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A digital hologram-optimizing method was proposed to improve the imaging quality of dual-wavelength digital holographic
microscopy (DDHM) by reducing the phase noise level. In our previous work, phase noise reduction was achieved by dual-
wavelength digital image-plane holographic microscopy (DDIPHM). In the optimization method in this paper, the phase noise
was further reduced by enhancing the real-image term and suppressing effects of the zero-order term in the frequency spectrum
of a digital hologram. Practically, the carrier frequency of the real-image term has the correspondence with interference fringes
in the hologram. Mathematically, the first order intrinsic mode function (IMF1) in bidimensional empirical mode
decomposition (BEMD) has similar characteristics to the grayscale values of ideal interference fringes. Therefore, with the
combination of DDIPHM and BEMD, by utilizing the characteristics of IMF1, the digital hologram was optimized with purified
interference fringes, enhancing the real-image term simultaneously. Finally, the validity of the proposed method was verified by
experimental results on a microstep.

1. Introduction

With various advantages such as the real-time performance,
noninvasive property, and easy processing by mathematical
computing, digital holographic microscopy (DHM) has expe-
rienced substantial development in surface profile measure-
ment of microstructures [1–3]. The object wavefront can be
retrieved in amplitude and phase by the numerical recon-
struction process of a digital hologram simultaneously [4].
Dual-wavelength digital holographic microscopy (DDHM)
extends the measurement range of single-wavelength digital
holographic microscopy when DHM is applied to measure
high aspect-ratio structures, especially the step structures
with the micron step height [5, 6].

However, the phase noise, especially in the recording
process, is amplified when the measurement height range is
amplified simultaneously, resulting in a loss of axial resolu-
tion in the measurement [7, 8].

Except for image processing methods [9–11], several
noise-reducing approaches aimed at DDHM have been pro-
posed in the last decades, such as the mathematic methods,
the dual-wavelength unwrapping algorithms [7, 8]. Error
points occur when the dual-wavelength unwrapping algo-
rithms are applied. In previous work, we analyzed the reasons
for occurrence of error points and proposed a much safer
method, namely, dual-wavelength digital image-plane holo-
graphic microscopy (DDIPHM) [12, 13] to suppress the
phase noise in DDHM. In this paper, an optimization
method based on combination of bidimensional empirical
mode decomposition (BEMD) and DDIPHM was put
forward to improve the imaging quality of DDHM.

The empirical mode decomposition (EMD) method has
been used in digital holography. EMD directly performs the
task of particle sizing and axial locating from in-line digital
holograms rather than reconstructing the optical field [14,
15]. As for noise reduction, EMD is utilized as a universal
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data filter. The reconstructed intensity images are decom-
posed by EMD. Removing the intrinsic mode functions
from reconstructed intensity images, the remaining terms
are the denoised images [16]. The EMD method is applied
at the last step in image processing. EMD plays the
smoothing role in noise reduction. Therefore, the noises
are not actually analyzed.

In this paper, different from [16], BEMD was used on
the original digital hologram to analyze and process the
frequency spectrum. The optimization method proposed
in this paper combined BEMD and DDIPHM. After applying
the proposed method, the interference fringes of holograms
were purified and enhanced. As a result, the zero-order term
in the frequency spectrum was suppressed. Therefore, recon-
structed phase noise was reduced in comparison to
DDIPHM. By optimizing the hologram from interference
fringes, the imaging quality could be improved from the
bottom. The digital image-plane microscopic hologram of a
microstep was processed as the sample to verify the method
proposed in DDHM.

2. Experimental Apparatus

The experimental setup for DDHM is depicted in Figure 1.
The illumination sources included a tunable diode laser at
λ1 = 690 nm (Nanobase, Xperay-TL-STD, 639 nm–697nm)
and a diode-pumped laser at λ2 = 640 nm (CrystaLaser,
CL640-050-S), yielding the beat-wavelength Λ = 8 832 μm.
The neutral filters NF1 and NF2 were used to adjust the
intensities of two laser beams. After passing through the
beam splitters BS1 and BS2, the two laser beams were split
into the object beam and reference beam, respectively. The

information of the sample collected by a microscope objec-
tive (MO, Mitutoyo, M Plan Apo SL NA = 0 42, 50x) was
coded in an interference pattern from the object beam and
the reference beam. This interference pattern was recorded
on the digital detector (CCD, Imperx, PX-2M30-L, M ×
N = 1008 × 1028, square pixel view of 7.4μm, 33 frames/s)
to form the hologram. The hologram is special as it is the
focused image of the tested sample, namely, the image-
plane hologram. All of the beams were collimated and
expanded by the beam expanders BE1, BE2, and BE3.
The lenses in Figure 1 were used to produce spherical
waves. By tilting mirrors M3 and M5, the k-vectors of
each wavelength can be tuned independently. Afterwards,
the orientation and quantity of fringes were tuned with
orthogonal carrier frequencies to avoid the overlapping
effect in the frequency spectrum.

3. Principle

The imaging noise of DDHM originates from coherent
recording and the finite size of the pixels in the CCD camera.
The temperature variation in media and visible blemishes on
any window where light passes through can also cause
diffraction and reflection. The above-mentioned disturbing
factors should be removed at the stage of hologram process-
ing; otherwise, they would introduce phase noises in the
measurement for surface profiling of microstructures.

The intensity of the digital hologram recorded in single-
wavelength DHM can be written as

I x, y =O x, y 2 + R x, y 2 +O∗R x, y +OR∗ x, y 1
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Figure 1: Experimental setup for DDHM. (a) The illustration of the DDHM system. (b) The apparatus of DDHM. NF1 and NF2: variable
neutral filters; BS1–BS4: beam splitters; M1–M5: mirrors; BE1–BE3: beam expanders; MO: microscope objective with magnification 50x
and numerical aperture NA = 0 42; Lens1–Lens3: lens. Inset: 3D distribution of the incident wave propagation directions upon the CCD
plane; kR1 and kR2 are the propagation direction vectors of the reference waves R1 for wavelength λ1 and R2 for λ2. kO1 and kO2 are the
vectors of object waves.
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O x, y was the object wavefront, while R x, y was the
reference wavefront. ∗ denoted the conjugative term. In (1),
the real-image term O∗R x, y should be extracted by filter-
ing the frequency spectrum of the recorded hologram to
retrieve the phase. The disturbing factors mentioned in the
recording process, including high frequency factors, such as
speckle noises, and low frequency factors, such as uniform
illumination, were located in the full frequency spectrum.
Hence, the filtered O∗R x, y would be affected, resulting in
phase noises.

However, the carrier frequency of O∗R x, y and OR∗

x, y had the correspondence with the intensive interfer-
ence fringes. In fact, the interference fringes in the space
domain corresponded to the carrier frequency of O∗R x, y
and OR∗ x, y in the frequency domain. Thus, extracting
interference fringes from a hologram would suppress the
zero-order term and enhance the real-image term in the fre-
quency spectrum. Therefore, with the enhanced O∗R x, y ,
phase noises would be reduced. The EMD method happened
to solve this problem.

EMD decomposes a complex time series into the sum of a
limited number of IMFs. Each IMF needs to satisfy the
following two conditions:

(1) The number of extreme points should be equal to or
larger than the number of zero points in the entire
time series

(2) At any point, the mean value of the envelopes formed
by the local maximum point and the local minimum
point is zero

Figure 2 shows the analog interference fringes and gray-
scale value of Young’s double-slit interference (wavelength
λ = 636 nm, width of slits d = 0 002 m, distance between
the recording plane and slits D = 1 m). The characteristics
of IMF are well matched to the grayscale value of interference
fringes in the hologram.

Therefore, the information of interference fringes can be
obtained by the sifting process of the hologram. Since the
hologram is two-dimensional, the BEMD sifting process is
applied and described as follows [14, 15].

(1) hij = s, hij: process variable; i and j: cycle time; s:
initial signal; i = 1, j = 1

(2) Identify sets of minima (A) and maxima (B) of hij.
If there are none, save hij as a residue ri and finish
the algorithm

(3) Connect all the local maxima of hij to create the
upper envelope, and similarly for the lower envelope
of hij, calculate the arithmetic mean value Eij

(4) H = hij, Tij = hij − Eij

(5) If the subtraction result meets the IMF condition,
save Tij as an IMFi, i = i + 1 and go back to step 2
with hij =H − Tij. Otherwise, j = j + 1, hij = Tij and
go back to step 2

By analyzing the frequency spectrum of the hologram,
the hologram is decomposed by BEMD, and IMF1 can be
remained as the optimized hologram with the processed
frequency spectrum to be calculated in the reconstruction.

The intensity distribution of the hologram of DDHM can
be written as

IIPH x, y = 〠
2

i=1
Ri

2 + Oi
2 + RiOi

∗ + Ri
∗Oi 2

IIPH is the intensity of an image-plane hologram. x, y
is the coordinate of the image-plane hologram, i = 1, 2.
Oi i = 1, 2 is the complex amplitude of the object beam of
each wavelength. Ri i = 1, 2 is the complex amplitude of the
reference beam. ∗ denotes the complex conjugate term. Due
to different angles of k-vectors, each term in (2) occupies a dif-
ferent position in the Fourier plane without overlap, as seen in
Figure 3(c). With the method of BEMD, the IMF1 term of the
original hologram is regarded as the optimized hologram
(Figure 3(b)). The intensity is labeled as IIMF1 in Figure 3(b).
The frequency spectrum is shown in Figure 3(d). According
to Figure 3(c), the frequency component of the real image
Ri

∗Oi or the virtual image Ri
∗Oi is filtered:

Ri x, y Oi
∗ x, y = IFT Wi ξ, η FT IIMF1 x, y , 3

where FT and IFT denote the Fourier transform and inverse
Fourier transform, respectively.Wi ξ, η is the window func-
tion for frequency filtering.

By using DDIPHM, the phase and amplitude of the
sample can be straightforwardly extracted:

ui x, y = Γi x, y Ri x, y Oi
∗ x, y , 4

where ui x, y is the reconstructed wavefront for wave-
length λ1. Γi x, y is the digital phase mask to compensate
for aberrations. The phase of λi is

ϕi x, y = arctan
Im ui x, y
Re ui x, y
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Figure 2: The interference fringes in grayscale value of Young’s
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The height of the sample is

h x, y =
ϕ1 x, y − ϕ2 x, y

4π
×

λ1λ2
λ2 − λ1

=
Φ x, y Λ

4π
, 6

where Φ x, y is the synthetized phase and Λ is beat-wave-
length, Λ = λ1λ2/λ1 − λ2.

4. Experimental Results

The experimental results should be discussed from the
perspectives of previous studies and working hypotheses.
The findings and their implications should be discussed
in the broadest context. Future research directions may
also be highlighted.

To assess the validity, a microstep (surface gold-plated,
a testing sample of Lyncee tec) was measured by the setup
of DDHM, and a stylus profilometer (KLA-Tencor, P-16
+/P-6) with the force of 1mg for comparison. In this part,
the experimental results of DDIPHM, DDIPHM with
BEMD, and DDHM are compared to demonstrate that
BEMD can achieve a lower phase noise level.

The image-plane hologram of the microstep is presented
in Figure 3(a). The magnified part of interference fringes

shows the spatial frequency of the two wavelengths with dif-
ferent angles. Figure 3(b) is the IMF1 of Figure 3(a) after
using the BEMD method. In Figure 3(b), the interference
fringes stand out from the background. The frequency spec-
trums of Figures 3(a) and 3(b) are shown in Figures 3(c) and
3(d), respectively. The separated terms of (1) are labeled in
Figure 3(c). After BEMD processing, ∑2

i=1 Ri
2 + Oi

2 is
reduced. Actually, other disturbing factors with high or low
frequency are also reduced as the interference terms are
enhanced in IMF1. The separated terms in the frequency
spectrum in Figures 3(c) and 3(d) demonstrate that each
frequency component can be straightforwardly isolated
by spatial filtering.

Figure 4(a) shows the reconstructed phases. The surface
profile of the microstep is shown in Figure 4(b).
Figure 4(c) demonstrates the height profile plotted along
the black line through stylus profilometry, DDIPHM,
DDIPHM with BEMD, and DDHM in Figure 4(b) (recon-
struction distance is d = 75 mm, reconstructed by the
angular spectrum method).

Since the precision of DHM can be 0.1 nm, the calculated
height value was kept one decimal digit. The average height
of multiple profile lines is the experimental results
(Figure 4(c) and Table 1) of DDIPHM, DDIPHM with
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Figure 3: Experimental hologram and frequency spectrum. (a) Image-plane hologram. (b) IMF1 of the image-plane hologram. (c) Frequency
spectrum of the hologram. (d) Frequency spectrum of IMF1. The boxes in figures are the magnified parts.
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BEMD, stylus profilometry, and DHM after removing the
gross error like apparent stains. The steps are numbered as
1, 2, 3, and 4 from left to right.

5. Discussion

Two points can be concluded from the experimental results:
first, compared to DDIPHM, the noise is obviously
suppressed in the measurement of DDIPHM with BEMD;
second, compared to stylus profilometry, the measuring
correctness of DDIPHM with BEMD is verified by the good
accordance of the two measurement results. Since BEDM is
used to enhance the contrast of interference fringes,
DDIPHM with BEMD is especially suitable for the

reconstruction of holograms acquired in the environment
with speckle noises. The refractive index difference between
biological cells or tissues and environment can be quite large.
Therefore, DDIPHMwith BEMDwas meant to be the appro-
priate method to retrieve the phase of biological samples.
Though the phase range of the measurement was enlarged,
the lateral resolution was maintained.

6. Conclusions

In this paper, a hologram-optimizing method was proposed.
By using the DDIPHM with BEMDmethod, the interference
fringes were extracted, resulting in the enhancement of the
real-image term and suppression of the zero-order term in
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Figure 4: The experimental results of DDIPHM with BEMD. (a) The phase image of microstep measured by DDIPHM with BEMD. (b) The
surface profile of the microstep measured by DDIPHM with BEMD. (c) The height profile lines plotted along the black line in Figure 4(b)
measured through stylus profilometry, DDIPHM, DDIPHM with BEMD, and DDHM (angular spectrum method, reconstruction distance
d = 75 mm). The black rectangular shows the magnified part.

Table 1: The microstep height experimental results.

Step number 1 2 3 4

DDIPHM 4048.1± 18.8 nm 2021.1± 16.8 nm 988.5± 15.9 nm 89.4± 20.6 nm
DDIPHM with BEMD 4043.1± 12.1 nm 2027.1± 10.2 nm 986.5± 9.3 nm 83.5± 10.3 nm
Stylus profilometer 4030.8± 17.2 nm 1980.0± 13.5 nm 963.7± 10.7 nm 130.0± 9.1 nm
Classical DDHM — 2032.4± 54.8 nm 994.3± 52.5 nm 89.6± 42.5 nm

5Scanning



the frequency spectrum of the hologram. The affection of
disturbing factors in the recording process was suppressed
simultaneously. According to the experimental results, the
measured noise level of the DDIPHM with BEMD method
can be further reduced compared to DDIPHM. The validity
of the proposed method was verified compared to stylus
profilometer measurement.
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