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The AFM nanoindentation technique is a powerful tool for the mechanical characterization of biological samples at the nanoscale.
The data analysis of the experimentally obtained results is usually performed using the Hertzian contact mechanics. However, the
aforementioned theory can be applied only in cases that the sample is homogeneous and isotropic and presents a linear elastic
response. However, biological samples often present depth-dependent mechanical properties, and the Hertzian analysis cannot
be used. Thus, in this paper, a different approach is presented, based on a new physical quantity used for the determination of
the mechanical properties at the nanoscale. The aforementioned physical quantity is the work done by the indenter per unit
volume. The advantages of the presented analysis are significant since the abovementioned magnitude can be used to examine if
a sample can be approximated to an elastic half-space. If this approximation is valid, then the new proposed method enables the
accurate calculation of Young’s modulus. Additionally, it can be used to explore the mechanical properties of samples that are
characterized by a depth-dependent mechanical behavior. In conclusion, the proposed analysis presents an accurate yet simple
technique for the determination of the mechanical properties of biological samples at the nanoscale that can be also used
beyond the Hertzian limit.

1. Introduction

The most extensively used method for the determination
of the mechanical properties of biological samples at the
nanoscale is the AFM nanoindentation method. This
method is based on the application of a specific load to
a nanoregion and the subsequent measurement of the
indentation into the sample [1]. The load-indentation data
is then fitted to basic models of applied mechanics, and
Young’s modulus can be easily calculated as a fitting
parameter (under the condition that Poisson’s ratio of
the sample and the indenter’s properties are known) [2].
Using this simple approach, Young’s modulus maps of

extended nanoregions can be created for various applica-
tions [3-6]. The data processing is usually performed
using basic models from contact mechanics like the Hert-
zian analysis [7]. The Hertz model has been proven to be
a powerful tool for a wide range of applications [8-12].
However, it can be applied only under specific restrictions;
the sample is considered as homogeneous and isotropic
and presents a linear elastic response [7, 13]. This assump-
tion has been proven rational in many cases in the litera-
ture [14, 15]. However, for big indentation depths and for
highly nonhomogeneous and nonisotropic samples,
Young’s modulus calculation using the Hertzian analysis
provides significant errors [7]. It must be also noted that
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these errors are usually “hidden” since the related software
packages often present Young’s modulus maps of large
regions (e.g., using thousands of load-indentation curves)
based on significantly inaccurate fittings [16, 17]. In addi-
tion, in the provided Young’s modulus maps, a combina-
tion of accurate and inaccurate fittings (depending on
the nanoregion) is included, and as a result, the calcula-
tion of Young’s modulus distribution which is a basic tool
for the evaluation of the mechanical properties of biologi-
cal samples (e.g., for the detection of various pathological
conditions [4, 18]) can be inaccurate.

Thus, according to the abovementioned facts, there are
two significant objectives regarding nanoindentation experi-
ments. The first objective is to find an accurate method which
can be used as a tool to examine if the load-indentation data
follows the Hertzian mechanics. The second objective is to
provide a simple method to evaluate the mechanical proper-
ties of biological samples beyond the Hertzian limit (pro-
vided that the sample can be considered as a half-space, i.e.,
the sample’s dimensions are significantly bigger compared
to the tip’s dimensions). Hence, in this paper, we introduce
a new physical quantity that can be used for data processing
in AFM nanoindentation experiments, the work done by the
indenter per unit volume.

2. Materials and Methods

2.1. Open Access Data and Software Analysis. For the pur-
poses of this paper, open access data obtained from nano-
indentation experiments on fibroblasts was used [19]. In
particular, over 130 loading load-indentation curves were
analyzed. According to the research group that conducted
the experiments, a conical indenter with a half angle equal
to 25° was employed. In addition, the cantilever’s spring
constant was measured 0.01N/m [19]. The load-
indentation curves (using the raw load-displacement data
collected from AFM) were constructed using the Atomic]
software and the protocol presented in [19]. The contact
point determination and the fitting procedures according
to Hertzian contact mechanics were also performed using
the Atomic] software [19]. Calculations of the work done
by the indenter per unit volume were performed using
Matlab.

2.2. The Work Done per Unit Volume as a Physical Quantity.
In an AFM nanoindentation experiment, the applied load is
related to the indentation depth using the following general
equation [2],

P=ah™ (1)

In equation (1), P is the applied load, 4 is the indentation
depth, and a, m are constants that depend on the shape of the
indenter and on the material’s properties [2, 17]. The work
done by the indenter can be easily calculated as follows [20]:

- a
W= J Pdh= hmH (2)

max *
0 m+1
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In addition, the contact stiffness of the material can be
easily derived [21-23]:

dpr

=amh ! (3)

According to the general equation that is valid for any
axisymmetric indenter when indenting an elastic half-space,
the ratio of the contact stiffness (S) of the material with
respect to the contact radius (1) is constant [24]:

S 2E

—=___. 4

re 1-v? 4)
In equation (4), E, v are the sample’s Young’s modulus

and Poisson’s ratio, respectively. The combination of

equations (3) and (4) results in

am(1-v*) -
o= D) e, 5)

where ¢ = am(1 —v?)b"™ '/2Eand b=h
contact depth [21].

In addition, the volume of the part of the indenter which
is at contact with the elastic half-space can be easily
calculated:

/h,, where h_ is the

max

h, h, 2
V= J nr*dh = J ki dh = Bt
0 0 2m—1

(6)
The work done by the indenter per unit volume in the
elastic material is provided as follows:

W (al(m+ 1)L a2m-1)0"" L
Mg it hormo (7)
Vi (mdl(2m-1))h" nct(m+1)

2.3. Conical Indenters and Young’s Modulus Calculation. The
ratio W/V is constant (i.e., it does not depend on the maxi-
mum indentation depth) if m =2. The case of m =2 is the
case of conical indentation, where a = (2/7)(E/(1 —v?)) tan
0, b=m/2, and 0 is the cone’s half angle [2, 22]. Thus, in this
case, equation (7) can be written in the form

w nE " (8)
— =— = const.
V. 4(1-v*)tan6

Thus, if the ratio W/V is constant for a specific sample
and for different indentation depths (using a conical
indenter), this sample can be considered as homogeneous
and isotropic and Young’s modulus can be easily determined
using equation (8). An illustration of a nanoindentation
experiment using a conical indenter on an elastic half-space
is presented in Figure 1. For nonconical indenters, the ratio
WV is depth-dependent for any sample and for every inden-
tation depth. For example, assume a spherical indenter. In
this case, m=3/2, a=(4/3)(E/(1-+*))R'?, and b=2 [I,
22], and as a result, even when the sample can be
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F1Gure 1: An illustration of a nanoindentation experiment using a conical indenter on an elastic half-space. The contact depth (h,) and the

contact radius (r,) are clearly presented.

approximated to an elastic half-space, the ratio W/V is not
constant and follows the equation

w _ 32 E -1/21,1/2
7 - EI—VZR hmax' (9)

As a result, the presented analysis can be applied more
easily if the indenter can be approximated to a perfect
cone. It is also interesting to mention that the units of
the proposed physical quantity W/V are equivalent to
Pascal’s (i.e., J/m® = N/m? = Pa).

2.4. Testing the Mechanical Behavior of a Sample. An easy
way to test if the ratio W/V is constant (using a conical
indenter) is to plot the graph W = f(h?), since the volume
of the indenter which is in contact with the sample increases
proportionally to #°. The work done by the indenter for each
indentation depth (0<h<h,, ) can be easily calculated
from the area under the P = f(h) graph. If the graph W =f
(K*) is linear, the ratio W/V is constant and the sample can
be accurately described by Young’s modulus as provided by
Hertzian analysis.

On the other hand, if the aforementioned ratio is not con-
stant, equations (4), (5), (7), and (8) are no longer valid. In
other words, the sample cannot be considered as an elastic
half-space. In this case, the ratio W/V is depth-dependent:

o =1, (10)

Thus, by calculating the W/V ratio with respect to the
indentation depth, the depth dependence of the sample’s
mechanical properties can be accurately determined. The
volume which is in contact with the sample can be easily
calculated using equation (6) for a conical indenter
(m=2,h,=(2/m)hy,,, and a = (2/m)(E/(1 - v*)) tan 0):

8tan’0

3. Results and Discussion

3.1. Data Processing. In Figure 2, a load-displacement curve
(Figure 2(a)) and the resulting loading load-indentation
curve (Figure 2(b)) obtained on a fibroblast are presented.
The loading load-indentation data fits well to the equation
provided by Sneddon (which is an extension of Hertzian
analysis) for conical indenters [2]:

(tan O)h*. (12)

In particular, the fitted curve is described by the function,
P = (2042(N/m?))h?, 0 < h < 1149 nm(R? = 0.9984). Assum-
ing Poisson’s ratio equal to v = 0.5, Young’s modulus results
in E =5.16 kPa. However, the aforementioned value is valid
only under the condition that the ratio W/V remains con-
stant at the domain 0 </ <1149 nm. Thus, in Figure 2(c),
the graph W =f(h’) is presented which is linear (R*=
0.9998). As a result, the ratio W/V is constant and the sample
can be accurately described by Hertzian mechanics.

Young’s modulus was also calculated using the proposed
by this paper analysis. For this reason, the area under the
experimental data (Figure 2(a)) which equals the work done
by the indenter was used and resulted equal to W =10.37-
1077 nJ. The volume of the indenter which is in contact with
the sample was calculated V =8.9-10” nm® (equation (11)).
Thus, W/V =11.65k]/m*>. Hence, using equation (8),
Young’s modulus results in 5.19kPa. The differences
between the two approaches are negligible.

In Figures 3(a) and 3(b), the load-displacement curves
and the resulting loading load-indentation curve on a dif-
ferent point (on the same fibroblast) are presented. In
this case, the fitting of the data to equation (12) is poor
(R*=0.9591). As it was expected, the graph W = f(h®) is
not linear in this case (Figure 3(b)). Thus, the mechanical
properties at this nanoregion cannot be described accu-
rately using Young’s modulus as provided by Hertzian
contact mechanics. In other words, the mechanical
properties at this nanoregion present a depth-dependent



Scanning

1.5
1N
054 Ao
0 A
= -0.5
=4 ‘ .
A -1 _ Contact point
154 NG K
L N
2.5
-3 , , . . . 0 . ; : . .
-2 -1 0 1 2 3 4 0 0.2 0.4 0.6 0.8 1
d (um) h (ym)
—— Approach Load-indentation data
—— Withdraw —— Fitted curve
--- Fit
(a) (b)
x 10-15
14 Fitting approach Proposed approach
08 - Using Egs. (8), (11):
_ m(1-v)W
0.6 1 - 3
. 2(tan6) h3 .
g E=5.16kPa
0.4 =5.19 kPa
0.2 | w
v =11.65 kJ/m3
0 T T T
0 0.5 1 1.5
K3 (m3) x 10-18

Experimental data

—— Fitted curve

(0

(d)

FIGURE 2: (a) AFM load-displacement curves, (b) loading load-indentation (P = f(h)) data and a fit to equation (12) (R? = 0.9984), (c) the
W = f(h*) data present a linear behavior (R> = 0.9998), and (d) Young’s modulus as calculated using a fit to equation (12) and using the
proposed by this paper approach. The difference is negligible, since the sample presents a linear elastic behavior for the selected data

range. The W/V ratio is also presented.

behavior. The W = f(h*) data was fitted to a 2"%-degree
polynomial curve:

y=6x" + ¢ X+ ¢ (13)

In equation (13), ¢, =5-10*J/m°, ¢, =2014]/m’, «,
=3.548-10"%], x=h’, 0<h<487nm, and R?>=0.9997.
For example, according to equations (10), (11), and
(13), if

w
h=380nm, v = 39.84kJ/m?,

w
h =430 nm, v =41.30kJ/m>, (14)

w
h =487 nm, v = 44.79kJ/m’.

The depth-dependent behavior is probably a result of
the nonhomogeneity of the sample or a result of a
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FiGuRre 3: (a) AFM load-displacement curves, (b) loading load-indentation (P = f(h)) data and a fit to equation (12). In this case, the fitting is
poor (R?=0.9591). (c) The W = f(h®) data present a depth-dependent behavior since it is fitted to a second-degree polynomial curve
(R? =0.9997). (d) The related equations for the calculation of W/V ratio at the indentation depth of interest.

substrate effect [25]. However, regardless of the reason for this
behavior, it was shown that the ratio W/V can be used as a
physical quantity to describe the behavior of a sample not only
for those that can be considered homogeneous but also for
those beyond the Hertzian limit.

It must be noted that the proposed by this paper analysis
assumes a perfect conical indenter. However, the analysis can
be used for tips with a n-sided pyramid shape as well (n-sided
pyramid shape tips are often used in AFM nanoindentation
experiments).

3.2. Mechanical Property Maps and Statistics. In this section,
measurements over extended regions on a fibroblast will be pre-
sented. In particular, in Figure 4, the analysis of 64 loading load-

indentation curves is presented (over a region 12.5 ym x 12.5
um, at the central region of a fibroblast). The maximum inden-
tation depth for each curve was chosen to be ~ 1000 nm.

Firstly, the data was fitted to equation (12), and the R
-squared coefficient (mean + standard deviation) resulted
in R*=0.9964 +0.0021. Hence, the data follows Sned-
don’s equation in this case. As a result, Young’s modulus
map using the aforementioned fitting procedure is created
(Figure 4(a)). In addition, the distribution of Young’s
modulus values is presented in Figure 4(b). The mean +
standard deviation regarding Young’s modulus values
resulted in E=7.41 +2.00 (kPa). In Figure 4(c), the distri-
bution of R* is also presented (in every case, R* was close
to 1).
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FIGURE 4: (a) Young’s modulus map consisting of 64 measurements over a region 12.5ym x 12.5 ym. (b) The distribution of Young’s
modulus values. The mean + standard deviation resulted in E =7.41 +2.00 (kPa). (c) The data was accurately fitted to equation (12) since
R? for each individual fit was close to 1. (d) Young’s modulus map over the same region using the proposed by this paper approach. (e)
Young’s modulus distribution reveals that the new approach can be accurately used for Young’s modulus calculation under the condition
that the sample presents a linear elastic behavior. (f) A mechanical property map in terms of W/V. (g) The distribution of the W/V
values. The mean + standard deviation resulted in 16.61 + 4.57 kJ/m>.

Furthermore, Young’s modulus for each curve was calcu-
lated using the alternating procedure proposed by this paper
(equation (8)). The results are presented in Figures 4(d) and
4(e). Young’s modulus map (Figure 4(d)) is identical to
Young’s modulus map in Figure 4(a). In addition, the mean
+ standard deviation of Young’s modulus value resulted in
E=7.39+2.03 (kPa).

Using the above-mentioned results, it can be concluded
that if the sample presents a linear elastic behavior (W/V =
const.), then the approach proposed by this paper can be
used as an alternating method regarding Young’s modulus
calculations (the fact that Young’s modulus distribution
resulted identical using the two methods is also a proof that
the sample’s behavior was consistent with a linear elastic
response over the selected range of indentation depths).
Additionally, the mechanical property map in terms of W/
V is also presented. The mean + standard deviation of W/V
value resulted in 16.61 + 4.57 kJ/m?>.

Furthermore, an additional mechanical property map on
a different location of the fibroblast is presented in Figure 5.
In this case, only the data that represents the first 200 nm of
the indentation was analyzed. Fitting equation (12) to the
data and determining Young’s modulus using Hertzian anal-
ysis were not an appropriate method to estimate the mechan-
ical properties since the R-squared coefficient resulted in the
range 0.7576 < R* <0.9872 (the mean + standard deviation
of the R-squared coefficient resulted in R? = 0.9455 + 0.0479
). This is an expected result, since previous publications have
shown that the mechanical properties of cells are usually
highly depth-dependent for small indentation depths [26-
28] (it must be noted that using the analysis conducted by
this paper, it was concluded that most of the fibroblast’s
central regions had a linear elastic behavior if the maximum

indentation depth was approximately in the range 400 nm
< h, . <1000 nm). Thus, in this case, the determination of
Young’s modulus using equation (12) is an inappropriate
method to estimate the sample’s mechanical properties. In
this case, a mechanical property map in terms of W/V is
the most appropriate solution. More specifically, a W/V
map consisting of 64 measurements over a region 12.5 ym
% 12.5 ym is presented in Figure 5. Four randomly selected
load-indentation curves are also shown to prove that a fitting
using equation (12) to the data is meaningless in this case.
The mean + standard deviation of the W/V magnitude
resulted in 25.88 +5.52 (kJ/m?). The W/V distribution is

also presented using a histogram in Figure 5.

3.3. Advantages of the New Method. In this paper, the physi-
cal magnitude “work per unit volume” is introduced as an
accurate physical quantity for the mechanical characteriza-
tion of biological samples at the nanoscale using a perfect
conical indenter. The presented by this paper analysis depicts
significant advantages since

(i) It can be used as a test to evaluate whether the
Hertzian contact mechanics (equation (12)) can
be used for Young’s modulus determination at the
nanoscale

(ii) It provides an alternating method for Young’s
modulus determination under the condition that
WV = const.

(iii) It can be used to explore the mechanical properties
of samples which present a depth-dependent
behavior, and as a result, the Hertzian analysis is
of no use
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(iv) It can be used for the comparison of the mechanical
properties of different samples beyond the linear
elastic regime

(v) The W/V ratio can be used to explore the depth at
which the sample exceeds the linear elastic
behavior

(vi) The W/V calculations can be included in basic soft-
ware packages regarding data processing in AFM
nanoindentation experiments to exclude measure-
ments that do not present constant W/V ratios.
As a result, the final Young’s modulus distributions
will be accurate and likely to be used in the future in
real clinical activities

(vii) It provides a simple magnitude in terms of J/m?,
with physical significance which is (like Young’s
modulus) easily to be understood by professionals
in the fields of biology and medicine. For example,
the comparison of materials with depth-dependent
mechanical properties using the same indentation
depth is easy; the stiffer material requires “more
work” to be indented using the same indenter

(viii) The advantage of not needing a fit allows faster
determination of Young’s modulus and, thus,
opens the possibility of real-time analysis

(ix) The W/V ratio can be also used to determine the
maximum indentation depth that should not be
surpassed in order to avoid the substrate effects
in cases that linear elastic samples are being
tested. In particular, if a linear elastic sample is
being tested, the W/V ratio is constant and the
W = f(h®) curve is linear. However, after a limit,
the W =f(h?) curve will exceed the linear form
due to the substrate effect. Thus, only the first
linear data (prior to the above-mentioned limit)
should be used to determine the sample’s
mechanical properties. The substrate’s influence
on Young’s modulus measurements is a classic
problem in AFM nanoindentation experiments.
Significant theories have been also proposed in
the past for data processing to render the
mechanical properties of linear elastic or visco-
elastic samples regardless of the value of the
maximum indentation depth [29-31]. Thus, this
paper is also a new contribution in this direction

3.4. Limitations. It must be noted that the proposed approach
has also some limitations which are provided below:

(i) It must be strictly clarified that the analysis as pro-
vided by this paper assumes a perfect conical
approximation of the indenter. However, this is
usually the case in AFM nanoindentation experi-
ments since most of the indenters have pyramidal
shapes and can be approximated to perfect cones
for big nanoindentation depths (compared to the
tip apex radius)

(ii) It must be also noted that the comparison of the
mechanical properties of different samples that pres-
ent depth-dependent behavior using the ratio W/V
can be performed only for the same indentation
depth and when using the same indenter type (same
cone’s half angle)

(iii) By using the proposed method by this paper, it is not
possible to conclude if a depth-dependent mechani-
cal behavior is a result of the sample’s nonhomo-
geneity or due to a substrate effect (in the case that
it is not known if the tested sample should present
or not a linear elastic behavior). Thus, special atten-
tion should be given to Buckle’s rule [25]. In partic-
ular, the maximum indentation depth cannot exceed
the 5-10% of the sample’s thickness

3.5. An Analogy with Electrical Components. The examina-
tion of the W/V values as presented in this paper for a biolog-
ical sample can be considered as an analogy to the
examination of the ratio V'/I for an electric component,
where V' is the voltage difference between the terminals of
the component and I the current through it. More specifi-
cally, if the ratio V'/I is constant, then the component pre-
sents a linear behavior (e.g., resistor). In this case, the
component can be described by Ohm’s law since the resis-
tance of the component is constant (R = const.). Otherwise,
the ratio V'/I can be also used for the characterization of the
behavior of the component by using the function I=f(V')
(e.g., diode and transistor).

4. Conclusion

In this paper, a new methodology for data processing in AFM
nanoindentation experiments was presented. Using the pro-
posed analysis, it can be easily evaluated whether the Hert-
zian analysis is the correct approach for data processing. In
addition, the presented methodology provides significant
advantages regarding the investigation of samples that pres-
ent depth-dependent mechanical properties. Thus, it is a
valuable tool that can be used in combination with the basic
Hertzian theory to provide significant additional information
regarding the mechanical behavior of a sample.

Data Availability

The (load-indentation) data used to support the findings of
this study have been deposited in the (Atomic]) repository
(https://sourceforge.net/projects/jrobust/files/TestFiles/).

Additional Points

Future Work. The presented analysis will be used to explore
the depth dependence of the mechanical properties of
normal, benign, and cancerous tissues.
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