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Conspecific densitymay influence adult recruitment and consequently population dynamics. Several studies have shown the density
dependence of larvae growth rates in Odonata. However, few studies studied how conspecific density influence final instar larvae
emergence date decisions. Considering that larvaemay choose the date of emergence, the present study investigated if density affects
larvae choice. For this, we reared eight final instar larvae in individual aquaria and other 24 larvae in aquaria with three larvae each.
This way, we simulated environments with low and high larval densities. We then noted the days that larvae took to emerge and
compared it between low and high density groups. The results showed that larvae seem to emerge earlier when in high densities
(Mann-Whitney, 𝑈 = 10.000, 𝑃 = 0.03). These results support the hypothesis that damselfly last instar larvae may postpone or
hasten emergence in response to the social environment and related constraints.

1. Introduction

Natural environments may exhibit large temporal fluctua-
tions, which entail a major challenge for animal species.
Temporary pools comprise a harsh environment, inhabited
by a unique fauna with physiological and behavioral adapta-
tions that enable development and survival [1]. Reductions in
water levels in temporary pools may affect species population
dynamics, since density should increase.

Population dynamics are influenced by life history fea-
tures such as individual development, survival, fecundity, and
dispersal rates amidst environmental fluctuations. Variation
in such features may be associated with density-dependent
processes [2–6]. In insects, adult population dynamics are
usually affected by larval density that may decrease or
increase adult emergence rates [7, 8].

In Odonata, increasing density among conspecifics may
shorten life cycle [9], influence larval growth rates, and
affect species voltinism [1]. The density dependence of larvae
growth rates in odonates is well studied [1], but there is
no evidence of how conspecific density may determine the
emergence rate of final instar larvae. The increased density
during the reduction of water level could be an indicator cue
of the drying out process.Thismechanism could enable some
species of Odonata to colonize and complete their life cycles
in temporary pools.

Since final instar larvae of Odonata may postpone emer-
gence, the date of emergence can determine individual body
size, fecundity, and reproductive success [1] and may be
critical to complete the cycle in temporary ponds. Thus, we
tested if conspecific final instar larval density influences the
date of emergence in the tropical species Lestes bipupillatus
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Calvert, 1909 (Zygoptera: Lestidae). Lestids are good mod-
els for this kind of study since they inhabit temporary pools
and must carry adaptations to such environment [1, 10–12].

2. Material and Methods

We collected last instar larvae in a temporary pond near
the Ecological Reserve Horto Florestal in Assis, SP, Brazil (S
22∘3746.9/W 50∘2411.7) on 19 May 2007. This reserve is
a conservation area with a mixture of native Atlantic Forest
vegetation and Neotropical Savanna vegetation.

To test whether the density affects the time of emergence,
we simulated two situations in laboratory: (i) low density,
with one individual per aquarium; and (ii) high density, with
three individuals per aquarium.We considered eight replicas
for each situation. Each aquarium had 500mL of capacity
and was filled with 300mL of filtered water collected in the
habitat of larvae.The aquaria were wrapped with white paper
to prevent visual contact between larvae and were provided
with wood sticks for individuals to climb during the rearing
process.

During the experiment, the aquaria were maintained
in a cool room with 12 : 12 photoperiod. The aquaria were
placed inside a vial filled with water to guarantee temperature
constancy among replicas. The positioning of each aquarium
in the vial was randomly sorted.

We checked for emergence each 12 hours and we finally
compared the number of days that the two groups of larvae
took to emerge since the collection date. For the high
density group, we sorted eight individuals to represent the
group. Differences between the median of emergence time of
individuals at high and low densities were assessed using the
Mann-Whitney 𝑈 test.

3. Results and Discussion

The results show that high conspecific density decreased
the number of days until emergence (Mann-Whitney, 𝑈 =
10.000, 𝑃 = 0.03, Figure 1). As the larvae at high densities
emerged earlier, we can assume that, when there is low
conspecific density, the larvae may delay emergence. These
results show how density may influence adult recruitment
and the number of flying reproductive individuals in a given
time.

Based on this information, we can consider the fact
that high density may force larvae to hasten emergence and
impose a great impact on population dynamics, since larvae
that emerge earlier are usually smaller and have a lower
reproductive success [1, 12]. We can also consider extrinsic
features related to species ecology and the peculiar habitat
which they inhabit. Since this study collected L. bipupillatus
larvae on a temporary pond, another possible selective force
could be pond dryout [12], which may result in larvae
aggregation with the decline of water level. In this case,
the high density is an indicator that water level is dropping
and the early emergence occurs to avoid death due to the
low volume of water, high temperatures, and low dissolved
oxygen.
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Figure 1: Days until emergence of last instar larvae reared with low
and high conspecific densities.

The earlier emergence when in high densities may also be
an evolutionary response to conspecific interactions as can-
nibalism, since odonate larvae usually feed on conspecifics
[13–16] or competition, since they can be aggressive towards
conspecifics and even harm or kill neighboring larvae [1, 16].

4. Conclusions

In conclusion, the experiment allows us to suggest that dam-
selfly last instar larvae may postpone or hasten emergence in
response to the constraints related to the social environment
and water conditions. Although other studies show that
many variables may affect development, and consequently
emergence [1, 17], here we show that L. bipupillatus last instar
larvae make decisions regarding emergence time, indepen-
dently of previous development. This can give base for future
perspectives, regarding other environmental variables and
the intrinsic effects on adult survival and reproduction. We
suggest that studies should now focus on the outcomes and
handicaps of final instar larvae emergence syndromes in a set
of species.
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