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SUMMARY

Mendelian genetic tools have extensively
been used to improve the description of the
pharmacological mechanisms involved in
learning and memory. The first part of this
short review describes experiments involving
the bidirectional selection of rats or mice for
extreme behavioral characteristics or for
sensitivity to pharmacological treatments.
The second part focuses specifically on in-
breeding. In conclusion, the advantages and
the limits of a Mendelian pharmacogenetic
approach of learning and memory are
discussed.

INTRODUCTION

The idea that genes can affect behavior and
that variability in behavior among species,
populations, or individuals has some genetic basis
is now widely accepted. Evolutionary biologists
have been primarily imerested in this issue to
assess whether variation in behavior within a
species had any genetic basis and, if so, how
genetic variation was maintained across
generations. The interest of neuroscientists for
behavior genetics developed later, that is, when it
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became apparent that genetically associated
variations in behavior were providing a powerful
tool for revealing correlated variations in brain
architecture, neurochemistry, and neural plasticity.
This approach was fundamentally based upon the
principle that phenotypic characters in a population
cannot be classified into discrete categories but are
distributed quantitatively over a Gaussian (bell-
shape) curve. This phenomenon means that in a
natural populationmeven if such characters are
continually varyingmmost individuals are grouped
around the central value of the Gaussian curve and
tend to present similar phenotypes. Artificial
selection techniques, however, allow the generation
of well-differentiated subpopulations showing
robustmsometimes extremedifferences in
behavioral traits with rather ’intra-population’
homogeneity. This subdivision, in turn, makes it
possible to describe the neural characteristics of
each subgroup and, therefore, to identify accurately
the neural substrate of specific behaviors. In
rodents, bidirectional selection and inbreeding
represent the most widely used tools. The aim of
the present paper is to underline the importance of
such tools in the analysis of the pharmacological
aspects of learning and memory. The first part
focuses on bidirectional selectionnthat is, on rat
or mouse lines selected for opposite behavioral
characteristics or for sensitivity to pharmaco-
logical treatments. The second part concerns
experiments specifically carried out in inbred
strains of mice showing distinct genetically
associated learning and memory abilities, although
no behavioral criterion is involved in the selection
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process. In conclusion, the advantages and the
limits of a genetic dissection based upon
Mendelian principles in the field of pharmacology
ofmemory are discussed.

BIDIRECTIONAL SELECTION

Behavioral traits

Bidirectional selection for behavioral traits
consists of submitting large samples of rodents to a

given situation and scoring their behavior. Males
and females reaching the higher scores are
systematically mated, as are males and females
reaching the lower scores. Following several
generations, this selection, strictly based upon a
performance criterion, provides two well-
differentiated subpopulations, allowing a search
for the neural markers of each behavioral profile.
For example, rats selected by Tryon (1940), Heron
(1941), or Thompson (1954) for their poor versus
good maze-learning abilities, or by Bignami
(1965), as well as by Brush (1979), for their high
versus low active avoidance scores were the result
of a bidirectional selection strictly based upon a

learning performance criterion. Nevertheless, as
every learning task involves sensorial, emotional,
and motivational peculiarities, it became rapidly
clear that a number of other behavioral traits were
also segregated in high and low learners. For
example, Brush (1979), who selected the Syracuse
(SHA/bru and SLA/bru) lines of hooded rats for
differences in active two-way shuttle box avoidance
learning, recently claimed (2003a, b) that the low-
avoidance phenotype (SLA) was better
characterized in terms of a high level of anxiety,
whereas the reverse was true for the high
avoidance phenotype (SHA). The author concluded
that having selected rats for a difference in
avoidance learning, factors in the affective domain
influencing more performance than learning per se
were the primary selected traits.

This aspect illustrates, in fact, the most
criticized aspect of this selection method, namely,
that possible confounders cannot be excluded
when conclusions regarding the neural bases of
learning and memory are drawn from experiments
involving bidirectional selection based upon a
performance criterion. An indirect demonstration
of this aspect was provided by rats not bred for
differences in learning performance, like the
Maudsley reactive and non-reactive lines, selected
for their different level of emotionality (defecation)
in an open field (Broadhurst, 1960), or the Naples
High-Excitable and Naples Low-Excitable rat
lines, selectively bred since 1976 by Sadile and
colleagues (see Lipp et al., 1987) on the basis of
different behavior arousal in a novel situation. All
these lines show line-dependent specific learning
abilities. Nevertheless, these strains have been
successfully used to emphasize an aspect of
particular relevance for pharmacological studies,
i.e., that responsiveness to one drug strongly varies
as a function ofthe genetic background.

This phenomenon, early suggested by
Broadhurst (1964) was reported for the first time
in Roman high-avoider (RHA) and Roman low-
avoider (RLA) rats selected by Bignami (1965) for
extreme active avoidance scores. Injecting such
rats with amphetamine and other psychotropic
agents, before the training sessions, Bignami and
colleagues found a selective enhancing effect of
drugs on RLA performance.

Indeed this observation was followed by a
number of experiments showing that many drugs
exert line-specific effects on memorization.
Among those, two findings require particular
attention. First, differences in the opiate binding
and behavioral effects of morphine were found
between RLA and RHA injected with morphine
(Lazega et al., 1986), already suggesting (1) a

genetic-dependent responsiveness to opiates and
(2) the possibility of searching for mechanisms
common to memory and drug addiction. Second,
the observation that rats differing in active avoidance
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scores also showed distinct performance-related
traits allowed a more precise identification of drug
targets. For example, Satinder (1980) observed
that scopolamine disrupted responsiveness to
visual but not to auditory stimuli in the RLA line,
whereas d-amphetamine, otherwise affecting
activity and reaction time, did not affect this
parameter. Satinder suggested that responsiveness
to visual stimuli is influenced by bidirectional
genetic selection via the segregation of line-
specific cholinergic mechanisms.

The observation that heritable factors control
the responsiveness to drugs clearly led to analyses
of the consequence of bidirectional selection at the
neurochemical level. Using the same rats, Giorgi et
al. (1994) reported line-specific differences relating
to the GABAergic and dopaminergic systems. In
particular, the authors showed that the stimulatory
effect ofGAIA on 36C1 uptake was less pronounced
in the cerebral cortex of RLA as compared with
RHA, whereas no line-related change was detected
in [3H]GABA and [3H]flunitrazepam binding. For
dopamine, the density of D1 dopamine receptors
was found to be lower in the nucleus accumbens of
RLA as compared with RHA, whereas no line-
dependent change was observed for D1 dopamine
receptors located in the striatum, the amygdala,
and the prefrontal cortex. Thus, site-specific
biochemical markers of inter-individual variability
in emotional learning were identified.

The possibility of observing neurochemical
differences in lines of rats selected for behavioral
traits has rapidly been considered a valuable tool
for describing the role of various neurotransmitters
in cognition. For example, investigations on the
neurochemical characteristics of inbred Maudsley
Reactive (MR) and Non-Reactive (MNR) rat strains
showed that MR rats had lower concentrations of
norepinephrine in the hypo-thalamus than MNRA
rats. By contrast, MR rats had a higher
concentration of telencephalic norepinephrine than
MNRA rats (Liang & Blizard, 1978). Possibly
indicative of a higher rate of norepinephrine

metabolism, the percentage of 3H-labeled non-
catechol metabolites relative to the total counts
was higher in the brainstem of MNRA rats when
measured 90 minutes after the intraventricular
injection of 3H-norepinephrine (Slater et al., 1977).
Interestingly, both lines showed an elevation of 3,4
dihydroxiphenylacetic acid levels in the locus
coeruleus following a single session of acute
immobilization stress compared with non stressed
controls, but this elevation was stronger in the
reactive line (Buda et al., 1994). Such well-
characterized differences between noradrenergic
and cholinergic systems and their relation to the
behavioral profile led Sara et al. (1994) to consider
the M.audsley rat strains as a ’probe’ to investigate
noradrenergic-cholinergic interaction in learning
and memory. The authors reported that, in
comparison with the Reactive line, the Non
reactive line was characterized by a greater [25I]
clonidine binding to alpha 2 receptors in the locus
coeruleus, a higher behavioral sensitivity to
clonidine, and a greater availability of muscarinic
receptors correlating with superior spatial working
memory performance.

Similarly, the Naples High-Excitable and Low-
Excitable rat lines, bred for their different levels of
activity reflecting behavioral arousal in a novel
situation, show interesting behavioral and neural
properties for investigating the role of the
mesocortical dopaminergic system in cognitive
and motor behavior In particular, the two lines
differ in spatial learning, active avoidance, and
conditioned taste aversion, with the High-
Excitable line showing a performance very similar
to that of rats injected with a dopaminergic agonist
(Viggiano et al., 2002). In agreement with the
behavioral data, regional examination of
dopaminergic metabolism in these animals
revealed a hyperdopaminergic innervation in the
prefrontal cortex of the High-Excitable line, with a
down regulation of dopamine D receptors making
this line particularly suitable to the study of
hyperactivity and attentional disorders (Carey et
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al., 1998), as well as drug abuse (Viggiano et al.,
2003).

Differential sensitivity to pharmacological
treatment

Indeed, pharmacologists interested in the
functional role of a specific neurotransmitter
system can directly use the responsiveness to a
pharmacological agent for selecting lines showing
extreme phenotypes. For example, Gallaher et al
(1987) selected mice according to the effect of
diazepam known for its anxyolitic, myorelaxing,
and anticonvulsive properties in the rotarod test,
which measures both muscular strength and motor
coordination. Binding experiments, successively
conducted on these subpopulations, showed line-
dependent differences in the number of benzo-
diazepine receptors that correlate with rotarod
performance and seizure thresholds induced by
convulsant agents. Interestingly, when lines of
mice were also selected for their different
sensitivity to diazepam but using a physiological
(sleep time) instead of a behavioral (rotarod
performance) criterion (Yoong & Wong, 1988),
the line with the lower reaction (and lower number
of benzodiazepine receptors) also showed superior
rotarod performance but, contrary to that observed
in the Gallaher’s experiments, no protection
against pentylenetrazol-induced seizure. This set
of findings underline that changing one element in
a complex criterion of selection (drug responsive-
ness x behavioral vs physiological trait) can lead to
the segregation ofvery selective phenotypes.

This aspect is well illustrated by Chapouthier
et al. (1998), who selected lines for their different
sensitivity to the benzodiazepine receptor inverse
agonist methyl-13-earboline-3-earboxylate (13-CCM),
known for its convulsant, anxiogenic, and learning
enhancing effects. In these experiments, the
criterion of selection was the latency to convulse
following 13-CMM administration. The two lines
were easily separated: one line convulsing with

short latencies and one line resistant to 13-CMM
administration. Binding analysis of benzodiazepine
receptors in these two subpopulations indicated a
decreased Bmax in the resistant line compared with
the convulsing line. Interestingly, although selected
for their responsiveness to a drug, these mice also
showed a variety of line-specific, anxiety-related
behavioral traits. In particular, the resistant line
was found to display poor intermale aggression
(Guillot et al., 1999), low anxiety levels (Suaudeau
et al., 2000), and reduced sensitivity to other
convulsive (GABA-A) agents (Rinaldi et al.,
2000). The point to be examined now is whether a
selection process based upon responsiveness to
13-CCM, that is, a drug having learning-enhancing
properties, also segregates for distinct learning
abilities. Preliminary data indicate that segregation
does occur, with the sensitive line showing the
higher performance in spatial discrimination tasks
(Venault et al., 2003)

INBREEDING

Inbreeding, also aimed at the production of
distinct lines or strains, consists of mating closely
related individuals (sisters and brothers) for many
generations. In the mouse, for example, about 20
generations are necessary to produce an inbred
line, the members of which are homozygous, i.e.,
have the same genotype. Worth remembering is
that inbred mice were initially generated for physio-
pathologists, who early identified the advantage of
having a homogeneous population of individuals
showing a clear symptomatology. Therefore, the
criteria of selection used by C.C. Little (1916) to
produce inbred strains in the early 20tc entury
were, for example, "immunohistocompatibility
response" or "predisposition to develop neoplasia",
to determine if cancer was inherited. Incidentally,
Bagg (1920) tested various inbred strains of mice
in several multiple-choice mazes and found that
the learning performance strongly varied between
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strains whereas it was remarkably homogeneous
within each strain. Later, Vicari (1929), who
examined the time spent by DBA/2J and BALBc/J
inbred mice, as well as by "Japanese Waltzer" and
"Myencephalic Blebs" mutant mice to run a three-
unit maze, also observed that maze-running times
were strain-dependent.

These observations led to an abundant body of
literature dealing with inter-strain comparisons.
Clearly, one advantage of inbreeding over bi-
directional selection is that no learning-task-related
criterion is involved in the selection process so
that possible confounders relating to the effective
performance-related criterion of selection are
excluded. Another interesting aspect of inbreeding
is that the individuals of a given strain are like
homozygous twins, i.e., have identical genotypes.
It turns out that an entire population exhibits the
phenotype of a single randomly bred individual so
that interstrain comparisons are overall a tool for
analyzing interindividual phenotypic variability
within natural populations. As many strains have
been now accurately characterized (see Ingram &
Corfman, 1982, for an overview ofneurobiological
differences in mouse strains), any neuroscientist
interested in analyzing a particular behavioral or
neural phenotype can select a priori either one
strain expressing the behavioral or neural trait of
interest, or several strains to be compared for their

difference relating to this trait.

Strain differences in learning and memory
performance: examples from C57BL/6 vs DBA/2

comparisons

The initial observation of spontaneous
differences in performance among inbred mice

subjected to one learning task generated an

impressive amount of experiments aimed at

comparing strains in a variety of tasks taping
different forms of memorization. The results
showed no general learning superiority in any

strain but did show frequem strain x task specific
levels of performance. For example, C57BL/6

(C57) mice were found to perform worse than
DBA/2 (DBA) mice in tasks having a strong
procedural component, such as the Lashley maze

(Oliverio et al., 1972) the active avoidance task
(Bovet et al., 1969; Oliverio et al., 1972) or
various situations of operant conditioning (Renzi
& Sansone, 1971). The C57 mice performed better
in tasks requiring spatial (Ammassari et al., 1985;
Crusio et al., 1980; Upchurch & Wehner,1989;
Passino et al., 2002) or contextual (Castellano &
Puglisi-Allegra, 1983; Weinberger et al., 1992;
Restivo et al., 2002; Ammassari-Teule et al., 2000)
information processing. A specific deficit in trace
fear conditioning was reported in DBA mice

(Holmes et al, 2002) otherwise showing superior
performance in various protocols of conditioned
taste aversion in comparison with C57 mice

(Ingram 1982; Dudek & Fuller, 1982; Risinger &
Cunningham, 1995) Conversely, both strains
showed similar learning visual discrimination
learning abilities (Castellano, 1977), as well as
social transmission of social food preference
(Holmes et al., 2002).

It is worth noting that such genetically
associated differences in performance are not

completely rigid because they can be either

emphasized or attenuated through manipulating
experimental factors. For example, when C57 and
DBA mice are trained to press a lever to avoid an

electric foot shock predicted by an auditory or a

visual stimulus, DBA mice show superior avoidance

performance when the duration of the predictive
signal is short. Conversely, when the duration of
the predicting signal is increased, interstrain

differences in performance were no longer evident

(Renzi & Sansone, 1971).
Indeed, in view of the well-differentiated

spatial learning abilities of C57 and DBA mice, an

extensive description of the neural characteristics
of the hippocampus was carried out in both strains



210 M. AMMASSARI-TEULE AND C. CASTELLANO

to gain further insight on the relation between
hippocampal functionality and spatial information
processing. In agreement with the behavioral
findings, C57 mice were found to show more
mossy fiber terminals in the hippocampal regio

inferior (Barber et al., 1974; Crusio et al., 1987;
Schwegler et al., 1988), a higher hippocampal
protein kinase C activity (Wehner et al., 1990),
and a longer duration ofthe late phase of long term

potentiation (Matsumaya et al., 1997; Nguyen et
al., 2000; Jones et al., 2001) than DBA mice.

Fewer linear correlations emerged, however,
when the cholinergic function, which plays a
central role in spatial learning, was examined. That
is, although interstrain differences regarding
various aspects of cholinergic metabolism were
clearly established, stating which strain was
presenting the ’cholinergic properties’ susceptible
to mediate superior spatial learning and memory
was impossible. For example, C57 mice showed a
higher concentration and turnover of acetylcholine
in the total brain, in the fronto-parietal cortex, and
in the caudate nucleus than DBA mice (Durkin et
al., 1973; Racagni et al., 1977). The synthesis of
acetylcholine, estimated by measuring the activity
of the enzyme choline acetyltransferase, was,
however, more important in DBA than in C57
mice (Ebel et al., 1973; Mandel et al, 1974).
Conversely, the degradation of acetylcholine,
estimated by measuring the enzyme acetyl-
cholinesterase, was found to be more intense in
C57 than in DBA (Pryor et al., 1966), even if a
higher content of acetylcholinesterase in the
striatum of DBA was also found (Iacopino et al.,
1985). Examination of the density of muscarinic
receptors by autoradiographic methods, using
[3H]quinuclidinyl benzilate (QNB) and [3H]piren-
zepine as ligands revealed lower [3H]QNB binding
in the frontal cortex, in the hippocampus, and in
the striatum of C57 as compared with DBA,
whereas [3H]pirenzepine binding in the temporal
cortex was found to be higher in C57 (Marks et al.,

1981; Schwab et al., 1990) than in DBA. These
observations underline the difficulty of establishing
fully consistent causal relations when various
levels of analysis are taken into account.
Nevertheless, the well-differentiated reactivity of
inbred strains to pharmacological agents has
proved to be useful for unveiling how various
modalities of interaction between neurotransmitters
systems exert a specific control on behavior.

Inbred mice: variable responsiveness to drugs in
learning and memory tasks

Experiments widely based on the post-training
administration of drugs in the passive avoidance
task have shown that inbred mice show a variable
responsiveness to drugs, with differences in the
intensity as well as in the direction of the effects.
A few examples still relating to C57 and DBA
strain comparisons illustrate this phenomenon. For
instance, the cholinergic muscarinic agonist oxo-
tremorine improves passive avoidance retention in
both strains, with a stronger effect in DBA,
whereas the serotonergic agonist 5-MeODMT
impairs retention to the same extent in each
genotype. The simultaneous administration of
5MeODMT and oxotremorine, however,
specifically blocks the improving effect of the
cholinergic agonist on memory consolidation only
in the DBA strain (Pavone et al., 1993).

In the same fashion, also the interplay between
cholinergic and dopaminergic mechanisms in
mediating memory consolidation differs according
to genotype. That is, the D2 dopaminergic agonist
quinpirole and the D2 antagonist (-) sulpiride were
reported to impair retention in C57 and to produce
inverted effects in DBA. Nevertheless, the strain-
related facilitating or impairing effects of
quinpirole and sulpiride are blocked by the
simultaneous administration of oxotremorine
(Gasbarri et al. 1997; Castellano et al., 1999). Both
series of experiments demonstrated, therefore, that
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in each genotype, the serotonergic as well as the
dopaminergic modulation of memory processes are
mediated via muscarinic receptors. Consistent with
these observations is the finding that the effect of
dopamine agonists on hippocampal acetylcholine
release in vivo is also strain-dependent (Imperato et
al., 1996). Indeed, genotype-specific effects of
single drugs mediated by complex interactions
between distinct neurotransmitters systems were also
reported for cholinergic muscarinic (Ammassari-
Teule & Caprioli, 1985; Marks et al., 1981) or for
nicotinic agents (Gilliam & Schlesinger, 1985;
Marks et al., 1986), glutamate NMDA-competitive
and NMDA-noncompetitive antagonists (Ungerer et
al., 1993, Cestari et al, 1999; Ciamei et al., 2000),
opioids agonists (Castellano, 1980; Puglisi-Allegra
et al., 1994; Castellano & Pavone, 1987; Castellano
et al., 1996; Ciamei et al., 2000), GABA
(Castellano et al., 1993), endogenous cannabinoids
(Castellano et al., 1999), and adenosine (Castellano,
1977a), as well as antipsychotic and antidepressant
agents broadly interacting with the catecholamines
(Castellano, 1977b).

Interesting properties of cognitive enhancers
have also been unveiled by comparing their effect in
different inbred strains of mice. For example, the
nootropic drug oxiracetam was found to produce
stronger enhancing effects on avoidance acquisition
in the good-performer strain (BALB/cJ) than in the
poor-performer strain (C57), whereas the nootropic
drug piracetam facilitated acquisition only in the
good-performer strain BALB/cJ. These observations
led to the conclusion that nootropics have a
marginal influence on individuals spontaneously
showing low levels of performance (Sansone et al.,
1985). Importantly, the combination of oxiracetam
and methamphetamine boosted the active avoidance
performance of poor-performer strain C57 mice up
to the level of the good-performer strain BALBc/J

(Sansone & Oliverio, 1989), with the enhancing
effect of the drug combination being superior to the
effect of oxiracetam or methamphetamine alone.

CONCLUSIONS

Although non-exhaustive, this short review
allows certain conclusions to be drawn about the
interest and the limits of a genetic dissection based
upon Mendelian principles in the field of the
pharmacology ofmemory.

Certainly, what both bidirectional and
inbreeding experiments show is that segregating
lines or strains for one complex behavioral trait
implies the selection of a variety of superimposed
traits. Independently of the precise genetic
mechanism underlying the multiple-segregation
phenomenon (linkage, polygenic systems), there is
no doubt that a stable set of associated traits
provided a unique opportunity to identify causal
relations between phenomena at different levels of
integration.

Another advantage deriving from the selection
of extreme phenotypes is the possibility of
estimating the amplitude of normal inter-individual
variations for a particular trait. In fact, as
bidirectional selection and inbreeding techniques
are applied on normal populations, the point to be
remembered is that ’low’ learners are still ’normal’
learners, and that the sometimes opposite effects of
one drug on strain-specific levels of performance
are within the normal range of this drug’s effects.
Nevertheless, that the neurochemical characteristics
of low learners can be considered as ’pre-
pathological’ and can serve to identify early
markers of cognitive dysfunction is also true. For
example, the properties of the noradrenergic
system of non-reactive Maudsley rats (Slater et al.,
1977; Buda et al., 1994), of the dopaminergic
system of High Excitable Naples rats (Carey et al.,
1998), or of the glutamatergic system of DBA
mice (Ungerer et al., 1993), although in a normal
range, are highly predictive of learning and
memory dysfunction.

Finally, beyond the mere observation of strain-
specific differences in performance, quantitative
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genetics methods have also used inbreeding to
identify single gene or polygenic systems
controlling specific behavioral or biological traits.
These methods are largely based upon crossing
techniques aimed at segregating various gene
combinations. Among those are the classical
Mendelian analysis (cross of two parental strains
giving a F1 generation, subsequent cross of F1
individuals to obtain a F2 generation, and
backcross of F2 individuals with the parental
strains), the diallelic crossing (set of possible
combinations between six or eight homozygous
strains), the production of congenic lines (cross of
two parental strains and subsequent backcross of
F1 individuals with one parental strain) or of
recombinant lines (cross of two homozygous
parental strains giving a F1 generation maintained
under a strict inbreeding regimen). This approach,
however, has shown that single gene-dependent
behaviors are rare (Oliverio et al., 1973).
Conversely, many single genes were found to
influence multiple behavioral and physiological
traits, which were in turn controlled by multiple
genes acting at various levels: enzymatic activity,
hormones, neurochemistry, neurophysiology, neuro-
morphology, neural differentiation. For instance,
phenylketonuric patients have a metabolic defect
controlled by a single mutated autosomal recessive
gene that influences a variety of genes, thereby
promoting a complete biochemical and mental
syndrome.

Additionally, the calculation of heritability--a
biometric method considering the ratio between
the observed and the expected variance of a
behavioral traithas been widely used by
behavioral geneticists, although it sometimes
provided unreliable results. For example, in a cross
between the alcohol-preferring C57 and the
alcohol-avoiding A strain, the F1 and F2 means of
heritability were found to be intermediate between
the parents, and backcrosses to the parental strains
were also in the expected directions. The variance
of the F3 generation, however, was smaller than

that of the F1, making the computation of
heritability maninglss (Rodgers & McClarn,
1962)

Thus, although bidirectional and inbreeding
still provide excellent tools for dissecting the
neurochemical bases of memory through the
segregation of well-differentiated phenotypes, the
interest for the quan6tative genetics approach is
progressively decreasing in favor of molecular
genetics. There is no doubt that gene sequencing
and microarray techniques can provide a more
direct picture on what is really happening at the
chromosomal level. Nevertheless, the lessons
learned from Mendelian genetics should be
retained by molecular geneticists. Among those are

controlling gene dominance, recession,
heterosis, and recombination when various
transgenic mice are crossed to produce double
or triple transgenic individuals, and
keeping in mind that if inbred strains show
single-individual phenotypes, transgenic or
knockout mice derived from such strains will
provide marginally-relevant information for
the majority ofrandom bred individuals.
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