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During the operation of tapping mode atomic force microscope (TM-AFM), the gap between the cantilever and sample surface is
very small (several nanometers to micrometers). Owing to the small gap distance and high vibration frequency, squeeze film force
should be considered in TM-AFM. To explore the mechanism of squeeze film damping in TM-AFM, three theoretical
microcantilever simplified models are discussed innovatively herein: tip probe, ball probe, and tipless probe. Experiments and
simulations are performed to validate the theoretical models. It is of great significance to improve the image quality of atomic
force microscope.

1. Introduction

Tapping mode atomic force microscope (TM-AFM) is widely
used to observe samples at true atomic resolution [1, 2]. AFM
phase images provide more significant information than
topographic images, such as information regarding adhesion,
elasticity, viscoelasticity, stiffness, and chemical composition
[3, 4]. Phase images and the quality factor Q are directly
related to energy dissipation between the tip and sample [5,
6]. Many energy dissipation mechanisms, such as adhesion
hysteresis, capillary interactions, air damping, and plastic
deformation, have been discussed in previous studies [7–
13]. Increasing the cantilever quality factorQ improves imag-
ing sensitivity and helps to provide high-resolution phase
images [14, 15]. In addition, the accurate identification of
each dissipation mechanism is helpful for improving the
imaging accuracy.

At present, the research on squeeze film damping is
mainly focused on microelectromechanical systems (MEMS)
[16], and there are few studies on squeeze film damping in
TM-AFM. In related experimental studies, Garcia et al. [17,
18] used tune resonance curves (frequency sweep from low
to high) to investigate the change of resonance amplitude

with the decrease of tip-sample distance. In their study, the
amplitude was considered as constant when the tip-sample
distance was large enough. However, in fact, the amplitude
exhibited a slight change before the truncated appeared,
which was not presented in their papers. This experiment
agrees with the study of Hoummady [19], stating that these
phenomena can be explained by squeeze film damping. The
experiment was carried out by Yang et al. [20] with a com-
mon probe (tip probe) in the TM-AFM, which has the
advantage of more accurate tip-sample distance. In related
theoretical studies, many scholars solved the Reynolds equa-
tion to obtain the influence of squeeze film damping on the
dynamics of the cantilever beam, but they did not consider
the effect of different tip shapes on the squeeze film damping
[21–24]. Lévêque et al. [25] proposed that the squeeze film
damping force is related to the geometry of the tip cantilever
system and a related expression can be obtained. In addition,
it was found that their conclusions were in quantitative
agreement with the experimental data, which clearly showed
the effect of viscosity in all distances.

In this study, we demonstrate the squeeze film damping
mechanism of different probes in TM-AFM and analyze the
effects of squeeze film damping on amplitude and the quality
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factor Q. The results of the theoretical models are compared
with those obtained via the experiment using three types of
AFM probes (tip probe, ball probe, and tipless probe).

2. Experiment Procedure

2.1. Cantilever Types. To verify the squeeze film damping
model, we designed an experiment to test amplitude
change when the tip-sample distance was in the micron
range. Tip probe (AppNano AN-NSC10-2 thickness:
4μm, length: 125μm, width: 30μm, resonance frequency:
200-400 kHz, force constant: 40N/m, coating: Al, material:
Si, tip radius: 10 nm, tip height: 15μm), ball probe (attach
SiO2 spheres to the tipless cantilever, cantilever type:
Nanosensors TL-NCH-10, particle shape: ball particle,
diameter: 10μm, particle material SiO2), and tipless probe
(Nanosensors TL-NCH-10, thickness: 4μm, length: 125
μm, width: 30μm, resonance frequency: 204-479 kHz,
force constant: 40N/m, coating: none, material: Si) were
used as shown in Figure 1 to analyze the effects of squeeze
film damping. A Bruker Dimension Icon AFM was used
in these experiments.

2.2. Experiment Procedure. In the TM-AFM autotune func-
tion, the tip offset was used to engage the cantilever on the
sample stepwise. The engaged distance per step was con-
trolled within a few micrometers or nanometers. Experi-
mental resonance curves for different tip offset are
shown in Figure 2(a). The dependence of the cantilever
oscillation amplitude on the tip offset is shown in
Figure 2(b).

In Figure 2(b), the tuning curve can be divided into
three stages. When the tip-sample distance was relatively
high, this area can be defined as the free stage, the ampli-
tude of the tip kept constant. As the tip engaged on the
sample, the probe gradually entered the squeeze film
damping stage; in this stage, the tip offset led the ampli-
tude to decline slowly. The last stage is the contact stage;
in this stage, the tip touched the sample on one side. In
the contact stage, the tip offset led to the rapid change
in amplitude. This stage can be simply described using a
contact model, as the tip-sample contact caused the trun-
cation in Figure 2(b).

3. Experimental Results and
Theoretical Calculation

3.1. Van der Waals Forces. It is well known that van der
Waals forces should be notices when the distances between
objects are small. To determine the effects of the van der
Waals forces on the cantilever, force curves can be used to
verify the action distance of these forces. The “jump into con-
tact” phenomenon occurs at a tip-sample distance of several
nanometers. Van der Waals forces between the tip and sam-
ple can be ignored when the tip-sample distance is of the
order of microns. The squeeze film force is much larger than
the van der Waals forces for micron-scale tip-sample dis-
tances [21]. Furthermore, it is necessarily pointed that the
samples should be placed for a long time before the experi-
ment to eliminate the effect of electrostatic forces.

3.2. Ball Probe. For the ball probe, a micron size sphere was
affixed to the end of the cantilever. Because the ball was much
larger than the amplitude observed in the experiment, the tip-
sample distance could be considered as a fixed value. The
squeeze film force was considered as concentrating on the
sphere [25]. For the convenience of the theoretical calculation,
the squeeze film damping between the ball probe and the sam-
ple was simplified to a one-dimensional oscillator model.

The tip-sample action force can be written as:

F = 6μπR2V/z, ð1Þ

where μ = 1:79 × 10−5Pa ⋅ s is the viscosity of the air, R is the
radius of the sphere (~10 um), V is the velocity of the sphere,
and z is the sphere sample distance [25].

The distribution of the squeeze film force mainly
depends on the instantaneous velocity of the sphere and
the distance z. The amplitude of the vibration system is
near 50 nm, and the frequency is 200 kHz. In the ball
probe experiment, the truncation did not appear, and the
small ball did not touch the sample. The squeeze film
force reduced the amplitude until the system could no lon-
ger present a stable image.

The one-dimensional damping system can be expressed
as follows:

m€x + c _x + kx = f tð Þ: ð2Þ

Figure 1: SEM images of the three different types of probes, i.e., tip probe, ball probe, and tipless probe.
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In Eq. (2),m, c, k, and f ðtÞ are the equivalent mass, equiv-
alent damping coefficient, equivalent stiffness, and equivalent
excitation of the cantilever, respectively. Especially, for a can-
tilever beam with a concentrated mass ball at the free end, m
=mb + 0:24ml, k =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3EI/L3

p
, where mb is the mass of the

microball,ml indicates the mass of the cantilever, E represents
the elastic modulus, I indicates the cross-sectional moment of
inertia, and L is the cantilever length. Linear damping consists
of squeeze film damping and constant damping (air damping
and internal damping). The squeeze film damping is csq = 6π
μR2/z, and the constant damping is ccon; then, c = csq + ccon
[22]. The system quality factor Q can be obtained from c.

Q =
ffiffiffiffiffiffiffi
km

p
/ 6πμR2/z + ccon
� � ð3Þ

Eq. (3) can be used to calculate the theoretical quality fac-
tor Q of the ball probe with microspheres and is a function of
the tip-sample distance z. The tuning experiment results are
shown in Figure 3(a), the largest amplitude of each resonance
curve was also recorded, the theoretical calculations were com-
pleted using Eq. (3), and the experimental results were
obtained by experimental sweep curves. For different tip-
sample distances, the experimental quality factors and the the-
oretical curves calculated by Eq. (3) were normalized, shown
in Figure 3(b). In the ball probe tuning experiment, the tip-
sample distance was approximately in the micron range and
van der Waals forces could be ignored in this condition. It
was clearly seen that the normalized experimental Q variation
trend was consistent with the theoretical calculation results.
The one-dimensional oscillator model is reasonable for the
ball probe tuning experiment.

3.3. Tipless Probes. For a small cantilever sample distance, the
squeeze film damping between the cantilever and sample can
be expressed by the Reynolds equation [16, 24]:

∂
∂x

z3
∂p
∂x

� �
+ ∂
∂y

z3
∂p
∂y

� �
= 12μ ∂z

∂t
, ð4Þ

where p is the pressure in the film, x is the axis parallel to the
beam length, and y is the axis parallel to the beamwidth.

Combining with the actual size of the cantilever, the
width-length ratio is X = b/L = 0:2, where b is the cantilever
width. According to Pandey [23], the Reynolds equation
can be simplified to one dimension and the errors can be
neglected. As the curvature radius along x direction being less
than y direction, the Reynolds equation can be simplified to

∂
∂

z3
∂p
∂y

� �
= 12μ ∂z

∂t
: ð5Þ

The pressure p is obtained by integrating by Eq. (5) with
the boundary condition p = 0 at y = ±b/2. As the cantilever
sample distance is much larger than the vibration amplitude
w, the squeeze force per unit length can be simplified to

Fy =
ðb/2
−b/2

− pdy = μb3

z3
∂w
∂t

: ð6Þ

The equation of motion for the microcantilever with
damping (consisting of squeeze film damping and constant
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Figure 2: (a) Tip probe experimental sweep curves for different tip offset (relative tip-sample distances). (b) Maximum amplitude of each
sweep curve.
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damping) can be written as [24]:

ρbh
∂2w
∂t2

+ μb3

z3
+ c′

 !
∂w
∂t

+ EI
∂4w
∂x4

= f exp iωtð Þ, ð7Þ

where ρ indicates the volume density of the cantilever, h
indicates the cantilever thickness, c′ represents the constant
damping coefficient per unit length. For a inclined cantilever
with an angle α ~ 10°, the cantilever-sample distance z can be
expressed as z = d + ðL − xÞ sin α, where d is the distance
between the free end of the cantilever beam and the sample
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Figure 3: (a) Ball probe experimental sweep curves for different tip offset (relative tip-sample distances). (b) Comparison of the experimental
results and the theoretical calculations of the ball probe.
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Figure 4: (a) Tipless probe experimental sweep curves for different tip offset (relative tip-sample distances). (b) Comparison of the
experimental results and the theoretical calculations of the tipless probe.
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at equilibrium. By using modal decomposition, i.e., wiðx, tÞ
=∑∞

i=1φiðxÞqiðtÞ, Eq. (7) can be expressed as following when
only first-order is considered.

€q1 tð Þ + ψ1ρbhð Þ−1
ð

μb3

z3
+ c′

 !
φ1

2dx _q1 tð Þ + EI
ρbh

k41q1 tð Þ

= ψ1ρbhð Þ−1Fexc tð Þ
ð
φ1 xð Þdx,

ð8Þ

where ψ1 =
Ð
φ1

2dx, k1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρbdω2

1/EI4
p

. Therefore, the system

damping ratio can be expressed as ζsum = ð2ψ1ρbdω1Þ−1
Ð
μ

b3/z3φ1
2dx + ζcon, where ω1 is the first-order resonance fre-

quency, and ζcon indicates the constant damping ratio. The
system Q can then be obtained by ζsum.

Q = 1/2ζsum: ð9Þ

Eq. (9) can be used to calculate the theoretical quality
factor Q of tipless probe; the value of ζcon is usually
~0.001. The tuning experiment results are shown in
Figure 4(a), the theoretical calculations were completed
using Eq. (9), and the experimental results were obtained
by experimental sweep curves, together with the largest
amplitude in each curve. The normalized experimental
and theoretical quality factors for different tip-sample dis-
tances are also shown in Figure 4(b). It is clear that the
trend of the normalized experimental quality factor is con-
sistent with the theoretical results. The simplified model is
in good agreement with the tipless probes in the tuning
experiment.

For the three types of probes, the theoretical calcula-
tion squeeze film damping ratio is shown in Figure 5.
Clearly, the squeeze film damping has different effect
region on different probes. At the same tip-sample dis-
tance, the influence of squeeze film damping on different
probes is also very different.

4. Conclusions

In summary, the effect of the squeeze film force is a non-
negligible factor for the damping when the tip-sample dis-
tance is in the range of several micrometers, especially in
TM-AFM. The experimental results and theoretical model
data were in good agreement, and the simplified models
are credible and easy to calculate. For the ball probe, the
squeeze film force was mainly concentrated on the sphere
which was attached to the end of the cantilever. For tipless
probes, the main part of the squeeze film force was con-
centrated between the cantilever and the sample, distrib-
uted over the entire cantilever beam. For tip probes, long
and thin tips could increase the distance between the can-
tilever and sample, and high distances reduced the squeeze
film force when the tip-sample distance was in the nano-
meter range. This study is of great significance for under-
standing the mechanism of squeeze film damping
dissipation in TM-AFM and promoting the development
of AFM.
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