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Objectives. To analyze the hyperhidrosis neural network structure induced by subthalamic nucleus (STN) - deep brain stimulation
(DBS). Materials and Methods. Patients with Parkinson’s disease treated with STN-DBS in Changhai Hospital between July 1,
2015, and December 1, 2016, were analyzed retrospectively. Using records of side effects of the intraoperative macrostimulation
test, patients with skin sweats were selected as the sweating group. Based on the number of cases in the sweating group, the same
number of patients was randomly selected from other STN-DBS patients without sweating to form the control group. -e study
standardized electrode position with Lead-DBS software to Montreal Neurological Institute (MNI) standard stereotactic space to
compare the differences in three-dimensional coordinates of activated contacts between groups. Results. Of 355 patients, 11
patients had sweats during intraoperative macrostimulation tests. -ere was no significant difference in the preoperative baseline
information and the postoperative UPDRS-III improvement rate (Med-off, IPG-on) between groups. Contacts inducing sweat
were more medial (X-axis) (11.02± 0.69mm vs 11.98± 0.84mm, P � 0.00057) and more upward (Z-axis) (−7.15± 1.06mm VS
−7.98± 1.21mm,P � 0.032) than those of the control group.-e straight-line distance between the center of the sweat contact and
the nearest voxel of the red nucleus was closer than that of the control group (2.72± 0.65mm VS 3.76± 0.85mm, P � 0.00012).
Conclusions. STN-DBS-induced sweat indicated that the contact was at superior medial of STN.

1. Introduction

Subthalamic nucleus (STN) and globus pallidus internus
(GPi) deep brain stimulation (DBS) has substantial effects on
idiopathic Parkinson’s disease (PD) [1]. Some authors found
that zona incerta (Zi) DBS [2] and prelemniscal radiation
(Raprl) DBS [3] are also options for treating PD; posterior
subthalamic area- (PSA-) DBS treats essential tremor [4] and
medication-refractory tremor of PD [5, 6]. However, STN-
DBS [7] or PSA-DBS may lead to sweating for some patients
[8, 9].

-e position of contacts of PSA-DBS and their effect on
sweat was explored [10]. However, there are two problems
not resolved by previous studies. (1) Due to the small
number of patients in previous studies, patients’ imaging
data were not uniformized. -erefore, the anatomical po-
sitions of active contacts based on AC-PC are diverse. (2)
Sweating was observed only during STN-DBS, and active

contacts did not reach PSA. -is lead to the question of
whether there were any other anatomical structures related
to sweat.

To address above two questions, the current study
standardized enough patient’s brain imaging data into the
three-dimensional space of Montreal Neurological Institute
(MNI) to determine that an active contact anatomical po-
sition of STN-DBS-induced sweating.

2. Materials and Methods

2.1. Data of Patients. -e study acquired approval from
Shanghai Changhai Hospital Ethics Committee. Patients
with PD treated with STN-DBS in Shanghai Changhai
Hospital between July 1, 2015, and December 1, 2016, were
analyzed retrospectively. Patients met the diagnostic criteria
of PD UK Brain Bank [11], and the surgical indications met
Expert Consensus of DBS for the Treatment of Parkinson’s
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Disease in China [12]. While data mining all intraoperative
electrical stimulation tests record, patients with sweats were
selected as the sweating group. A same number of matched
patients were selected from other patients as the control
group to compare differences in position of activated
contacts.

2.2. Imaging and Operation

2.2.1. Preoperative Magnetic Resonance and CT. All cases
underwent preoperative MR imaging on a 3.0 T scanner
(MAGNETOM Skyra, Siemens, Germany) using a T1 image
with the following parameters: TR 1900ms, TE 2.45ms,
voxel size 1.1× 1.1× 1.0mm, slice thickness: 1mm, and FOV:
272mm. Additionally, a T2-weighted image was used with
the following parameters: TR 3790ms, TE 100ms, voxel size
0.4× 0.4× 2mm, slice thickness: 2mm, FOV: 272mm, and
total acquisition time: 15min. All cases underwent pre-
operative CTwith fame (Brilliance CT Big Bore, Philips, -e
Netherlands), and the CT image was reconstructed into
1 mm thick slices with an FOV of 272mm.

2.2.2. Operation and Intraoperative Macrostimulation Test.
Leksell G head frame and Surgiplan system (Elekta AB,
Stockholm, Sweden) were adopted. After implanting elec-
trodes under local anesthesia, a bone hole was sealed with
biomedical fibrin glue. -en, an external neurostimulator
was connected to carry out intraoperative macrostimulation
tests and record the threshold value of efficacy and adverse
reactions of electrical stimulation. -e test cathode contact
was the most inferior contact, and the anode contact was the
superior contact. -e electrodes are 3389 (Medtronic, Vil-
lalba, USA) or L301 (PINS, Beijing, China). Stimulation
parameters were as follows: pulse width: 60 μs; frequency:
130Hz; with the voltage increasing from 1.5V to 5.0V
gradually. Side effects were observed and recorded. After
fixing the electrode with Stimloc (Medtronic, Villalba, USA)
or Leadloc (PINS, Beijing, China), the scalp was sutured. If
the position of the electrode was satisfactory after confirmed
by a 1.5 T MRI (Siemens MAGNETOM Avanto, Germany)
scanning with frame, an extension lead and implantable
pulse generator were implanted under general anesthesia.

2.2.3. Postoperative CT. CT examination was performed
within 6 days after operation to exclude intracranial hem-
orrhage and pneumocephalus and to confirm the position of
electrodes and contacts. Postoperative high-resolution CT
images acquired in all cases matched preoperative CT.

2.3. Position of Electrodes and Contacts. Because of indi-
vidual specificity of the STN of each patient and in order to
unify the position of nuclei and electrodes, postoperative
electrode localizations were performed using Lead-DBS
software (http://www.lead-dbs.org/) [13]. Postoperative
images were linearly coregistered to preoperative images
using the Statistical Parametrical Mapping software version
12 (SPM12) [14] and BRAINSFit software [15]. Images were

then nonlinearly warped into standard stereotactic (MNI;
ICBM152 2009b nonlinear asymmetric) space using a fast
diffeomorphic image registration algorithm (DARTEL) [16].
Electrode trajectories were automatically prelocalized, and
the results were manually refined in MNI space using Lead-
DBS. -is procedure allowed us to visualize the recording
sites of all cases together in one figure.

Distances between the centers of electrode activated
contacts and their nearest voxel of the red nucleus (RN)
volume defined on an MNI version [17] of the histology-
based Morel atlas [18] were calculated.

2.4. StatisticalAnalysis. Student’s t-test was used to compare
X absolute value, Y and Z coordinates of the center of the
lowest contact in MNI space as well as the distances between
the centers of electrode activated contacts and their nearest
voxel of the red nucleus between the sweating group and the
control group. P< 0.05 indicated statistical significance.

3. Results

3.1.DataofPatients. A total of 355 patients were screened, of
which 11 patients (18 electrodes) had induced sweat during
intraoperative electrical stimulation, including 9 cases of
sweats caused by the lowest contact in the left side and 9
cases of sweats caused by the lowest contact in the right side.
A total of 11 patients without sweats during intraoperative
electronic stimulation were randomly sampled. Difference in
baseline data between the two groups was not statistically
significant (including gender, age, disease duration, pre-
operative UPDRS III (Med-on and Med-off), Mini-Mental
State Examination (MMSE), Montreal Cognitive Assess-
ment (MoCA), NonMotor Symptom Scale (NMSS), Ham-
ilton Depression Scale item 17 (HAMD), Hamilton Anxiety
Scale (HAMA)), as shown in Table 1. Six months after
turning the IPG-on and obtaining the optimal programming
parameters, no patient in either group had sweats. In ad-
dition, the difference in UPDRS III score under IPG-off
Med-off, IPG-on Med-off, and IPG-on Med-on between the
two groups was not statistically significant (Table 1). A total
of 22 patients in the two groups had no intracranial hem-
orrhage and no hardware-related complication at the one-
year follow-up.

3.2. Position of Contact Inducing Sweating. -e position of
active cathode contacts relative to sweating was calculated by
the absolute value of the X-axis of coordinates of the two
electrode activated contacts. On the basis of comparison of
MNI space coordinates of contacts of the two groups, it was
found that the contacts inducing sweat were more medial
(11.02± 0.69mm VS 11.98±0.84mm, P � 0.00057) and more
superior (−7.15± 1.06mm VS −7.98± 1.21mm, P � 0.032)
than the control group. Positions of electrodes and activated
contacts are shown in Figures 1 and 2. -e Y-axis showed no
difference between the sweating group and control group
(−15.44± 1.25mm VS −15.06± 1.11mm). -e straight-line
distance between the center of contacts of the sweating
group and the nearest voxel of the red nucleus was closer than
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that of the control group (2.72± 0.65mm VS 3.76± 0.85mm,
P � 0.00012).

Unifying patients’ imaging data and reconstructing the
volume tissue activated (VTA) after electrical stimulation
are conducive to understanding scientifically which nerve
fibers take part in the process of sweating. However, because
patient sweating occurred gradually during macro-
stimulation tests, it is difficult to accurately confirm the
voltage that caused the sweating side effects. -erefore, we
set the voltage 5.0V, frequency 150Hz, and pulse width
90 μs and reconstructed the VTA of every patients.-e result
shows (Figure 3) STN and zona incerta (ZI) were stimulated
in both groups VTA, but the prelemniscal radiations (Raprl)
were mainly stimulated in the sweating group (8/22 vs 17/18,
P � 0.001). -e position of Raprl was according to the
previous study [19], but Raprl is a structure with a lot of
cluster of fibers which could not be shown in its entirety in
Lead-DBS and Figure 3.

4. Discussion

4.1. STN-DBS-Induced Sweating Only Related to Contact
Position. -e study indicated that patients’ preoperative
baseline data (Table 1) did not have obvious predictive value
for sweating induced by postoperative electronic stimula-
tion. -e main reason for sweating was the anatomical
position of activated contacts.

4.2. STN-DBS-Induced Sweating Did Not Impact the Patient’s
Motor Symptoms Relieve. Previous studies show that STN
and surrounding structures participate in sudomotor dys-
function. STN-DBS can improve the symptom of hyper-
hidrosis [20–24] in some patients, but stimulating the STN
or PSA [7–9] could also result in sweating. In addition, when
the electrode is close to the hypothalamus, electrical stim-
ulation can also induce sweat [25]. While stimulation-
induced hyperhidrosis has little effect on most patients’
quality of life, it remains an interesting scientific issue.

4.3. Brain Structures Might Involve STN-DBS-Induced
Sweating. Data of the study indicated that the position of
contacts inducing hyperhidrosis was slightly more anterior

than that in the PSA region. Contacts located in the MNI
space such that X-axis: 11.02± 0.69, Y-axis: −15.44± 1.25,
and Z-axis: −7.15± 1.06. In front of this area is the lateral
hypothalamic (LH) area, H2 area is above the area, ZI is
above H2 area, and capsule of the red nucleus is medial to the
area [26]. And, tracts from Raprl to orbitofrontal cortex
(OFC, terminal cortex including lateral and medial orbi-
tofrontal cortex) and to prefrontal cortex (PFC, which
comprises the frontal pole, pars orbitalis, pars triangularis,
and rostral middle frontal gyrus) [19] also pass through the
area. -is finding supports that ZI [7, 27] or fibers from the
hypothalamic paraventricular nucleus [28] might lead to
sweat.

Although we could not confirm which structure is re-
sponsible for STN-DBS-induced sweating, we suggest ad-
dition of the Raprl-OFC and Raprl-PFC as suspected
criminal structure for the following reasons: (1) PSA con-
tains Raprl-OFC and Raprl-PFC tracts [19] and could also
induced sweating by DBS [8, 9]; (2) this study found more
Raprl areas (including Raprl-OFC and Raprl-PFC tracts)
activated by VTA in the sweating group; (3) electrical
stimulation-induced sweating can also be observed [29]
during treating mental disorder with DBS in nucleus
accumbens and anterior limb of internal capsule [25, 29].
Moreover, the Raprl-PFC and Raprl-OFC pass through the
nucleus accumbens and anterior limb of internal capsule
[19]. But, more research and evidence are necessary to es-
tablish definitively whether Raprl-OFC and PFC fibers
participate in DBS-induced sweating.

4.4. Clinical Value of STN-DBS-Induced Sweating during
Operation. From the clinical perspective, sweating induced
by intraoperative tests may indicate that the lowest contact is
at the medial part of STN or close to the red nucleus. It may
not influence the improvement in patients’ motor symptoms
by electronical stimulation after operation, because the
contact finally selected for programming was close to the
dorsolateral part of STN rather than being the lowest
contact. However, the symptom of sweating is of certain
guiding phenomenon, and neurosurgeons should consider
whether the Pitch trajectory angle of the electrode is too large
or the electrode placement is too medial. Macrostimulation

Table 1: Preoperative baseline data of patients and data of motor symptoms during 6months of power-on.

Groups Sweating group Normal group P

Gender 5F (6M) 4F (7M) 1.000
Age 62.54± 7.63 63.08± 9.24 0.398
Disease duration 8.85± 2.48 10.54± 4.93 0.160
UPDRS-III (Med-off before operation) 61.38± 11.79 58.92± 19.76 0.746
UPDRS-III (Med-on before operation) 30.46± 10.15 30.85± 14.00 0.487
MMSE 28.00± 1.87 27.38± 1.89 0.720
MoCA 25.00± 3.37 25.85± 2.48 0.427
NMSs 18.15± 2.54 18.85± 4.51 0.277
HAMD 17.54± 3.97 18.92± 5.77 0.404
HAMA 14.85± 2.88 15.31± 3.59 0.457
UPDRS-III (Med-off IPG-off 6m after operation) 57.08± 16.06 57.38± 20.83 0.564
UPDRS-III (Med-off IPG-on 6m after operation) 33.77± 9.75 29.46± 11.52 0.946
UPDRS-III (Med-on IPG-on 6m after operation) 24.23± 8.20 23.08± 6.61 0.955
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Figure 1: Location of activated cathode contacts of the sweating group. (a) Axial view of left contacts. (b) Coronal view of left contacts.
(c) Sagittal view of left contacts. (d) Axial view of right contacts. (e) Coronal view of right contacts. (f ) Sagittal view of right contacts. (g) Left-
posterior direction view on STN (yellow), electrodes, and activated contacts (red) in 3D. (h) Right-posterior direction view on electrodes and
activated contacts (red) in 3D.

Figure 2: Location of activated cathode contacts of the control group. (a) Axial view of left contacts. (b) Coronal view of left contacts.
(c) Sagittal view of left contacts. (d) Axial view of right contacts. (e) Coronal view of right contacts. (f ) Sagittal view of right contacts. (g) Left-
posterior direction view on STN (yellow), electrodes, and activated contacts (red) in 3D. (h) Right-posterior direction view on electrodes and
activated contacts (red) in 3D.

(a) (b)

Figure 3: VTA of patients. -e VTA of the control group. (a) Only 8 of 22 VTAs stimulated Raprl. (b) Seventeen of 18 VTA stimulated
Raprl. STN� orange; ZI� light blue; RN� dark red. Raprl is not shown in the figure.
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tests should be carried out seriously to observe and de-
termine whether patients have numbness of their extremities
or other manifestations that may be induced by RN stim-
ulation, which might be helpful for adjusting the electrode
position during the operation.

Interestingly, while most patients sweated from the ip-
silateral skin after electrical stimulation, in other patients,
the contralateral skin also sweated after a period of time.-is
indicates that bilateral sweating structures may be syner-
getic, similar to the STN [30].

5. Conclusions

Sweating caused by STN-DBS indicates that the contacts are
close to the medial edge of the STN.
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