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Purpose. Patients with soft tissue sarcomas (STS) are at increased risk of second primary malignancies, including a second
STS, but distinction between metastases and a second primary STS is difficult. Patients and Methods. Array-based comparative
genomic hybridization (aCGH) was applied to 30 multiple STS of the extremities and the trunk wall from 13 patients. Different
histotypes were present with malignant fibrous histiocytomas/undifferentiated pleomorphic sarcomas being the predominant
subtype. Results. aCGH profiling revealed genetic complexity with multiple gains and losses in all tumors. In an unsupervised
hierarchical cluster analysis, similar genomic profiles and close clustering between the first and subsequent STS were identified in
5 cases, suggesting metastatic disease, whereas the tumors from the remaining 8 patients did not cluster and showed only weak
pairwise correlation, suggesting development of second primary STS. Discussion. The similarities and dissimilarities identified in
the first and second STS suggest that genetic profiles can be used to distinguish soft tissue metastases from second primary STS.
The demonstration of genetically different soft tissue sarcomas in the same patient suggests independent tumor origin and serves
as a reminder to consider development of second primary STS, which has prognostic and therapeutic implications.

Copyright © 2008 Josefin Fernebro et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. INTRODUCTION

The first observations of an increased risk of secondary
sarcoma development came from individuals treated for
childhood cancers such as retinoblastoma, leukemia, Wilms’
tumor, Hodgkin’s lymphoma, and sarcoma [1–13]. However,
also adult soft tissue sarcoma (STS) patients have been
shown to be at higher risk of a second primary malignancy,
with a particularly increased risk of a second primary STS
[14–17]. STS have been associated with several hereditary
syndromes, the most common being neurofibromatosis
and the Li-Fraumeni syndrome [18]. Treatment-induced
sarcomas include sarcomas associated with Stewart-Treeves
syndrome and radiation-induced angiosarcomas, which
develop median 10 years after radiotherapy [19]. However,
after exclusion of STS in neurofibromatosis patients and
STS that developed in irradiated fields, an increased risk
of a second primary STS remains [17]. Metachronous STS

has been described in 1% of sarcoma patients [16, 17, 20]
and this observation constitutes the basis for our study
on similarities/differences in the genetic profiles of tumors
from patients with multiple STS. We applied array-based
comparative genomic hybridization (aCGH) that utilizes
BAC clones with tiling coverage of the whole genome and
allows detailed copy-number analysis, to a series of 30
metachronous STS of different histopathological subtypes
from 13 patients.

2. PATIENTS AND METHODS

2.1. Patients

Adult patients (≥16 years of age) who developed two or
more STS at different anatomical sites before development
of any detectable pulmonary metastases were eligible for the
study. Patients with neurofibromatosis type I and the Li-
Fraumeni syndrome were excluded. In the southern Swedish
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cancer registry, 20 patients who fulfilled these criteria were
identified. The tumors had been operated either at the
musculoskeletal tumor center in Lund (n = 24) or at local
hospitals in the southern Swedish health care region (n = 6).
The clinicopathological reports were reviewed to confirm
tumor location and to rule out that the second primary
STS represented a local recurrence and the histopathological
slides were reviewed by a sarcoma pathologist (H.D.) to
confirm the diagnoses.

Frozen tumor tissue was available from 16 tumors and
paraffin-embedded tissue was used from 28 tumors without
systematic differences related to tumor source. After DNA
extraction, 7 individuals (14 tumors) were excluded because
of poor DNA quality in at least one of the tumors from
the same patient. High-quality aCGH data were obtained
from 30 tumors (in 15 of which DNA was extracted from
frozen tissue) from 13 patients (Table 1). These patients
contributed with two to four STS and were mean 73 (28–83)
years at diagnosis of the first STS. The second STS developed
median 3 (1–7) years after the first STS. No neoadjuvant
chemotherapy was given, and only one patient (case 5)
had recieved postoperative chemotherapy after the first
STS. Radiotherapy had been administered to four patients
(postoperatively in case 5, 6, and 8, and preoperatively in
case 1), but none of the second STS developed within the
irradiated field.

Clinical data for the 13 cases are presented in Table 1.
The lower extremity was the most common tumor site (16
tumors) and 28 tumors were high-grade (grades 3 and 4
on a 4-tiered scale). The first STS included eight malignant
fibrous histiocytomas/undifferentiated pleomorphic sarco-
mas (MFH/UPS), two leiomyosarcomas, two malignant
peripheral nerve sheath tumors (MPNST), and one pleo-
morphic liposarcoma. The histopathological diagnosis of
the second STS differed from the first in two patients; a
leiomyosarcoma was diagnosed in a patient with two prior
MFH/UPS and a leiomyosarcoma was diagnosed in a patient
previously operated on for an MPNST. In the remaining
patients, including the three cases from which three or four
distinct tumors were analyzed, multiple STS of the same
histopathological type were diagnosed.

In 9/13 patients the STS developed at different anatomi-
cal locations, for example, different extremities or extremity
and trunk wall. Three patients developed metachronous STS
in the same extremity but at different locations, for example,
lower leg and thigh (cases 8, 12, and 13) and one patient (no.
7) developed two STS in the same extremity; a deep-seated
leiomyosarcoma in the medial thigh and five years later a
subcutaneous leiomyosarcoma in the lateral part of the thigh
(Table 1). Clinical follow-up was complete for a minimum
of 8 years for the survivors. During follow-up, two patients
(cases 12 and 13) developed local recurrences, 1 and 10 years
after primary surgery. Lung metastases developed in 5/13
patients, median 50 (range 15–51) months after diagnosis
of the primary tumor. Apart from the metachronous STS,
two patients (cases 4 and 7) developed adenocarcinomas
of the breast and the colon, respectively. Ethical permission
for the study was granted from the Lund University ethics
committee.
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Figure 1: Unsupervised hierarchical cluster analysis of all 30 soft
tissue sarcomas from 13 patients. The analysis was based on the
∼ 17 000 clones that survived the preprocessing filters, and close
clustering of the metachronous STS was demonstrated in 5 patients
(case 1, 2, 6, 9, and 12 marked with different colours), whereas
the STS from the remaining 8 patients were scatter in the analysis.
Clustering was done using the TMeV application from the TM4

microarray software suit.

2.2. DNA extraction and array-based comparative
genomic hybridization

Genomic DNA from frozen (n = 15) and paraffin-
embedded (n = 15) tumors was extracted using the Wizard
Genomic DNA Purification kit (Promega, Madison, WI)
and overnight proteinase-K digestion treatment followed by
phenol-chloroform purification. When paraffin-embedded
tissue was used, a fresh4-µm section was obtained, stained
with hematoxylin & eosin and a representative tumor area
was chosen. Thereafter, 1-mm tissue cores were obtained
and used for DNA extraction. The tissue cores were pre-
treated in xylene before proteinase-K treatment and phenol-
chloroform purification. DNA quality was checked using
a Ready-To-Go RAPD analysis kit (Amersham Biosciences,
Buckinghamshire, UK), and the concentration was measured
using a Nano drop (NanoDrop Technologies, Wilmington,
Del, USA). Commercial genomic male DNA, derived from
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Table 2: Recurrent high-level amplifications and homozygous deletions.

Chromosome No of tumors Cytoband Start position Size (Mbp) HLA/Hz del∗ Cancer related genes

1 2 1p32.1 58571482 1.2 HLA JUN

1 3 1q44 241558190 1.0 Hz del

3 2 3q23 141082484 0.51 Hz del

3 3 3p12.1–3 78780218 7.0 HLA

4 2 4q12 54016334 1.5 HLA PDGFRA, KIT, CHIC2

6 3 6p 12.3–21.2 37360640 11.4 HLA

9 6 9p21.3 21647433 2.4 Hz del CDKN2A, CDKN2B, MTAP

10 2 10q23.31 89538420 1.5 Hz del PTEN

11 2 11q13.4–5 71730097 5.3 HLA

13 13 13q14.2 47901160 0.65 Hz del RB1
∗HLA = high level amplification, Hz del = homozygous deletion.

a pool of healthy individuals, was used as a reference
(Promega, Madison, Wiss, USA). CyDye coupling/labeling
was carried out using a random labeling kit (Invitrogen
Life Technologies, Carlsbad, Calif, USA) according to the
manufacturer’s recommendations. In short, 2-µg genomic
tumor DNA and reference DNA were differentially labeled
with fluorescent dyes, Cy3 for tumor tissue, and Cy5
for reference DNA. After a purification step, these were
pooled, mixed with COT-1 DNA to block repetitive DNA
sequences, dehydrated and resuspended in a formamide-
based buffer (Invitrogen). The labeled DNA was then
applied to arrays pretreated in washing solutions (Pronto!
Microarray Reagent System, Corning Labsystems, Corning,
NY, USA) and hybridization was performed for 48–72 hours
at 37◦C. The incubation was performed under cover slips for
the DNA isolated from the frozen tumor material whereas
the MAUI hybridization System (BioMicro systems Inc., Salt
Lake City, Utah, USA) was used for the DNA derived from
paraffin-embedded tumors. Dye-swaps (i.e., complementary
hybridization in which Cy5 was used for tumor tissue and
Cy3 for reference DNA) were used in three cases and allowed
subtraction of dye-related noise. The slides were treated in
post-hybridization washing solutions and finally scanned
using an Agilent Microarray scanner (Agilent Technologies,
Palo Alto, Calif, USA).

2.3. BAC array platform

The BAC array slides used were produced at the Swegene
DNA Microarray Resource Center, Department of Oncology,
Lund University. These have an average resolution of 80 kb
and contain a total of 32 433 BAC clones from the 32 k
human genome high-resolution BAC rearrayed clone set,
version 1.0 from the BACPAC Resource Center at Children’s
Hospital Oakland Research Institute (Oakland, Calif, USA)
(http://bacpac.chori.org/). The clones provide >99% cover-
age of the fingerprint map and current sequence assembly
with a resolution of 100 kb.

2.4. Data analysis

Image analysis and data extraction were carried out using
GenePix Pro 4.1.1.4 version (Axon Instruments Inc., Foster
City, CA, USA) and the quantified data matrix was then
uploaded into the web-based BioArray Software Envi-
ronment (BASE; http://gothmog.thep.lu.se/int/index) [21],
where all data management and analysis were carried out.
The background correction and intensities of Cy3 and Cy5
were calculated using the median feature and median-local
background intensities of the uploaded files, and the inten-
sity ratios were calculated using the background corrected
spot intensities by calculating the log2 ratios of tumor to
reference intensity. In BASE a preliminary filter, based on the
flagging in the image analysis, was applied, and spots with
a diameter <55 µm and a signal to noise (SNR) ratio ≤3 in
the tumor or reference channel were flagged as “bad” and
filtered away from further analysis. The intensity-dependent
LOWESS algorithm [22] was used to normalize the data
within individual arrays. To correct for spatial bias, the data
were normalized within groups of 8 print-tip blocks. A
moving average smoothing algorithm with a 250 kbp sliding
window was then applied, and a BASE-adapted CGH-plotter
software was used to identify regions of gains and losses [23].
In the CGH-plotter, each clone was assigned a calculated
level log2 ratio value, corresponding to the level that the
clone belongs to, in order to reduce the noise. Hereafter an
unsupervised hierarchical cluster analysis, using the Pearson
correlation distance metric and the average linkage method,
was applied to the data derived from the CGH-plotter (the
TMeV application from the TM4 microarray software suite
was used; http://www.tm4.org/mev.html). The CGH-plotter
was also used to generate a ternary scale, where all clones
were designated gained, lost or unchanged. These values were
used to calculate the percentage of altered clones in each assay
and the mean number of altered clones in tumor subgroups.
Pearson correlation was used to determine the correlation
between tumors within the same individual, based on the
number of altered clones. Gains and losses were defined as a
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log2 ratio ±0.2. Amplifications were defined as clones with
a log2 ratio ≥0.5, whereas high-level amplifications were
defined as a log2 ratio ≥1.5. Homozygous deletions were
suspected when the log2 ratio was ≤1.5.

3. RESULTS

Genomic profiles from the 30 metachronous STS of five
different histopathological subtypes revealed multiple gains
and losses and identified several high-level amplifications
(HLA) and homozygous deletions (Table 2). The alterations
affected mean 39 (9–70)% of the whole genome with 19%
amplifications and 20% deletions. When the first STS (n =
13) were compared to the subsequent STS (n = 17) a
small difference in the total number of alterations was found
with 35 (16–54)% and, 42 (9–70)% of the genome altered,
respectively. Several recurrent aberrations were identified
with the most frequent changes (present in >60% of the
tumors) being deletions of 10q24.3–25.2, 13q12.1–12.2,
13q21.1–21.2, 16q13–23.2, 18q12.2–12.3, and amplifications
of 1q21.3–23.1 and 19p13.3.

Unsupervised hierarchical cluster analysis, based on the
∼ 27 000 clones that survived the filters in BASE, revealed
close clustering of the tumors from five individuals without
significant differences between the first and subsequent
STS (43% and 41% of the genome altered) (Figure 1 and
Table 1, cases 1, 2, 6, 9, and 12). These tumor pairs showed
strong similarities between the genomic plots (Figure 2(a))
with a mean correlation of 0.7 (0.5–0.9). The many shared
alterations outnumbered the few differences in all five cases
and deletions identified in the first tumor were always
present in the second STS. The median time interval between
the first and second STS in these five patients was 1 (1–
7) year, and two of these patients subsequently developed
lung metastases. In the remaining eight cases STS from
the same individual did not cluster together and showed
a significantly weaker correlation, mean 0.1 (0–0.4). These
tumors had pronounced intertumor variability (30% of the
genome being altered in the first tumor compared to 42%
in the subsequent tumors), which was comparable to the
interpatient variability, which had a mean correlation of 0.1
(0.04–0.2). In four of these cases, deletions present in the
first tumor were not present in the subsequent tumor, which
supports independent tumor origin. The second STS in these
eight cases developed median 4 (1–5) years after the first
STS and three of the patients later developed pulmonary
metastases.

4. DISCUSSION

Despite multidisciplinary and multimodality treatment,
distant metastases develop in about 30% of STS patients.
Hematogenous, pulmonary metastases predominate,
whereas lymphatic spread occurs in <5% of the patients
[19, 24]. Soft tissue metastases are rare and have mainly
been reported in liposarcomas [16, 25]. Development of
synchronous or metachronous STS has been described
in several case studies, but it remains a rare clinical
presentation and the interpretations hereof have varied
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Figure 2: Superposition of whole genome plots from two different
tumors from the same patient showing (a) similarities in gene copy
number changes in two liposarcomas (case 6). (b) Differences in
gene copy number changes in two malignant fibrous histiocytomas
(case 3).

[25–29]. Epidemiological data support an increased risk
of a secondary primary sarcoma among adult STS patients
[14, 17]. In order to reduce bias from inclusion of familial
sarcoma syndromes, we excluded multiple sarcoma patients
diagnosed with neurofibromatosis or the Li-Fraumeni
syndrome. The only patient who developed more than
one MPNST was carefully examined without any sign of
neurofibromatosis (until death 3 years later). Since only one
patient had received adjuvant chemotherapy after the first
STS and none of the second STS developed in irradiated
fields, the second STS studied are unlikely to represent
treatment-induced secondary tumors.

Application of CGH in STS has mainly involved
leiomyosarcoma and MFH/UPS and has in these highly
malignant and pleomorphic STS subtypes demonstrated
extensive genomic complexity with recurrent copy number
changes, including losses of 2p, 2q, 10q, 11q, and 13q and
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gains of 1q, 5p, 8q, and 17p [30–36]. Several of these
recurrent changes were also identified among the 30 STS in
this study with the most frequent being deletions of 10q24.3–
25.2, 13q12.1–12.2, 13q21.1–21.2, 16q13–23.2, 18q12.2–
12.3, and amplifications of 1q21.3–23.1 and 19p13.3. In
order to obtain as many tumor pairs as possible, frozen as
well as paraffin-embedded tumor tissue was used. Among
the tumors from which high-quality DNA was obtained, no
differences were identified related to tumor source (Table 1).
When the genomic profiles from the different tumor pairs
were compared, five pairs showed highly correlated genomic
profiles suggestive of metastatic disease, whereas eight cases
showed different profiles suggestive of distinct primary STS.
In the latter STS, the differences by far outnumbered the
similarities, which resulted in a weak correlation, which
was comparable to the interpatient variability. Importantly,
there was no systematic difference in sample prepara-
tion methodology between the two groups suggestive of
metastatic disease and distinct primary STS, respectively. The
similarities and differences were evident in an unsupervised
hierarchical cluster analysis (Figure 1) in which the five
former tumor pairs clustered closely, whereas the latter eight
did not.

Previous reports of multiple STS have predominantly
involved liposarcomas. In a mixed series of nine STS
patients who developed synchronous and metachronous
STS, Grobemyer et al. identified liposarcomas (n = 5) and
gastrointestinal stromal tumors (n = 5) as the most frequent
subtypes whereas Blair et al. reported 16 patients with
multiple STS of whom nine had liposarcomas [20, 37]. Our
study only included successfully analyzed liposarcomas from
one patient (case no. 6) who developed four liposarcomas in
four years without signs of lung metastases and died from
locally advanced tumor masses 22 months later. Antonescu
et al. applied Southern blot analysis to tumors from six
patients with multifocal myxoid liposarcomas and hereby
verified monoclonality, thus demonstrating that multiple
myxoid liposarcomas in the same individual most likely
represent recurrent disease [16]. Similar genetic profiles were
in our series present in metachronous STS of the same
histopathological types; three MFH/UPS, one liposarcoma,
and one leiomyosarcoma, which developed with median 1
year interval. Subsequent development of lung metastases
occurred in two of these five patients (Table 1). Previous
studies that have examined genetic differences between
primary and recurrent STS have been carried out using con-
ventional CGH and have demonstrated increasing genetic
complexity from primary STS to a local recurrence [38–
40]. However, the issue of development of second primary
STS has to our knowledge not been addressed using genetic
profiling. We demonstrate strikingly similar genetic profiles
in the five STS likely representing soft tissue metastases with
mean 43% and 41% of the genome altered and several shared
deletions identified. This stands in contrast to the eight
STS patients from which the metachronous STS showed
different genetic profiles. Among these, multiple histologic
subtypes (i.e., MFH/UPS, MPNST, and leiomyosarcomas)
were present and four of the deletions identified in the
primary tumors were not found in the second STS. In

summary, the clinical presentation, histopathology, and the
genetic profile support independent sarcoma origin in 8
of the 13 patients (Table 1). Although development of
metachronous STS is rare, our demonstration of different
genetic profiles in the majority of these cases serves as a
reminder to consider independent tumor origin, which has
implications for the choice of therapy, for example, use of
adjuvant chemo- and/or radiotherapy after surgery for a
second STS that should not per se be perceived to represent
metastatic disease.
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