, Rutter M, Taylor A,
Arseneault L, et al. 2004. Maternal expressed
emotion predicts children’s antisocial behavior
problems: using monozygotic-twin differences to
identify environmental effects on behavioral
development. Dev Psychol 40:149-161.

Caspi A, Sugden K, Moffitt TE, Taylor A, Craig, IW,
Harrington H, et al. 2003. Influence of life stress
on depression: moderation by a polymorphism in
the 5-HTT gene. Science 301" 386-389.

Chang HP, Lindberg FP, Wang HL, Huang AM, Lee
EH. 1999. Impaired memory retention and
decreased long-term potentiation in integrin-
associated protein-deficient mice. Learn Mem 6:
448-57.

Chen A, Muzzio I.A, Malleret G, Bartsch D,
Verbitsky M, Pavlidis P, et al. 2003. Inducible
enhancement of memory storage and synaptic
plasticity in transgenic mice expressing an
inhibitor of ATF4 CREB-2. and C/EBP proteins.
Neuron 39: 655-669.

Chen KS, Masliah E, Grajeda H, Guido T, Huang J,
Khan K, et al. 1998. Neurodegenerative Alzheimer-
like pathology in PDAPP 717Vm>F transgenic
mice. Prog Brain Res 117: 327-34.

Chen KS, Nishimura MC, Armanini MP, Crowley C,
Spencer SD, Phillips HS. 1997. Disruption of a
single allele of the nerve growth factor gene
results in atrophy of basal forebrain cholinergic
neurons and memory deficits. J Neurosci 17:
7288-7296.

Chishti MA, Yang DS, Janus C, Phinney AL, Home
P, Pearson J, et al. 2001. Early-onset amyloid
deposition and cognitive deficits in transgenic
mice expressing a double mutant form of arnyloid
precursor protein 695. J Biol Chem 276: 21562-
21570.



234 Y.S. MINEUR, W.E. CRUSIO AND F. SLUYTER

Collinson N, Kuenzi FM, Jarolimek W, Maubach
KA, Cothliff R, Sur C, et al. 2002. Enhanced
learning and memory and altered GABAergic
synaptic transmission in mice lacking the alpha 5
subunit of the GABAA receptor. J Neurosci 22:
5572-5580.

Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E,
Wynshaw-Boris A., Walsh, C.A. 2002. Double-
cortin is required in mice for lamination of the
hippocampus but not the neocortex. J Neurosci
22: 7548-7557.

Corcoran KA, Lu Y, Turner RS, Maren S. 2002.
Over-expression of hAPPswe impairs rewarded
alternation and contextual fear conditioning in a
transgenic mouse model of Alzheimer’s disease.
Learn Mem 9: 243-252.

Costa RM, Yang T, Huynh DP, Pulst SM, Viskochil
DH, et al. 2001. Learning deficits, but normal
development and tumor predisposition, in mice
lacking exon 23a ofNfl. Nat Genet 27; 399-405.

Cox PR, Fowler V, Xu B, Sweatt JD, Paylor R,
Zoghbi HY 2003. Mice lacking Tropomodulin-2
show enhanced long-term potentiation, hyper-
activity, and deficits in learning and memory. Mol
Cell Neurosci 23:1-12.

Crawley J-N. 2000. What’s Wrong with My Mouse?
Behavioral Phenotyping of Transgenic and Knock-
out Mice. New York, NY, USA: Wiley-Liss.

Crestani F, Keist R., Fritschy JM, Benke D, V0gt K,
Prut L, et al. 2002. Trace fear conditioning involves
hippocampal alpha5 GABAA. receptors. Proc Natl
Acad Sci USA 99: 8980-8985.

Croll SD, Suri C, Compton DL, Simmons MV,
Yancopoulos GD, Lindsay RM, et al. 1999.
Brain-derived neurotrophic factor transgenic mice
exhibit passive avoidance deficits, increased seizure
severity and in vitro hyperexcitability in the hippo-
campus and entorhinal cortex. Neuroscience 93"
1491-1506.

Crusio WE. 1999a. Methodological considerations
for testing learning in mice. In: Crusio WE, Gerlai
RT, eds, Handbook of Molecular-Genetic Tech-
niques for Brain and Behavior Research, Vol 13.
Amsterdam, the Netherlands: Elsevier; 638-651.

Crusio WE. 1999b. Using spontaneous and induced
mutations to dissect brain and behavior
genetically. Trends Neurosci 22: 100-102.
Reprinted in Brain Res 835: iv-vii.

Crusio WE. 2000. An introduction to quantitative

genetics. In: Jones BC, Morm6de P, eds, Neuro-
behavioral Genetics: Methods and Applications.
Boca Raton, Florida, USA.: CRC Press; 13-30.

Crusio WE. 2004. Flanking gene and genetic back-
ground problems in genetically manipulated mice.
Bi61 Psychiatry 56:381-385.

Crusio WE, Schwegler H. 1991. Early postnatal hyper-
thyroidism improves both working and reference
memory in a spatial radial-maze task in adult
mice. Physiol Behav 50:259-261.

Crusio WE, Schwegler H, Brust I. 1993. Covariations
between hippocampal mossy fibres and working
and reference memory in spatial and non-spatial
radial maze tasks in mice. Eur J Neurosci 5"
1413-1420.

Crusio WE, Schwegler H, Lipp H-P. 1987. Radial-
maze performance and structural variation of the
hippocampus in mice: a correlation with mossy
fibre distribution. Brain Res 425:182-185.

Cushman J, Lo J, Huang Z, WasserfallC, Petitto JM.
2003. Neurobehavioral changes resulting from
recombinase activation gene deletion. Clin Diag
Lab Immunol 10:13-18.

D’Adamo P, Welzl H, Papadimitriou S, Raffaele di
Barletta M, Tiveron C, Tatangelo L, et al. 2002.
Deletion of the mental retardation gene Gdil
impairs associative memory and alters social
behavior in mice. Hum Mol Genet 11" 2567-2580.

D’Agata V, Schreurs BG, Pascale A, Zohar O,
Cavallaro S. 2003. Down regulation of cerebellar
memory related gene-1 following classical
conditioning. Genes Brain Behav 2:231-237.

Dauge V, Sebret A, Beslot F, Matsui T, Roques BP.
2001. Behavioral profile of CCK2 receptor-
deficient mice. Neuropsychopharmacology 25:
690-698.

de Geus EJ. 2002. Introducing genetic psycho-
physiology. Biol Psychol 61" 1-10.

de Geus EJ, Wright MJ, Martin NG, Boomsma DI.
2001. Genetics of brain function and cognition.
Behav Genet 31: 489-495.

DeLorey TM, Handforth A, Anagnostaras SG,
Homanics GE, Minassian BA, et al. 1998. Mice
lacking the beta3 subunit of the GABAA receptor
have the epilepsy phenotype and many of the
behavioral characteristics of Angelman syndrome.
J Neurosci 18:8505-8514.

Dere E, De Souza-Silva MA, Topic B, Spieler RE,
Haas HL, Huston JP 2003. Histidine-decarbo-



GENETIC DISSECTION OF LEARNING AND MEMORY IN MICE 235

xylase knockout mice show deficient non-
reinforced episodic object memory, improved
negatively reinforced water-maze performance,
and increased neo- and ventro-striatal dopamine
turnover. Learn Mem 10:510-519.

Dhaka A, Costa RM, Hu H, Irvin DK, Patel A,
Kornblum HI, et al. 2003. The RAS effector RIN1
modulates the formation of aversive memories. J
Neurosci 23: 748-757.

D’Hooge R, Nagels G, Franck F, Bakker CE,
Reyniers E, Storm K, et al. 1997. Mildly impaired
water maze performance in male Fmrl knockout
mice. Neuroscience 76" 367-376.

Dickey CA, Gordon MN, Mason JE, Wilson NJ,
Diamond DM, Guzowski JF, Morgan D. 2004.
Amyloid suppresses induction of genes critical for
memory consolidation in APP + PSI transgenic
mice. J Neurochem 88: 434-442.

Dickey CA, Loring JF, Montgomery J, Gordon MN,
Eastman PS, Morgan D. 2003. Selectively
reduced expression of synaptic plasticity-related
genes in amyloid precursor protein + presenilin-1
transgenic mice. J Neurosci 23:5219-5226.

Dorsett Y, Tuschl T. 2004. siRNAs: applications in
functional genomics and potential as therapeutics.
Nat Rev Drug Discov 3" 318-329.

During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons
HL, Jiao X, et al. 2003. Glucagon-like peptide-1
receptor is involved in learning and neuro-
protection. Nat Med 9" 1173-1179.

Dutar P, Vaillend C, Viollet C, Billard JM, Potier B,
Carlo AS, et al. 2002. Spatial learning and
synaptic hippocampal plasticity in type 2 somato-
statin receptor knock-out mice. Neuroscience 112:
455-466.

EI-Ghundi M, Fletcher PJ, Drago J, Sibley DR,
O’Dowd BF, George SR. 1999. Spatial learning
deficit in dopamine DI. receptor knockout mice.
Eur J Pharmacol 383: 95-106.

Ema M, Ikegami S, Hosoya T, Mimura J, Ohtani H,
Nakao K, et al. 1999. Mild impairment of
learning and memory in mice overexpressing the
mSim2 gene located on chromosome 16: an
animal model of Down’s syndrome. Hum Mol
Genet 8:1409-1415.

Fehr C, Shirley RL, Metten P, Kosobud AE, Belknap
JK, Crabbe JC, et al. 2004. Potential pleiotropic
effects of Mpdz on vulnerability to seizures.
Genes Brain Behav 3" 8-19.

Feldker DE, Datson NA, Veenema AH, Proutski V,
Lathouwers D, De Kloet ER, et al. 2003.
GeneChip analysis of hippocampal gene
expression profiles of short- and long-attack-
latency mice: technical and biological implications.
J Neurosci Res 74: 701-716.

Fernandes C, Paya-Cano JL, Sluyter F, D’Souza U,
Plomin R, Schalkwyk LC. 2004. Hippocampal
gene expression profiling across eight mouse
inbred strains: towards understanding the molecular
basis for behaviour. Eur J Neurosci 19: 2576-2582.

Finkbeiner S, Dalva MB. 1998. To fear or not to fear:
what was the question? A potential role for Ras-
GRF in memory. Bioessays 20:691-695.

Fiore M, Angelucci F, Alleva E, Branchi I, Probert L,
Aloe L. 2000. Learning performances, brain NGF
distribution and NPY levels in transgenic mice
expressing TNF-alpha. Behav Brain Res 112"
165-175.

Fiore M., Probert L, Kollias G, Akassoglou K, Alleva
E, Aloe L. 1996. Neurobehavioral alterations in
developing transgenic mice expressing TNF-alpha
in the brain. Brain Behav Immunol 10: 126-38.

Fire A, Xu S, Montgomery MK, Kostas SA, Driver
SE, Mello CC. 1998. Potent and specific genetic
interference by double-stranded RNA in
Caenorhabditis elegans. Nature 391: 806-811.

Fleischmann A, Hvalby O, Jensen V, Strekalova T,
Zacher C, Layer LE, et al. 2003. Impaired long-
term memory and NR2A-type NMDA receptor-
dependent synaptic plasticity in mice lacking
c-Fos in the CNS. J Neurosci 23" 911 6-9122.

Frankland PW, O’Brien C, Ohno M, Kirkwood A,
Silva AJ. 2001. Alpha-CaMKII-dependent plasticity
in the cortex is required for permanent memory.
Nature 411: 309-313.

Frisch C, Dere E, Silva MA, Godecke A, Schrader J,
Huston JP. 2000. Superior water maze
performance and increase in fear-related behavior
in the endothelial nitric oxide synthase-deficient
mouse together with monoamine changes in
cerebellum and ventral striatum. J Neurosci 20:
6694-6700.

Gahtan E, Auerbach JM, Groner Y, Segal M. 1998.
Reversible impairment of long-term potentiation
in transgenic Cu/Zn-SOD mice. Eur J Neurosci
10: 538-544.

Galsworthy MJ, Paya-Cano JL, Monleon S, Plomin
R. 2002. Evidence for general cognitive ability



236 Y.S. MINEUR, W.E. CRUSIO AND F. SLUYTER

(g) in heterogeneous stock mice and an analysis of
potential confounds. Genes Brain Behav 1" 88-95.

Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J,
Reick M, et al. 2000. Impaired cued and
contextual memory in NPAS2-deficient mice.
Science 288" 2226-2230.

Gass P, Wolfer DP, Balschun D, Rudolph D, Frey U,
Lipp HP, et al. 1998. Deficits in memory tasks of
mice with CREB mutations depend on gene
dosage. Learn Mem 5: 274-288.

Gerlai R, Adams B, Fitch T, Chaney S, Baez M.
2002. Performance deficits of mGluR8 knockout
mice in learning tasks: the effects of null mutation
and the background genotype. Neuropharmacology
43: 235-249.

Gerlai R, Marks A, Roder J. 1994. T-maze sponta-
neous alternation rate is decreased in S100 beta
transgenic mice. Behav Neurosci 108:100-106.

Gerlai R, Millen KJ, Herrup K, Fabien K, Joyner AL,
Roder J. 1996. Impaired motor learning perfor-
mance in cerebellar En-2 mutant mice. Behav
Neurosci 110: 126-133.

Gerlai R, Roder J. 1996. Spatial and nonspatial learning
in mice: effects of S100 beta over-expression and
age. Neurobiol Learn Mem 66: 143-154.

Ghelardini C, Galeotti N, Matucci R, Bellucci C,
Gualtieri F, Capaccioli S, et al. 1999. Antisense
’knockdowns’ of M1 receptors induces transient
anterograde amnesia in mice. Neuropharmacology
38: 339-348.

Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P,
Kandel E.R. 1992. Impaired long-term potentiation,
spatial learning, and hippocampal development in
fyn mutant mice. Science 258:1903-1910.

Green EL. 1966. Biology of the Laboratory Mouse.
New York, NY, USA: McGraw-Hill; 706.

Gu Y, Mcllwain KL, Weeber EJ, Yamagata T, Xu B,
Antalffy BA, et al. 2002. Impaired conditioned
fear and enhanced long-term potentiation in Fmr2
knock-out mice. J Neurosci 22: 2753-63.

Guadano-Ferraz A, Benavides-Piccione R, Venero C,
Lancha C, Vennstrom B, Sandi C, et al. 2003.
Lack of thyroid hormone receptor alphal is
associated with selective alterations in behavior
and hippocampal circuits. Mol Psychiatry 8: 30-38.

Heyser CJ, Fienberg AA, Greengard P, Gold LH.
2000. DARPP-32 knockout mice exhibit impaired
reversal learning in a discriminated operant task.
Brain Res 867: 122-130.

Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff
K, Morgan D. 1999. Behavioral changes in trans-
genie mice expressing both amyloid precursor
protein and presenilin-1 mutations: lack of
association with amyloid deposits. Behav Genet
29:177-185.

Impey S, Smith DM, Obrietan K, Donahue R., Wade
C, Storm DR. 1998. Stimulation ofcAMP response
element CRE-mediated transcription during
contextual learning. Nat Neurosci 1" 595-601.

Ivanco TL, Greenough WT. 2002. Altered mossy
fiber distributions in adult Fmrl FVB. knockout
mice. Hippocampus 12: 47-54.

Jamot L, Bertholet J-Y, Crusio WE 1994. Neuro-
anatomical divergence between two substrains of
C57BL/6J inbred mice entails differential radial-
maze learning. Brain Res 644: 352-356.

Jamot L, Matthes HW, Simonin F, Kieffer BL, Roder
JC. 2003. Differential involvement of the mu and
kappa opioid receptors in spatial learning. Genes
Brain Behav 2" 80-92.

Jang CG, Lee SY, Yoo JI-I, Yan JJ, Song DK, Loh
HH, et al. 2003. Impaired water maze learning
performance in mu-opioid receptor knockout mice.
Mol Brain Res 117: 68-72.

Jeon D, Yang YM, Jeong MJ, Philipson KD, Rhim
H, Shin HS. 2003. Enhanced learning and
memory in mice lacking Na+/Ca2+ exchanger 2.
Neuron 38: 965-976.

Jia Z, Lu YM, Agopyan N, Roder J. 2001. Gene
targeting reveals a role for the glutamate receptors
mGluR5 and GIuR2 in learning and memory.
Physiol Behav 73: 793-802.

Jones MW, Errington ML, French PJ, Fine A, Bliss
TV, Garel S, et al. 2001. A requirement for the
immediate early gene Zif268 in the expression of
late LTP and long-term memories. Nat Neurosci
4: 289-296.

Kaksonen M, Pavlov I, Voikar V, Lauri SE, Hienola
A, Riekki R, et al. 2002. Syndecan-3-deficient
mice exhibit enhanced LTP and impaired hippo-
campus-dependent memory. Mol Cell Neurosci
21: 158-172.

Khuchua Z, Wozniak DF, Bardgett ME, Yue Z,
McDonald M, Boero J, et al. 2003. Deletion of
the N-terminus of murine map2 by gene targeting
disrupts hippoeampal eal neuron architecture and
alters contextual memory. Neuroscience 119:
101-111.



GENETIC DISSECTION OF LEARNING AND MEMORY IN MICE 237

Knauber J, Muller WE. 2000. Decreased exploratory
activity and impaired passive avoidance
behaviour in mice deficient for the alphalb-
adrenoceptor. Eur Neuropsychopharmacol 10:
423-427.

Kobayashi K, Noda Y, Matsushita N, Nishii K,
Sawada H, Nagatsu T, et al. 2000. Modest neuro-
psychological deficits caused by reduced nor-
adrenaline metabolism in mice heterozygous for a
mutated tyrosine hydroxylase gene. J Neurosci
20:2418-2426.

Koh MT, Clarke SN, Spray KJ, Thiele TE., Bernstein
IL. 2003. Conditioned taste aversion memory and
c-Fos induction are disrupted in RIIbeta-protein
kinase A mutant mice. Behav Brain Res 143: 57-63.

Kruglyak L. 1999. Prospects for whole-genome linkage
disequilibrium mapping of common disease
genes. Nat Genet 22: 139-144.

Kwon YT, Balogh SA, Davydov IV, Kashina AS,
Yoon JK, Xie Y, et al. 2000. Altered activity,
social behavior, and spatial memory in mice
lacking the NTANlp amidase and the asparagine
ranch of the N-end rule pathway. Mol Cell Biol
20:4135-4148.

Levin ED, Brady TC, Hochrein EC, Oury TD,
Jonsson LM, Marklund SL, et al. 1998. Molecular
manipulations of extracellular superoxide dis-
mutase: functional importance for learning. Behav
Genet 28: 381-90.

Levin ED, Christopher NC, Lateef S, Elamir BM,
Patel M, Liang LP, et al. 2002. Extracellular
superoxide dismutase overexpression protects
against aging-induced cognitive impairment in
mice. Behav Genet 32:119-125.

Lindner MD, Plone MA, Schallert T, Emerich DF.
1997. Blind rats are not profoundly impaired in
the reference memory Morris water maze and
cannot be clearly discriminated from rats with
cognitive deficits in the cued platform task. Cogn
Brain Res 5: 329-333.

Linnarsson S, Bjorklund A, Emfors P. 1997. Learning
deficit in BDNF mutant mice. Eur J Neurosci 9:
2581-2587.

Locurto C, Fortin E, Sullivan R. 2003. The structure
of individual differences in heterogeneous stock
mice across problem types and motivational
systems. Genes Brain Behav 2: 40-55.

Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R,
Wojtowicz JM, et al. 1997. Mice lacking
metabotropic glutamate receptor 5 show impaired

learning and reduced CA1 long-term potentiation
LTP but normal CA3 LTP. J Neurosci 17: 5196-
5205.

Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach,
ME. 1998a. Restricted and regulated over-
expression reveals calcineurin as a key component
in the transition from short-term to long-term
memory. Cell 92: 39-49.

Mansuy IM, Winder DG, Moallem TM, Osman M,
Mayford M, Hawkins RD, et al. 1998b. Inducible
and reversible gene expression with the rtTA
system for the study of memory. Neuron 21: 257-
265.

Martin S, Jones M, Simpson E, van den Buuse M.
2003. Impaired spatial reference memory in
aromatase-deficient ArKO. mice. Neuroreport 14:
1979-1982.

Matilla A, Roberson ED, Banfi S, Morales J,
Armstrong DL, Burright EN, et al. 1998. Mice
lacking ataxin-1 display learning deficits and
decreased hippocampal paired-pulse facilitation. J
Neurosci 18:5508-5516.1

Mayford M, Kandel ER. 1999. Genetic approaches to
memory storage. Trends Genet 15: 463-470.

Meiri N, Masos T, Rosenblum K, Miskin R, Dudai Y.
1994. Overexpression ofurokinase-type plasminogen
activator in transgenic mice is correlated with
impaired learning. Proc Natl Acad Sci USA 91"
3196-3200.

Miller S, Yasuda M, Coats JK, Jones Y, Martone
ME, Mayford M. 2002. Disruption of dendritic
translation of CaMKIIalpha impairs stabilization
of synaptic plasticity and memory consolidation.
Neuron 36:507-519.

Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio
WE 2002. Behavioral and neuroanatomical
characterization of the Fmrl knockout mouse.
Hippocampus 12: 39-46.

Miura K, Kishino T, Li E, Webber H, Dikkes P,
Holmes GL, et al. 2002. Neurobehavioral and
electroencephalographic abnormalities in Ube3a
maternal-deficient mice. Neurobiol Dis 9: 149-
159.

Mons N, Guillou JL, Decorte L, Jaffard R. 2003.
Spatial learning induces differential changes in
calcium/calmodulin-stimulated ACI. and calcium-
insensitive ACII. adenylyl cyclases in the mouse
hippocampus. Neurobiol Learn Mem 79: 226-235.

Murphy DL, Uhl GR, Holmes A, Ren-Patterson R,
Hall FS, Sora I, et al. 2003. Experimental gene



238 Y.S. MINEUR, W.E. CRUSIO AND F. SLUYTER

interaction studies with SERT mutant mice as
models for human polygenic and epistatic traits
and disorders. Genes Brain Behav 2: 350"--364.

Nagai T, Yamada K, Kim HC, Kim YS, Noda Y,
Imura A, et al. 2003. Cognition impairment in the
genetic model of aging klotho gene mutant mice:
a role of oxidative stress. FASEB J 17: 50-52.

Nagy ZM, Misanin JR. 1970. Visual perception in the
retinal degenerate C3H mouse. J Comp Physiol
Psychol 72:306-310.

Nakamura M, Raghupathi R, Merry DE, Scherbel U,
Saatman KE, Mclntosh TK. 1999. Over-
expression of Bcl-2 is neuroprotective after
experimental brain injury in transgenic mice. J
Comp Neurol 412: 681-692.

Nakazawa K, Quirk MC, Chitwood RA, Watanabe
M, Yeckel MF, Sun LD, et al. 2002. Requirement
for hippocampal CA3 NMDA receptors in
associative memory recall. Science 297:211-218.

Naruhashi K, Kadomatsu K, Igakura T, Fan QW,
Kuno N, Muramatsu H, et al. 1997. Abnormalities
of sensory and memory functions in mice lacking
Bsg gene. Biochem Biophys Re Commun 236:
733-737.

Oike Y, Hata A, Mamiya T, Kaname T, Noda Y,
Suzuki M, et al. 1999. Truncated CBP protein
leads to classical Rubinstein-Taybi syndrome
phenotypes in mice: implications for a dominant-
negative mechanism. Hum Mol Genet 8’ 387-96.

Oitzl MS, de Kloet ER, Joels M, Schmid W, Cole TJ.
1997. Spatial learning deficits in mice with a
targeted glucocorticoid receptor gene disruption.
Eur J Neurosci 9: 2284-2296.

Okere CO, Kaba H. 2000. Increased expression of
neuronal nitric oxide synthase mRNA in the
accessory olfactory bulb during the formation of
olfactory recognition memory in mice. Eur J
Neurosci 12: 4552-4556.

Pak K, Chan SL, Mattson MP. 2003. Presenilin-1
mutation sensitizes oligodendrocytes to glutamate
and amyloid toxicities, and exacerbates white
matter damage and memory impairment in mice.
Neuromol Med 3: 53-64.

Paylor R, Hirotsune S, Gambello MJ, Yuva-Paylor L,
Crawley JN, et al. 1999. Impaired learning and
motor behavior in heterozygous Pafahlbl Lisl.
mutant mice. Learn Mem 6: 521-537.

Peirce JL, Lu L, Gu J, Silver LM, Williams RW.
2004. A new set ofBXD recombinant inbred lines
from advanced intercross populations in mice.

BMC Genet 5: 7.
Petitto JM, Huang Z, Hartemink DA., Beck R Jr.

2002. IL-2/15 receptor-beta gene deletion alters
neuro-behavioral performance. Brain Res 929:
218-225.

Petitto JM, McNamara RK, Gendreau PL, Huang Z,
Jackson AJ. 1999. Impaired learning and memory
and altered hippocampal neurodevelopment
resulting from interleukin-2 gene deletion. J
Neurosci Res 56:441-446.

Phillips TJ, Belknap JK, Hitzemann RJ, Buck KJ,
Cunningham CL, Crabbe JC. 2002. Harnessing
the mouse to unravel the genetics of human
disease. Genes Brain Behav 1:14-26.

Picciotto MR, Zoli M, Lena C, Bessis A, Lallemand
Y, LeNovere N, et al. 1995. Abnormal avoidance
learning in mice lacking functional high-affinity
nicotine receptor in the brain. Nature 374" 65-67.

Pittenger C, Huang YY, Paletzki RF, Bourtchouladze
R, Scanlin H, Vronskaya S, et al. 2002.
Reversible inhibition of CREB/ATF transcription
factors in region CA1 of the dorsal hippocampus
disrupts hippocampus-dependent spatial memory.
Neuron 34: 447-462.

Plomin R. 1999. Genetics and general cognitive
ability. Nature 402(6761 Suppl): C25-C29.

Plomin R, 2001. The genetics of g in human and
mouse. Nat Rev Neurosci 2: 136-141.

Plomin R, Craig I. 2001. Genetics, environment and
cognitive abilities: review and work in progress
towards a genome scan for quantitative trait locus
associations using DNA pooling. Br J Psychiatry
40 Suppl: s41-s48.

Plomin R, Owen MJ, McGuffin P. 1994. The genetic
basis of complex human behaviors. Science 264:
1733-1739.

Plomin R, Spinath FM. 2002. Genetics and general
cognitive ability g. Trends Cogn Sci 6:169-176.

Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin
M, Tsien JZ. 2000. Enrichment induces structural
changes and recovery from nonspatial memory
deficits in CA1 NMDARl-knockout mice. Nat
Neurosci 3" 238-244.

Reed TM, Repaske DR, Snyder GL, Greengard P,
Vorhees CV. 2002. Phosphodiesterase 1B knock-
out mice exhibit exaggerated locomotor hyper-
activity and DARPP-32 phosphorylation in
response to dopamine agonists and display
impaired spatial learning. J Neurosci 22" 5188-
5197.



GENETIC DISSECTION OF LEARNING AND MEMORY IN MICE 239

Reisel D, Bannerman DM, Schmitt WB, Deacon RM,
Flint J, Borchardt T, et al. 2002. Spatial memory
dissociations in mice lacking GIuR1. Nat
Neurosci 5" 868-873.

Rissman EF, Heck AL, Leonard JE, Shupnik MA,
Gustafsson JA. 2002. Disruption of estrogen
receptor beta gene impairs spatial learning in female
mice. Proc Natl Acad Sci USA 99: 3996-4001.

Rodriguiz RM, Chu R, Caron MG, Wetsel WC.
2004. Aberrant responses in social interaction of
dopamine transporter knockout mice. Behav
Brain Res 148:185-98.

Routtenberg A, Cantallops I, Zaffuto S, Serrano P,
Namgung U..2000. Enhanced learning after
genetic overexpression of a brain growth protein.
Proc Natl Acad Sci USA 97: 7657-7662.

Roy K, Thiels E, Monaghan AP. 2002. Loss of the
tailless gene affects forebrain development and
emotional behavior. Physiol Behav 77" 595-600.

Saarelainen T, Pussinen R, Koponen E, Alhonen L,
Wong G, Sirvio J, et al. 2000. Transgenic mice
overexpressing truncated trkB neurotrophin
receptors in neurons have impaired long-term
spatial memory but normal hippocampal LTP.
Synapse 38:102-104.

Sakimura K, Kutsuwada T, Ito I, Manabe T,
Takayama C, Kushiya E, et al. 1995. Reduced
hippocampal LTP and spatial learning in mice
lacking NMDA receptor epsilon subunit. Nature
373:151-155.

Sallinen J, Haapalinna A, MacDonald E, Viitamaa T,
Lahdesmaki J, Rybnikova E, et al. 1999. Genetic
alteration of the alpha2-adrenoceptor subtype c in
mice affects the development of behavioral
despair and stress-induced increases in plasma
corticosterone levels. Mol Psychiatry 4" 443-452.

Sauvage M, Brabet P, Holsboer F, Bockaert J,
Steckler T. 2000. Mild deficits in mice lacking
pituitary adenylate cyclase-activating polypeptide
receptor type (PAC1) performing on memory
tasks. Mol Brain Res 84: 79-89.

Schena M. 2003. Microarray Analysis. Hoboken,
New Jersey, USA: Wiley-Liss.

Schmitt WB, Deacon RM, Seeburg PH, Rawlins JN.
Bannerman DM. 2003. A within-subjects, within-
task demonstration of intact spatial reference
memory and impaired spatial working memory in
glutamate receptor-A-deficient mice. J Neurosci
23: 3953-3959.

Schwegler H, Crusio WE. 1995. Correlations

between radial-maze learning and structural
variations of septum and hippocampus in rodents.
Behav Brain Res 67:29-4 1.

Schwegler H, Crusio WE, Brust I. 1990. Hippo-
campal mossy fibers and radial-maze learning in
the mouse: a correlation with spatial working
memory but not with non-spatial reference
memory. Neuroscience 34" 293-298.

Shirley RL, Walter NA, Reilly MT, Fehr C, Buck KJ.
2004. Mpdz is a quantitative trait gene for drug
withdrawal seizures. Nat Neurosci 7: 699-700.

Silva AJ, Kogan JH, Frankland PW, Kida S. 1998.
CREB and memory. Annu Rev Neurosci 21: 127-
148.

Silva AJ, Paylor R, Wehner JM, Tonegawa S. 1992.
Impaired spatial learning in alpha-calcium-
calmodulin kinase II mutant mice. Science 257:
206-211.

Skelton MR, Ponniah S, Wang DZ, Doetschman T,
Vorhees CV, Pallen CJ. 2003. Protein tyrosine
phosphatase alpha PTP alpha, knockout mice
show deficits in Morris water maze learning,
decreased locomotor activity, and decreases in
anxiety. Brain Res 984:1-10.

Sluyter F, de Geus E, van Luijtelaar G, Crusio WE.
2002. Behavioral neurogenetics. In: Ramachandran
VS, ed, Encyclopedia of the Human Brain, Vol 1.
San Diego, California, USA: Elsevier; 381-392.

Soderling SH, Langeberg LK, Soderling JA, Davee
SM, Simerly R, Raber J, et al. 2003. Loss of
WAVE-1 causes sensorimotor retardation and
reduced learning and memory in mice. Proc Natl
Acad Sci USA 100:1723-1728.

Spielewoy C, Roubert C, Hamon M, Nosten-
Bertrand, M, Betancur C, Giros B. 2000.
Behavioural disturbances associated with hyper-
dopaminergia in dopamine-transporter knockout
mice. Behav Pharmacol 11" 279-290.

Staats J. 1985. Standardized nomenclature for inbred
strains of mice: Eighth listing. Cancer Res 45:
945-977.

Steinmetz LM, Davis RW. 2004. Maximizing the
potential of functional genomics. Nat Rev Genet
5: 190-201.

Strekalova T, Zorner B, Zacher C, Sadovska G,
Herdegen T, Gass P. 2003. Memory retrieval after
contextual fear conditioning induces c-Fos and
JunB expression in CA hippocampus. Genes
Brain Behav 2" 3-10.

Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner



240 Y.S. M1NEUR, W.E. CRUSIO AND F. SLUYTER

GA, Zhuo M, et al. 1999. Genetic enhancement of
learning and memory in mice. Nature 401" 63-69.

Tanila H, Mustonen K, Sallinen J, Scheinin M,
Riekkinen P Jr. 1999. Role of alpha2C-adreno-
ceptor subtype in spatial working memory as
revealed by mice with targeted disruption of the
alpha2C-adrenoceptor gene. Eur J Neurosci 11:
599-603.

Tatebayashi Y, Miyasaka T, Chui DH, Akagi T,
Mishima K, Iwasaki K, et al. 2002. Tau filament
formation and associative memory deficit in aged
mice expressing mutant R406W. human tau. Proc
Natl Acad Sci USA 99: 13896-13901.

Tryon RC. 1929. The genetics of learning ability in
rats. Preliminary report. Publ Psychol University
of California 4:71-89.

Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH,
Anderson DJ, et al. 1996. Subregion- and cell
type-restricted gene knockout in mouse brain.
Cell 87:1317-1326.

Tsuang M. 2000. Schizophrenia: genes and environ-
ment. Biol Psychiatry 47: 210-220.

Tully LA, Arseneault L, Caspi A, Moffitt TE, Morgan
J. 2004a. Does maternal warmth moderate the
effects of birth weight on twins’ attention-
deficit/hyperactivity disorder ADHD symptoms
and low IQ? J Consult Clin Psychol 72:218-226.

Tully LA, Moffitt TE, Caspi A, Taylor A, Kiernan H,
Andreou P. 2004b. What effect does classroom
separation have on twins’ behavior, progress at
school, and reading abilities? Twin Res 7:115-
124.

Tully T. 1996. Discovery of genes involved with
learning and memory: an experimental synthesis
of Hirschian and Benzerian perspectives. Proc
Natl Acad Sci USA 93: 13460-13467.

Uetani N, Kato K, Ogura H, Mizuno K, Kawano K,
Mikoshiba K, et al. 2000. Impaired learning with
enhanced hippocampal long-term potentiation in
PTPdelta-deficient mice. EMBO J 19: 2775-2785.

van Abeelen JHF. 1980. Direct genetic and maternal
influences on behavior and growth in two inbred
mouse strains. Behav Genet 10: 545-551.

Van Dam D, D’Hooge R, Hauben E, Reyniers E,
Gantois I, Bakker CE, et al. 2000. Spatial learning,
contextual fear conditioning and conditioned
emotional response in Fmrl knockout mice.
Behav Brain Res 117" 127-136.

Vaucher E, Fluit P, Chishti MA, Westaway D, Mount
HT, Kar S. 2002. Object recognition memory and

cholinergic parameters in mice expressing human
presenilin transgenes. Exp Neurol 175" 398-406.

Wang B, Hu Q, Hearn MG, Shimizu K, Ware CB,
Liggitt DH, et al. 2004. Isoform-specific knockout
of FE65 leads to impaired learning and memory. J
Neurosci Res 75" 12-24.

Waterston RH, Lindblad-Toh K, Bimey E, Rogers J,
Abril JF, Agarwal P, et al. 2002. Initial
sequencing and comparative analysis of the
mouse genome. Nature 420: 520-562.

Whishaw IQ, Tomie JA. 1996. Of mice and mazes:
similarities between mice and rats on dry land but
not water mazes. Physiol Behav 60:1191-1197.

Wickman K, Karschin C, Karschin A, Picciotto MR,
Clapham DE. 2000. Brain localization and
behavioral impact of the G-protein-gated K+
channel subunit GIRK4. J Neurosci 20:5608-5615.

Williams RW, Dubnau J, Enoch M-A, Flaherty L,
Sluyter F, Gannon KS, et al. 2002. Hot topics in
behavioral and neural genetics. Genes Brain
Behav 1: 117-130.

Winocur G, Roder J, Lobaugh N. 2001. Learning and
memory in S 100-beta transgenic mice: an analysis
of impaired and preserved function. Neurobiol
Learn Mem 75: 230-243.

Wolfer DP, Crusio WE, Lipp H-P. 2002. Knockout
mice: simple solutions to the problems of genetic
background and flanking genes. Trends Neurosci
25:336-340.

Wolfer DP, Stagljar-Bozicevic M, Errington ML,
Lipp H-P. 1998. Spatial memory and learning in
transgenic mice: Fact or artifact? News Physiol
Sci 13:118-123.

Wolff M, Savova M, Malleret G, Hen R, Segu L,
Buhot MC. 2003. Serotonin 1B knockout mice
exhibit a task-dependent selective learning
facilitation. Neurosci Lett 338: 1-4.

Wynick D, Bacon A. 2002. Targeted disruption of
galanin: new insights from knockout studies.
Neuropeptides 36" 132-144.

Xie CW, Sayah D, Chen QS, Wei WZ, Smith D, Liu
X. 2000. Deficient long-term memory and long-
lasting long-term potentiation in mice with a
targeted deletion of neurotrophin-4 gene. Proc Br
Pharmacol Soc 97:8116-81121.

Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe
T,. Takahashi H, et al. 2002. Mice deficient in
nervous system-specific carbohydrate epitope
HNK-I exhibit impaired synaptic plasticity and
spatial learning. J Biol Chem 277:27227-27231.



Submit your manuscripts at
http://www.hindawi.com

Neurology 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Alzheimer’s Disease
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Scientifica
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
Schizophrenia

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Neural Plasticity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
Autism

Sleep Disorders
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Neuroscience 
Journal

Epilepsy Research 
and Treatment
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Psychiatry 
Journal

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Depression Research 
and Treatment
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Brain Science
International Journal of

Stroke
Research and Treatment
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Neurodegenerative 
Diseases

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Cardiovascular Psychiatry 
and Neurology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


