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Sodium-ion batteries (SIBs), owning to the low cost, abundant resources, and similar physicochemical properties with lithium-ion
batteries (LIBs), have earnedmuch attention for large-scale energy storage systems. In this article, we successfully synthesize flexible
freestanding carbon nanofiber-embedded TiO2 nanoparticles (CNF-TiO2) and then apply it directly as anode in SIBs without
binder or current collector. Taking the advantage of flexible CNF and high structural stability, this anode exhibits high reversible
capacity of 614mAh·g−1 (0.27mAh·cm−2) after almost 400 cycles and excellent capacity retention ability of ~100%

1. Introduction

Sodium-ion batteries (SIBs) have earned much attention as a
candidate substitution for lithium-ion batteries (LIBs) in the
area of large-scale energy storage [1, 2], which is ascribed to
the earth’s abundance of sodium resource and similar physi-
cochemical properties with LIBs [3–5]. Until now, many
efforts have been made to solve the slow sodiation/desodia-
tion kinetics and large-volume expansion caused by a large
radius of Na+ (1.02Å versus 0.76Å of Li+) [6–8]. Further-
more, the capacity and cycling stability also need to be
improved to satisfy the practical application. It is essential
to select and design proper anode materials for SIBs to realize
fast Na+ insertion/extraction with high capacity and cycling
stability [9, 10].

Among numerous anode material candidates, TiO2 with
anatase phase has been explored as a promising anode mate-
rial for SIBs with low cost, abundance, environmental benig-
nity, and excellent structural stability [11–13]. However, the
undesirable electrical conductivity and sluggish ionic diffu-
sivity restrict its further applications [14]. Many efforts have
been cost to improve the ion/electron transportation for SIBs.

Zhu and coworkers [15] synthesized TiO2 nanoparticles
coated by mutiwalled carbon nanotubes and carbon nano-
rods as anode, exhibiting excellent rate capability and cycling
stability. He and coworkers [16] prepared a hierarchical rod-
in-tube structure TiO2 modified with a conducive carbon
layer as anode, which delivered fast ion diffusion and high
conductivity. Therefore, the efficient strategy to enhance the
electrochemical performance is nanosizing TiO2 and then
incorporating with the conductive matrix [16–22]. Despite
the progresses, the rational design nanostructure of TiO2-
based anode is still of great demand.

Herein, we proposed freestanding flexible winkled
carbon nanofiber-embedded anatase TiO2 nanoparticles
(CNF-TiO2) as anode of SIBs directly without binder and
current collector, which can not only increase the energy
density but also explore the potential application in flexible
devices. The long-range continuous carbon nanofibers can
improve the conductivity of nanosized anatase TiO2, and
the thin fibers can shorten the diffusion path of Na+, which
can promote the electrochemical kinetics in Na+ insertion/
extraction. The freestanding flexible 3D carbon structure
and embedded TiO2 nanoparticles can improve structural
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stability to alleviate the volume change during Na+ insertion/
extraction. In addition, the rough surface of CNFs increases
the electrode-electrolyte contact points and lowers the charge
transfer resistance. High specific capacity of 614mAh·g−1
(0.27mAh·cm−2) was obtained after almost 400 cycles with
capacity retention of ~100%, confirming the potential of
CNF-TiO2 as anode for SIBs.

2. Experimental Section

2.1. Synthesis of the Freestanding CNF-TiO2. The electro-
spinning precursor solution was prepared firstly by dis-
solving 1.48 g polyacrylonitrile (PAN, Mw = 150,000,
Sigma-Aldrich) in 18ml N,N-dimethylformamide (DMF)
under magnetic stirring overnight. Then, 2.5ml tetrabutyl
titanate (Ti(OC4H9)4) was added into this solution and
stirring was continued for 10min to obtain homogeneous
white turbid solution. The distance between the needle and
Al foil was 15 cm, and the voltage was maintained at 25 kV.
Then the obtained precursor nanofibers were stabilized at
280°C for 2 h with a heating rate of 5°C·min−1 and carbonized
at 700°C with 1°C·min−1 for 2 h under argon atmosphere.

2.2. Structure Characterizations. The morphologies and
size of CNF/TiO2 were characterized by scanning electron
microscopy (SEM, ZEISS Ultra 55). Transmission electron
microscopy (TEM) and EDS mapping were both carried out
by JEM-2100 HR. The crystalline property of CNF-TiO2 was
recorded by Bruker D8 Advance. The thermal gravity analy-
sis TG test was performed to evaluate the content of TiO2 by
Netzsch STA 449. The 250Xi X-ray photoelectron spectro-
scope (XPS) was obtained from ESCALAB.

2.3. Electrochemical Tests. The CR2016-type coin cells were
assembled with sodiummetal as the reference electrode, glass
fiber membrane as the separator, and the as-prepared CNF-
TiO2 directly as the anode. The above procedures were all
carried out in an Ar-filled glove box (O2 < 0 1 ppm, H2O <
0 1 ppm). The electrolyte was 1M NaClO4 in propylene
carbonate (PC)/ethylene carbonate (EC) (PC EC = 1 1,

in volume). The cyclic voltammetry (CV) and electro-
chemical impedance spectroscopy (EIS) results were
obtained from an electrochemical workstation (CHI660E,
Shanghai Chen Hua Instruments Ltd). Also, the galvano-
static discharge-charge tests were conducted in a Neware
battery testing system.

3. Results and Discussion

The structure and morphology of CNF-TiO2 are detected by
XRD, TG, XPS, SEM, and TEM. As shown in Figure 1(a), all
the diffraction peaks matched well with anatase TiO2 (JCPDS
number 021-1272), which confirms that the pyrolysis tem-
perature is appropriate to gain high-purity anatase TiO2.
Furthermore, the slightly weak intensity of these diffraction
peaks suggests that the TiO2 nanoparticles were well embed-
ded in the carbon nanofibers. In the thermogravimetry mea-
surement (Figure 1(b)) of CNF-TiO2, the content of TiO2 is
26.2%. The Ti in CNF-TiO2 is clarified by X-ray photoelec-
tron spectroscopy (XPS) as shown in Figure 1(c), which indi-
cates two peaks of 464.6 eV and 458.7 eV, corresponding to
the orbits of 2p 3/2 and 2p 1/2 of Ti4+, respectively. The Ti
2p XPS result also confirms the formation of anatase TiO2.

Figures 2(a)–2(f) perform the morphologies of CNF-
TiO2. SEM images (Figures 2(a)–2(c)) show an extremely
rough surface of the as-synthesized nanofibers with diameter
of ~300nm. Many wrinkles appear after 700°C pyrolysis
treatment for the crystallization of TiO2 nanoparticles and
decomposition of the polymer fibers, which may provide
active sites for Na+ insertion/extraction. In addition, the
long-range continuous carbon nanofiber matrix with high
conductivity will lead to fast electron transmission. As for
the TEM images with different magnification (Figures 2(d)–
2(f)), the well-distributed TiO2 nanoparticles can be clearly
observed with sizes between 100nm and 200nm and they
are all coated with amorphous carbon. A lattice spacing of
0.363 nm, corresponding to (101) planes of anatase TiO2,
can be clearly detected in the high-resolution TEM image
(Figure 2(f)), which means the high degree of crystallinity
of anatase TiO2. The TiO2 larger lattice spacing of 0.363 nm
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Figure 1: (a) The XRD pattern of CNF-TiO2 after pyrolysis at 700
°C; (b) TG pattern of CNF-TiO2 under air atmosphere; (c) XPS of Ti 2p in

CNF-TiO2.
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than 0.102 nm of Na+ and the specific space group of I41/amd
(a = 3 785Å, and c = 9 514Å) can ensure the fast insertion/
extraction of Na+ [23, 24], in which Na+ is inserted/extracted
in the interspace of anatase TiO2 [23]. Furthermore, it can
stabilize the structure of CNF-TiO2 cooperated with amor-
phous carbon through enduring the volume change in the
battery reaction.

The electrochemical performance of CNF-TiO2 anode
for SIBs is investigated by cyclic voltammetry (CV) between
0.01V and 3V with a scan rate of 0.1mV·s−1 and galvanosta-
tic charge-discharge techniques at 200mA·g−1. As depicted
in Figure 3(a), a strong cathodic peak between 0 and 0.5V
appears in the first cycle of SIB and disappears in the follow-
ing four cycles, which demonstrates the decomposition of
electrolyte and the formation of solid electrolyte interphase
(SEI) film. The benign overlapped CV curves of the next four
scans indicate excellent cycle stability and reversibility for
Na+ insertion/extraction. Figure 3(b) shows the charge/dis-
charge curves of CNF-TiO2 as anode for SIBs with constant
current of 200mA·g−1. In the initial cycle, there exists a large
irreversible capacity compared to the following curves, which
is in agreement with the CV tests. The charge/discharge
curves without obvious plateaus demonstrate the fluent
insertion/extraction of Na+ into the amorphous carbon and
crystalline TiO2 lattice. The initial discharge capacity is
792mAh·g−1 (0.35mAh·cm−2) with a coulombic efficiency
of 35.5%, and the discharge capacities increase slightly during

the subsequent cycles, showing the continuous reduced
resistance of CNF-TiO2 by the activation of this material,
which is also confirmed in electrochemical impedance spec-
troscopy (EIS, Figure 3(d)). The EIS results show the slight
decrease in charge transfer resistance before 10 cycles and
then a gradual increase until 80 cycles, which is the conse-
quence of activation and slight structural damage of CNF-
TiO2, respectively.

The rate performance of CNF-TiO2 is further investi-
gated at various constant currents from 100mA·g−1 to
5000mA·g−1. As shown in Figure 3(c), the capacity can
still retain 378mAh·g−1, 309mAh·g−1, and 133mAh·g−1
at the current densities of 1000mA·g−1, 2000mA·g−1, and
5000mA·g−1, indicating the rapid process of the insertion/
extraction of Na+. Moreover, when the current density
recovers to 100mA·g−1, the capacities can retain to the initial
level, showing the outstanding rate performance of CNF-
TiO2 as anode for SIB. CNF-TiO2 also exhibits remarkable
long-term cycling stability (Figure 3(e)). It can deliver a high
initial capacity of 792mAh·g−1 with a coulombic efficiency of
35.5% and stability at 614mAh·g−1 after almost 400 cycles,
indicating the excellent cycling performance and structural
stability of CNF-TiO2 anode. On the one hand, the large
length-to-volume ratio of CNFs-TiO2 provides more active
sites for Na ion adsorption on the surface of 1D nanofibers,
which offers additional capacity contribution. On the other
hand, the specific capacity of CNFs-TiO2 is based on the
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Figure 2: SEM images (a–c), TEM images (d–f), and EDS mapping (g) of CNF-TiO2.
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Figure 3: (a) CV tests at 0.1mV·s−1. (b) Galvanostatic charge-discharge curves of CNF-TiO2 recorded at 200mA·g−1; (c) rate performance of
CNF-TiO2; (d) EIS of CNF-TiO2 before and after cycles; (e) cycling stability of CNF-TiO2 as anode for SIBs at 200mA·g−1.
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mass of TiO2, while the carbon substrate may contribute par-
tial capacity. It should be noted that the capacity increases
during the initial cycles, which might be attributed to the
active process owing to the 3D interconnected nanostructure
of CNF-TiO2 [16].

To further unravel the electrochemical kinetic properties
of CNF-TiO2 as anode in SIBs, CV tests at different scan
rates from 0.1mV·s−1 to 1mV·s−1 are performed in
Figure 4(a). All the CV cycles have a similar shape of broad
peaks for Na+ insertion/extraction. Also, the small peak shift
with different scan rates indicates the smaller polarization of
CNF-TiO2. The peak current (i) of curves can be separated
into two mechanism parts: diffusion-controlled and sur-
face-controlled, which corresponds to battery and capacitive
reaction, respectively.

In order to figure out the contribution of each part, the
equation of i = a · vb [25, 26] linked peak current (i, mA)
and scan rate (v, mV·s−1) is performed to qualitatively ana-
lyze the kinetics, which can also express as log i = log a +

b·log v. a and b are constants which are obtained from
the experiments. The b value is represented by the slope of
log v − log i plots. There are two limit cases: that b = 0 5
means a diffusion-controlled mechanism (battery) and that
b = 1 represents a surface-controlled process (capacitive).
As shown in Figure 4(b), the cathodic peaks show the esti-
mated b value of 0.895 and anodic peaks of 0.849 from
0.1mV·s−1 to 1mV·s−1, which means the electrochemical
kinetic of CNF-TiO2 as anode is the combined mechanism
of diffusion control and surface control (dominant).

Furthermore, the capacitive contribution and battery
contribution can be separately quantitatively analyzed by
the equation i = k1v + k2v

1/2 [20], where i is the current at a
fixed voltage with different scan rates, and k1v and k2v

1/2

originated from the contribution of surface-controlled and
diffusion-controlled reaction, respectively. In order to easily
calculate, this formula can be transformed to i/v1/2 = k1 v

1/2

+ k2. Then, k1 and k2 can be obtained from the fitting plot
of v1/2 − i/v1/2. Figure 4(c) shows that the current is derived
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Figure 4: (a) CV curves of CNF-TiO2 at different scan rates from 0.1mV·s−1 to 1mV·s−1. (b) The relationship between peak current (i) and
scan rates (v). (c) The contribution of capacitive (red) and battery (blank) reaction at 0.5mV·s−1. (d) The ratio of capacitive and battery
contribution at different scan rates.
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from two parts with the obvious red shadow area and blank
space representing capacitive and battery reaction, respec-
tively, which indicates that the contribution of capacitive
effect is 54.3%. Figure 4(d) exhibits the capacity contribution
increasing with the rising scan rates, 46.2% (0.1mV·s−1), 53%
(0.3mV·s−1), 54.3% (0.5mV·s−1), 65.4% (0.7mV·s−1), and
68.4% (0.9mV·s−1). These capacitive contributions reveal
that CNF-TiO2 as anode can shorten the electron transfer
path and decrease the barrier of Na+ insertion/extraction.

4. Conclusion

In summary, this flexible freestanding CNF-TiO2 can be
successfully synthesized by a facile electrospinning
method followed by pyrolysis treatment at 700°C. This
material as anode exhibits high specific reversible capacity
of 614mAh·g−1 (0.27mAh·cm−2), excellent rate perfor-
mance, and long-cycle stability at 200mA·g−1, which can
be ascribed to the long-range continuous conductive car-
bon nanofibers and TiO2 nanoparticles with excellent
structural stability and larger lattice of 0.363 nm than
the radius of Na+. After almost 400 cycles, the capacity
retention keeps ~100%, which indicates the high revers-
ible performance and excellent tolerance of volume
change in the process of Na+ insertion/extraction.
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