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Neuroferritinopathy is a neurodegenerative disease which demonstrates brain iron accumulation caused by the mutations in
the ferritin light chain gene. On brain MRI in neuroferritinopathy, iron deposits are observed as low-intensity areas on T2WI
and as signal loss on T2∗WI. On T2WI, hyperintense abnormalities reflecting tissue edema and gliosis are also seen. Another
characteristic finding is the presence of symmetrical cystic changes in the basal ganglia, which are seen in the advanced stages
of this disorder. Atrophy is sometimes noted in the cerebellar and cerebral cortices. The variety in the MRI findings is specific
to neuroferritinopathy. Based on observations of an excessive iron content in patients with chronic neurologic disorders, such
as Parkinson disease and Alzheimer disease, the presence of excess iron is therefore recognized as a major risk factor for
neurodegenerative diseases. The future development of multimodal and advanced MRI techniques is thus expected to play an
important role in accurately measuring the brain iron content and thereby further elucidating the neurodegenerative process.

1. Introduction

Neuroferritinopathy is an autosomal dominant neurode-
generative disorder characterized by the deposition of iron
and ferritin in the brain and a decreased level of serum
ferritin. The disease is caused by a mutation in the ferritin
light chain gene [1]. Seven different pathogenic mutations
of the ferritin light chain gene have been identified [1–
7]. These mutations are predicted to affect the tertiary
structure and stability of the ferritin light chain polypeptide
and may cause inappropriate iron release from ferritin
polymers [8, 9]. It is supposed that the excess iron induces
free toxic radical production, which leads to tissue oxida-
tive stress and neuronal cell death [10–12]. The clinical
features of neuroferritinopathy are characterized by the
adult onset of extrapyramidal motor symptoms: dystonia,
chorea, choreoathetosis, parkinsonism, and tremor. Some
patients may present cerebellar ataxia, cognitive decline, and
pyramidal signs [2, 3, 5–7]. The phenotypic signs of the
disease are variable, even among members of the same family
[1, 3]. Generally, there are no nonneurological symptoms
[13], different from in other neurodegenerative brain iron

accumulation diseases. The clinical features of neurofer-
ritinopathy are not specific, and they overlap with those of
common extrapyramidal disorders. It is difficult to diagnose
neuroferritinopathy solely based on the clinical findings.
Brain MR imaging in the disease is quite characteristic and
it may facilitate differential diagnosis of neuroferritinopathy
from other extrapyramidal disorders.

2. Brain MR Imaging in Neuroferritinopathy

We will review the findings in neuroferritinopathy with con-
ventional MRI methods, T1-weighted imaging, T2-weighted
imaging, and T2∗-weighted imaging. On T1WI, there is
a sharp contrast between the parenchyma and ventricles,
and it is adequate for evaluating brain atrophy and cystic
changes. T2WI is suitable for detecting the pathological
processes with an increase in water content, such as gliosis,
edema and axonal/neuronal loss, as hyperintense signals. On
T2∗WI with a gradient echo sequence, the signals are readily
influenced by magnetic inhomogeneity. Therefore, T2∗WI
is sensitive enough to detect paramagnetism such as that of
iron.
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Signal abnormalities on brain MR imaging were observed
in all affected individuals previously reported except for one
case [13–15]. Despite the clinical differences, the neuroimag-
ing is similar across cases [16]. The findings are usually
bilateral and symmetric but sometimes asymmetric [3, 17].
Signal changes are found in widespread areas in the central
nervous system [14].

Radiological findings in patients with neuroferritinopa-
thy have been shown to correlate with the observed pathol-
ogy [18]. The abnormalities observed on MRI reflect four
pathological changes: iron deposition, edema and gliosis,
cystic changes, and cortical atrophy [1–3]. Each finding is
described individually below.

2.1. Iron Deposition. Iron is essential for normal neuronal
metabolism, but excessive iron may be harmful [19, 20]. It
is known that iron overload can cause free-radical formation
and neuronal damage.

Physiologically, brain iron appears to be found predomi-
nantly in the extrapyramidal system, in particular the globus
pallidus, substantia nigra, red nucleus, and putamen. It
has been shown that moderate levels of iron occur in the
striatum, thalamus, cerebral cortex, cerebellar cortex, and
deep white matter [21]. It is also known that iron deposition
increases normally with age. The brain histopathology of
affected individuals with neuroferritinopathy involves excess
iron and ferritin deposits throughout the forebrain and cere-
bellum, notably in the basal ganglia [1–3]. The accumulation
observed in affected patients exceeds that found in normal
elderly individuals. However, these regions still exhibit the
general distribution pattern for iron in the normal aging
brain [1].

On fast spin echo T2WI, iron deposits are demonstrated
as low-intensity areas and as signal loss on gradient echo
T2∗WI [13, 22]. Comparison of T2WI and T2∗WI sequences
suggests that the T2∗ one is more sensitive for the detection
of iron, while the T2 fast spin echo T2WI sequence is more
frequently used in routine clinical practice [14]. In particular,
the cortical iron deposition in neuroferritinopathy is hardly
detectable on T2WI but is easily observed on T2∗WI [14].
Generally, iron deposit regions are isointense on T1WI [23].

2.2. Degeneration. T2 hyperintense abnormalities are seen
in the pallidum, putamen, caudate nucleus [1, 3], thalamus
and dentate nucleus, and sometimes in the red nucleus and
substantia nigra [16, 24] in patients with neuroferritinopa-
thy. The border of a lesion has a tendency to be unclear
and the signal is unequal. These changes are supposed to
reflect tissue degeneration with edema and gliosis observed
pathologically. Because of the increased water content, the
lesions are detected as hyperintense signals on T2WI [25].
Around these hyperintense areas, hypointensity due to iron
deposits is frequently seen.

2.3. Cystic Changes. On MRI in neuroferritinopathy, the
bilateral cystic changes involving the pallidum and putamen
are impressive. Cavities are demonstrated as low-intensity
signals on T1WI and high-intensity signals on T2WI,

(a) (b)

Figure 1: Axial section at the level of the basal ganglia in the patient
at 35 years of age. (a) A T1-weighted image (TR 400 msec/ TE
14 msec) shows symmetrical hypointense signals in the head of the
caudate nucleus and globus pallidus. (b) A T2-weighted image (TR
800 msec/TE 30 msec) shows hypointense changes in the lenticular
nucleus. Hyperintense signals can be observed in the putamen and
the head of the caudate nucleus.

compared with the CSF signal. In the region adjacent to
a cystic lesion, severe loss of nerve cells and neuropil is
observed pathologically. In one case, Vidal et al. reported
that microcavities measuring up to 1.5 mm in diameter were
seen in the putamen anatomically and that these cavities
were consistent with small hypointense areas on T1WI and
to hyperintense ones on T2WI on MRI [2]. This finding is
thought to represent the beginning stage of cavity formation.

McNeill et al. analyzed the MRI findings in 21 patients
with neuroferritinopathy. In 52% (11/21 patients), they
found that the globus pallidus and/or putamen coincided
with a confluent area of hyperintensity and that this
hyperintense area was likely to be due to fluid within an area
of cystic degeneration. It is usually accompanied by a rim of
peripheral hypointensity reflecting iron deposition. This is
a characteristic imaging pattern in neuroferritinopathy. The
presence of large cysts is thought to be a finding observed at
an advanced stage [14].

2.4. Cortical Atrophy. On brain MRI in neuroferritinopathy,
atrophy is sometimes noted in the cerebellar cortices and
cerebral cortices, notably in the frontal lobe. Atrophy of
the cerebellar and cerebral cortices has also been anatomi-
cally identified. Regarding on clinicoradiologic correlation,
patients having cerebellar atrophy present ataxia [2, 3, 26],
and ones having cerebral atrophy present cognitive decline
[23, 26].

3. The Relationship between the Stage of the
Disease and MRI Findings

The first MRI change is loss of the T2∗ signal due to
iron deposits. In an early symptomatic stage, and even in
an asymptomatic carrier, there is obvious signal loss on
T2∗ imaging in the basal ganglia, especially in the globus
pallidus, at considerable frequency. In conventional spin



Neurology Research International 3

(a) (b) (c)

(d) (e)

Figure 2: T1-weighted images (TR 400 msec/ TE 9 msec) of the same patient at 42 years of age. (a) A cross-section at the pontine level shows
cerebellar cortex atrophy. (b) An image of a midbrain section demonstrates the hypointense change in the substantia nigra. (c) An image at
the level of the basal ganglia shows symmetrical hypointense signals in the head of the caudate nucleus and globus pallidus. As compared
with the findings at 35 years, the hypointense signals in the pallidum extend to the putamen. The cystic changes of the lenticular nuclei
can be clearly observed. The shape of the cyst is fan shaped and exactly fits the region of the lenticular nucleus. The cerebral cortex in the
frontal lobes is atrophic. The hypointense lesion in the caudate head observed in the image at 35 years of age seems to be combined with
the hypointense signal of the anterior horn of the lateral ventricle. (d) In this image, enlargement of the lateral ventricles is evident. (e) This
image shows cerebral cortical atrophy.

echo MR sequences, the signal change is inconspicuous
and is observed as a minor low signal on T2WI [13]. There
has only been one report of that brain MR T2WI was
normal without evidence of iron deposition; however, it
was obtained six years after the onset of neuroferritinopathy
symptoms. In this case, the T2∗ sequence was not examined
at that time. The follow-up MRI performed 16 years after
the onset, however, showed typical abnormalities [15].

With disease progression, the T2 hypointense signal
and T2∗ signal loss become more pronounced [13]. The
changes eventually extend to the thalamus, dentate nucleus,
substantia nigra, red nucleus, and cerebral cortex.

In the middle stage of the disorder, T2 hyperintense
abnormalities reflecting tissue edema and gliosis are
observed. In the basal ganglia, this change is thought to rep-
resent precystic degeneration [13]. The hypersignal lesions
are often intermixed with decreased intensity areas corre-
sponding to iron deposits. The combination of hyperintense
and hypointense abnormalities is found in the pallidum,
putamen, thalamus, and dentate nucleus frequently and
sometimes in the red nucleus and substantia nigra [17, 27].

The characteristic finding on brain MRI at the advanced
stage is symmetrical cystic degeneration of the basal ganglia
[16, 28]. Pathologically, many microcavities due to the loss
of neurophils and neurons are observed, which are consistent
with hypointense areas on T1WI and with hyperintense ones
on T2WI on MRI [2]. It is supposed that small cavities
merge to form larger cavities with progression of the disease.
The large cavities observed on MRI have been confirmed by
macropathological investigation [1].

4. MRI Findings in Our Case

Brain MR images of our case are presented in Figures 1,
2, 3, and 4. Our patient is a 42-year-old Japanese man
who first developed hand tremor in his middle teens. He
noticed his right foot dragging at age 35, and generalized
hypotonia, hyperextensibility, aphonia, micrographia, hyper-
reflexia, dystonia of his face, and cognitive impairment at
age 42. Rigidity, spasticity, and chorea were not observed.
His deceased mother had presented similar symptoms. His
serum ferritin concentration was apparently low. He was
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Figure 3: T2-weighted images (TR 3,440 msec/TE 89.4 msec) at 42 years old. (a) A cross-section at the pontine level exhibits bilateral and
symmetrical signal loss with central hyperintense abnormalities in the dentate nucleus with cerebeller cortical atrophy. (b) An image of
a midbrain section demonstrates the symmetrical increased signal intensity involving the substantia nigra. A decreased signal change is
observed in the red nucleus. (c) An image at the level of the basal ganglia shows hyperintensity with a band of surrounding hypointensity
affecting the putamen and pallidum. Foggy high signal changes can be seen in the inner part of the thalamus bilaterally. (d) An image of a
section of the central part of the lateral ventricles. (e) An image of a section of the cerebral cortex. The signal change is not evident.

tested by means of the molecular technique and diagnosed as
having neuroferritinopathy because a mutation of the ferritin
light chain gene was detected [5].

All images presented here were taken with a 1.5 Tesla
MR System. T1-weighted, T2-weighted, and T2∗-weighted
sequences were collected in the transverse plane. A T1-
weighted image is useful for evaluating the atrophy and
size of a cyst. As compared with the image at 35 years
(Figure 1), that at 42 years demonstrates progression of the
cystic formation and deterioration of the cortical atrophy in
the frontal lobes (Figures 2(c) and 3(c)). Cortical atrophy can
also be seen in the cerebellum (Figure 2(a)). Enlargement of
the lateral ventricles is evident (Figure 2(d)).

A T2-weighted image is valuable for detecting the
combination of degenerative change and iron accumulation.
A clear hyperintense lesion with a hypointense signal was
found in the center of the dentate nucleus (Figure 3(a)).
Foggy high signal changes were found in the inner part of the
thalamus bilaterally (Figure 3(c)). These lesions are supposed
to reflect the edema and gliosis observed pathologically.

T2∗ images are valuable for detecting iron deposition.
Iron deposits were indicated as signal loss in the dentate
nuclei (Figure 4(a)), red nuclei (Figure 4(b)), thalamus
(Figure 4(c)), at the periphery of the cysts (Figure 4(c)), and
in the cerebral cortex (Figure 4(e)) in T2∗-weighted images.

5. Differential Diagnosis

In this section, we provide an overview of the MRI find-
ings in three other subtypes of neurodegeneration with
brain iron accumulation (NBIA): pantothenate kinase-2
associated neurodegeneration (PKAN, formerly known as
Hallervorden-Spatz syndrome), aceruloplasminemia, and
infantile neuroaxonal dystrophy (INAD) for the differential
diagnosis of iron deposition in the basal ganglia. Over the
last decade, iron deposition in the adult brain is being
increasingly recognized as an indicator of neurodegenerative
processes in many chronic neurologic disorders including
Parkinson disease and Alzheimer disease. We also mention
the MRI findings in these common neurodegenerative
diseases.

PKAN is a childhood-onset extrapyramidal disorder with
aberrant iron metabolism caused by a mutation of the pan-
tothenate kinase-2 (PANK2) gene [29]. Brian MRI findings
in patients with the PANK2 mutation include hypointensity
with an area of central hyperintensity in the globus pallidi on
T2- and T2∗-imaging, this characteristic sign being called the
“eye-of-the-tiger” sign [14, 30–32]. McNeill et al. reported
that two of 21 cases of neuroferritinopathy presented the
“eye-of-the-tiger” sign and that the MRI findings in these
iron accumulative disorders sometimes might overlap. He
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Figure 4: T2∗-weighted images (TR 400 msec/ TE 25 msec) obtained with a gradient echo sequence in the same patient at 42 years old. (a) A
cross-section at the pontine level. The signal loss with central hyperintense lesions in the dentate nucleus is more obvious than that observed
on T2WI. (b) An image of the midbrain demonstrates the hypointense change in the red nucleus. (c) Cystic degeneration of the basal ganglia
with a rim of peripheral signal loss is obvious. In the thalamus, bilateral hyperintense abnormalities surrounded by slight hypointensity can
be seen. (d) An image of a section of the central part of the lateral ventricles. (e) The iron deposition in the cerebral cortex is detected as
signal loss.

emphasized the importance of repeat imaging for a more
accurate clinical diagnosis [14]. In the majority of PKAN
cases, abnormalities are restricted to the globus pallidus
and substantia nigra. In neuroferritinopathy, lesions in the
globus pallidus, putamen, and dentate nuclei are consistently
accompanied by ones in the caudate nuclei or thalami in
a subset. The widespread location of lesions throughout
the central nervous system is one of the characteristic MR
findings in neuroferritinopathy patients [14].

Aceruloplasminemia is an adult onset extrapyramidal
disorder with iron deposition in the brain, liver, and retic-
uloendothelial system. It is caused by a mutation of the ceru-
loplasmin gene. The iron deposition in the central nervous
system in aceruloplasminemia exhibits a distribution compa-
rable to that in neuroferritinopathy, but in aceruloplasmine-
mia, all basal ganglia nuclei and thalami are simultaneously
involved as seen in T2-weighted and T2∗-weighted images.
A further distinguishing feature is the lack of the combina-
tion of hyperintense and hypointense abnormalities that is
often observed in neuroferritinopathy. The low signal areas
observed in aceruloplasminemia are homogenous. The cystic
changes of the basal ganglia observed in neuroferritinopathy
are rarely seen in aceruloplasminemia [13, 14, 33].

INAD is an autosomal recessive disorder with motor
and mental deterioration, appearing within the first two
years of life. It is due to mutations in PLA2G6. The
characteristic MRI finding in INAD patients is cerebeller
atrophy, which is often accompanied by signal hyperintensity
in the diffuse cerebellar cortex [34]. In INAD, abnormal iron
accumulation, detected as hypointense lesions on T2WI and
T2∗WI, is mainly observed in the globus pallidus, sometimes
in the substantia nigra, and occasionally in the dentate nuclei.
Even in advanced cases of INAD, there has been no report
of iron accumulation in other structures [14]. It is different
from the frequent involvement of the putamen, caudate
and thalami in neuroferritinopathy. It has been observed in
two INAD families with PLA2G6 mutations that no iron
accumulation was detectable on MRI despite severe clinical
symptoms [35]. The cystic changes of the basal ganglia are
not seen in INAD.

Patients with Parkinson disease (PD) may show T2
hypointensity in many anatomic areas compared to normal
controls including the substantia nigra pars compacta, den-
tate nucleus, subthalamic nucleus, and basal ganglia, prob-
ably reflecting an excess iron content. Quantitative studies
have shown a 25% to 100% increase in substantia nigra iron
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levels in patients with PD compared to in normal controls.
The correlation between T2 hypointensity of the substantia
nigra and clinical severity has been demonstrated [22].

In patients with Alzheimer disease (AD), iron deposition
in neurons, neurofibrillary tangles, and plaques has been
reported pathologically. To detect brain iron accumulation
using MRI in AD, investigators tried the high-solution 4.7 T
MRI or field-dependent-rate-increase (FDRI) technique
[22]. In these studies, increased iron levels were found in the
basal ganglia.

The signal change on MRI reflecting an excess iron con-
tent observed in patients with chronic neurologic disorders
such as PD and AD is usually slight as compared with that
in patients with NBIA including neuroferritinopathy. For
exact measurement of brain iron or mineralization as a major
risk factor for neurodegenerative diseases, multimodal and
advanced MRI techniques are proposed [36, 37]. Improve-
ment of MRI technique is one of the most important goals
for correct diagnosis.

6. Conclusion

The variety of MRI findings including cystic degeneration
of the basal ganglia, the combination of hyperintense and
hypointense abnormalities, T2 hypointense lesions reflecting
iron deposits, and cortical atrophy are specific to neurofer-
ritinopathy.

In cases of suspected neuroferritinopathy, MRI may be
useful for the detection and confirmation of such findings. At
an early stage, since the abnormal iron deposits might be not
detectable on T2-weighted imaging, T2∗-weighted imaging
is recommended. In most cases, there are clear distinguishing
features for neuroferritinopathy and other iron accumulative
disorders, including PKAN, INAD, and aceruloplasminemia.
However, there is a degree of radiological overlap between
neuroferritinopathy and these other iron accumulative dis-
orders.

The multimodal and advanced MRI techniques being
developed to more sensitively and specifically quantify brain
iron will be important for correct diagnosis and better
understanding of the neurodegenerative processes in the
pathological brain.
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