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Manual counting and evaluation of red blood cells with the presence of malaria parasites is a tiresome, time-consuming process
that can be altered by environmental conditions and human error. Many algorithms were presented to segment red blood cells for
subsequent parasitemia evaluation by machine learning algorithms. However, the segmentation of overlapping red blood cells
always has been a challenge. Marker-controlled watershed segmentation is one of the methods that was implemented to
separate overlapping red blood cells. However, a high number of overlapped red blood cells were still an issue. We propose a
novel approach to improve the segmentation efficiency of marker-controlled watershed segmentation. Local minimum
histogram background segmentation with a selective hole filling algorithm was introduced to improve segmentation efficiency
of marker-controlled watershed segmentation on a high number of overlapping red blood cells. The local minimum was
selected on the smoothed histogram for background segmentation. The combination of selective filling, convex hull, and
Hough circle detection algorithms was utilized for the intact segmentation of red blood cells. The markers were computed
from the resulted mask, and finally, marker-controlled watershed segmentation was applied to separate overlapping red blood
cells. As a result, the proposed algorithm achieved higher background segmentation accuracy compared to popular background
segmentation algorithms, and the inclusion of corner details improved watershed segmentation efficiency.

1. Introduction

According to the World Malaria Report 2018, 219 million
cases were reported in 2017 worldwide. Global Health Esti-
mates 2016 stated that malaria is in the top 10 causes of
deaths in low-income countries [1]. African region carries
the largest burden with 200 million reported cases that make
up 92% of all the reports. South-East Asia region comes sec-
ond with 5%, followed by the Eastern Mediterranean Region
with 2% of all the cases [1]. There are 5 species of malaria
parasites such as Plasmodium falciparum, Plasmodium
vivax, Plasmodium malariae, Plasmodium ovale, and plas-
modium knowlesi [2]. In World Malaria Report 2018, Plas-
modium falciparum accounted for 99.7% of all the cases in
Africa. Malaria diagnosis is carried out manually through a
microscopic examination of blood by trained microscopists.

The role of the miscroscopist is to determine whether red
blood cells (RBCs) are affected by malaria parasites. Once
parasitemia is detected, manual counting of parasites is car-
ried out along. Besides detection, counting the number of
parasites is required to test drug-resistance and effectiveness
and to classify disease progression [2, 3]. However, this man-
ual procedure depends on the skill and experience of the
miscroscopist in a strong way. Additionally, there could be
external conditions that can also alter the performance of
the miscroscopist such as lack of resources to work in isola-
tion. This can lead to an incorrect diagnosis that will end up
with false treatment. In false-positive cases, the patient
might suffer from side effects of antimalarial drugs whereas
in false-negative cases, a misdiagnosis entails unnecessary
use of antibiotics and the disease progression into a severe
state [2–4]. The lack of reliability of the manual approach
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encouraged automated diagnosis of malaria with the pur-
pose of providing a standardized diagnosis, in addition, to
reducing the workload of field workers and diagnostic
cost [3].

A common approach for automated quantification of
parasitemia includes a number of steps. The first step is
image acquisition, followed by preprocessing to equalize
uneven illumination and colour differences between images
due to staining conditions. The second step involves the seg-
mentation of individual blood cells in cell clumps for accu-
rate counting of parasites. This step is usually accompanied
by postprocessing in order to improve segmentation results
by eliminating remaining wastes. Computation of features
to describe healthy and nonhealthy (infected) cells in the
third step depends on the second step, where segmentation
of individual red blood cells in cell clumps affects the correct
evaluation of parasites. The number of infected cells versus
the total cell ratio totally depends on the correct segmenta-
tion of individual red blood cells in cell clumps. The final
step involves automated classification. Here, an algorithm
should differentiate healthy and infected cells for given
images [3, 4].

Uneven illumination and noise are generally handled in
the preprocessing step. Grayscale conversion is used widely
for illumination correction, and morphological operators
are used to remove unwanted noises that are generally
smaller than red blood cells [4].

Numerous techniques have been applied to segment red
blood cells from their background in order to eliminate
unnecessary information presented in the image. Many algo-
rithms were tested on thick and thin blood smears. Global
thresholding, adaptive thresholding, histogram-based
thresholding, mathematical morphology, and k-means clus-
tering methods were used in many studies in order to seg-
ment foreground from background. Savkare and Narrote
applied global thresholding (Otsu’s threshold) on the
enhanced green channel to separate red blood cells from
the background [5]. An adaptive thresholding technique,
followed by mathematical morphological operators, was uti-
lized in a study for noise variations [6]. Mushabe et al. used
histogram-based thresholding to extract red blood cells on a
limited variety of images [7]. Tek et al. utilized top-hat filter-
ing as an example of morphological segmentation which
uses the morphological area. The separation of overlapping
red blood cells is an important step in order to accurately
count infected red blood cells [8]. Zafari et al. created a novel
algorithm to separate partially overlapping objects in silhou-
ette images by an ellipse fitting approach [9]. However, the
application of this technique to RBCs failed to give compara-
ble results due to varying shapes of RBCs. A morphological
approach for separation of the overlapping RBC was applied
by Di Ruberto et al. A hemispherical disk-shaped structuring
element was used to enhance the integrity and circularity of
the RBCs cells, and a disk-shaped flat structuring element
was used to separate overlapping cells in an attempt to
improve the efficiency of the watershed algorithm [10]. Sav-
kare and Narote utilized a k-means algorithm with a k value
of 2, to separate background-foreground [11]. This was
followed by edge detection and later by watershed transform

to separate overlapping cells. Marker-controlled watershed
transform is a highly proposed algorithm through biomedi-
cal domains and is also introduced to improve the segmen-
tation of overlapping red blood cells. Background markers
are pixels that are not part of any object-of-interest and are
usually defined as a mask. Foreground markers are con-
nected blobs of pixels inside of each object-of-interest. Each
foreground marker is associated with a specific watershed
region. To summarize, the number and location of fore-
ground markers contribute to the performance of watershed
segmentation. In a study, Radon transform was employed to
improve the selection of markers [12]. However, they only
succeeded to improve efficiency on running time.

The purpose of this study is to improve individual red
blood cell segmentation on malaria blood smear images by
watershed segmentation. In that regard, improvements in
foreground and background markers were studied.

The proposed work introduces a novel background seg-
mentation algorithm that includes area-limited morphologi-
cal hole filling. Morphological hole filling is an important
step to remove irrelevant data inside the red blood cells.
However, this method can be disadvantageous when consid-
ering a high number of overlapped red blood cells, where the
outer boundaries of a high number of overlapped red blood
cells are not informative for marker-controlled watershed
segmentation. For that purpose, the hole filling was limited
to 1 to 3 RBC sizes. In that way, the inner corners of a high
number of overlapped red blood cells (more than 3) were
conserved, which was observed to improve watershed seg-
mentation efficiency. The algorithm was tested on samples
taken from the Mamic image database [13]. Notable results
will be compared in Results and Discussion.

2. Materials and Methods

Malaria blood smear images used in this study were taken
from a publicly accessible Mamic image database [13]. Blood
smear images are 100x magnified and consist of healthy
RBCs, infected RBCs, white blood cells (WBCs), thrombo-
cytes, dust particles, and artifacts. The algorithm was mod-
elled on 66 images that were randomly picked from the
dataset. The proposed background segmentation was evalu-
ated on these images. However, the evaluation of the algo-
rithm for overlapping red blood cells requires samples with
an abundance of overlapping RBCs. To this end, another
set of 15 images was also used to evaluate the algorithm.
The proposed algorithm was performed on Matlab 2019a
platform. The steps of the algorithm start with the prepro-
cessing of RGB images with median filtering. The median fil-
tered image will be followed by red blood cell segmentation,
white blood cell segmentation, and dust particle segmenta-
tion sections separately. For the red blood cell segmentation
section, more preprocessing methods were followed as RGB
to grayscale conversion and histogram smoothing. The sec-
ond step is the segmentation of red blood cells by the pro-
posed local minimum histogram background segmentation
along with Lab colour segmentation of White blood cells
and HSV colour segmentation of dust particles. White blood
cells and dust particles were segmented to be later removed
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in the image. The third step is the beginning of postproces-
sing of the segmented red blood cells. The area filtering by
connected components with the purpose of limiting hole fill-
ing, named as “selective hole filling,” was applied. After that,
morphological operators and selective hole filling (refilling)
were followed to remove the remaining wastes. Moreover,
the convex hull was applied to both partly visible RBCs posi-
tioned at the corner of the image and single RBCs. Addition-
ally, the Hough transform for circle detection was employed
to fill bright circular areas at the center of some red blood
cells that are known as central pallor. At the final step,
marker extraction by the extended minima transform
followed by marker-controlled watershed segmentation was
applied to separate overlapping RBCs. Following segmenta-
tion, pixel connectivity was used to label and count seg-
mented red blood cells in an automated way. These steps
are illustrated in Figure 1.

2.1. Preprocessing. To preserve the edges of red blood cells,
median filtering was applied to the red, green, and blue input
image channels. The colour variations between samples due
to staining conditions are equalized with the following use of
grayscale transformation. Histogram smoothing before local
minimum histogram segmentation was used to prevent the
selection of false peaks. On the other hand, preprocessing
steps for segmentation of WBCs and dust particles only con-
sist of median filtering of RGB channels.

2.2. Red Blood Cell Segmentation and Selective Hole Filling.
The segmentation of red blood cells from the background
is the first step of segmentation. That is also defined as back-
ground subtraction which plays an important role in the
intact extraction of RBCs and removal of irrelevant data.
Two groups of pixels were observed in the histogram, with
one group representing RBCs and the other group represent-
ing the background. In the smoothed histogram, the algo-
rithm seeks the local minimum between the two highest
peaks that can be seen in Figure 2. The steps of local mini-
mum detection are explained as follows:

(i) The highest two peaks in the histogram were
detected

(ii) The first peak value (height of the peak) (-0.001)
was chosen as the threshold to find peaks in the next
step of the algorithm

(iii) All peaks were detected with the threshold that
yields the highest two peaks

(iv) Following the first peak, the local minimum (inten-
sity value) was detected. For multiple local minima,
the first local minimum was selected for the thresh-
olding point of the histogram

Within the range of the highest two peaks, several local
minima can exist. The local minimum detection was
designed explicitly in this way as explained to avoid false
local minimum detection. The selection of the first local
minimum between the highest two peaks contributes to
intact red blood cell segmentation. The presence of many

local minima can be seen in Figure 2. The intensity value
that corresponds to the detected local minimum was chosen
as the threshold level to segment red blood cells where the
image was converted into a binary mask. Small irrelevant
objects were eliminated by area filtering by connected com-
ponents. Irrelevant objects and residual pixels that are not
related to segmented objects were filtered in this way. This
approach requires area information of segmented objects
in binary masks. Matlab image region analyser app was used
to analyse segmented objects. It was determined that objects
with an area of less than 750 pixels are not RBCs. As a result,
this value was used to remove small irrelevant objects.

After that, segmented objects with 1 to 3 RBCs areas
were selectively hole-filled. The morphological hole filling
was limited to 3 red blood cell sizes where watershed trans-
formation is suitable for the separation of RBCs in cell that
clumps up to this number.

This part of the algorithm plays important role in
marker-controlled watershed segmentation, where it is diffi-
cult to separate the high number of overlapping red blood
cells (more than 3) without corner details of RBCs in cell
clumps. These corner details help extraction of foreground
markers that contributes to watershed segmentation. There-
fore, these inner corner details were preserved for the high
number of overlapped red blood cells as morphological hole
filling was not applied for these.

Consequently, objects with an area of 1 to 3 RBC sizes
were extracted with area filtering by connected components
where morphological hole filling was applied to these RBCs.
The selective hole-filled mask and postprocessed local mini-
mum histogram segmented mask were combined together
with union set operation. The average triple-overlap area
was calculated to be 9680 pixels. By adding 10 percent to
the average area, the up limit was defined and was approxi-
mated to 10750 pixels. The down limit was set as 1000 pixels
by 55% of the smallest individual red blood cell region in
order to also include partially visible red blood cells. Some
overlapping red blood cells that touch the corner of the
image could be lost with border cleaning operation. There-
fore, border cleaning operation was not used to count as
many red blood cells.

2.3. Colour Segmentation. White blood cells appear to be
intense purple and dust particles vary from light brown to
black. Therefore, colour segmentation was employed to
remove white blood cells and dust particles as they present
distinguishing colours compared to RBCs.

2.3.1. White Blood Cell Segmentation. Hue Saturation Value
(HSV) colour segmentation was used in the literature for the
segmentation of WBCs [14]. The segmentation was achieved
with the manipulation of the hue channel. The HSV colour
segmentation can be useful with an image consisting of red
blood cells along with white blood cells. The white blood cell
can be segmented from the background depending on the
distribution of pixels. However, the images in our data rarely
have white blood cells where their colour varies due to stain-
ing conditions. Therefore, the distribution of pixels cannot
be relied on for the segmentation of white blood cells in
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our dataset. Consequently, colour dimensions were found to
be more useful in our dataset. Images were converted to lab
colour space to utilize colour dimensions. Later, a and b
channels were utilized for white blood cell segmentation
where channel “a” refers to red/green and channel “b” refers
to blue/yellow value. After the segmentation of the white blood
cell, the complement of the segmentation mask was taken that
was followed by area filtering to remove residual pixels
(objects with an area less than 200 pixels) in the white blood
cell boundaries. The complement of the resulted mask was
taken, and morphological closing with a disc-shaped structur-
ing element that has a radius of 15 was applied to smooth the
edges of the segmented WBC. The morphological dilation
with a disc-shaped structuring element that has a radius of 7
was followed to ensure complete segmentation of WBC.

At the final part of white blood cell segmentation step,
area filtering was utilized to remove any objects other than
white blood cells. The diameter of white blood cells can be
small as 10μm while red blood cells are around 7μm. In
our data, the largest RBCs have an area of around 4000
pixels. Therefore, area filtering with 5000 pixels lower limit
would only yield white blood cells while filtering any other

object in the image share similar colour dimensions with
WBCs such as platelets and malaria parasites. The seg-
mented white blood cell was later subtracted from the red
blood cell segmentation mask. As a result, the white blood
cell was removed from the image.

2.3.2. Dust Particle Segmentation. Dust particles could con-
taminate blood smear images. Either in the blood film or
on the microscope camera or lens, these dust particles may
be present. These dust particles vary in colour from light
brown to dark. For their segmentation, the hue channel of
the HSV colour space can be used. On the hue channel,
the range of brown colour was set to allow dust particles to
be segmented. In order to smoothen it, the edge of dust par-
ticle morphological image closing with a disc-shaped struc-
turing element that has a radius of 15 was utilized and area
filtering was followed to filter very small objects. The small
size and irrelevant objects (less than 200 pixels) that were
falsely segmented as dust particles were removed by area fil-
tering. Finally, segmented dust particles were subtracted
from the red blood cell segmentation mask that results in
the removal of dust particles.

RGB to grayscale conversion
histogram smoothing

Local minimum
histogram segmentation

A = Selective hole filling:
hole filling was applied to

segmented objects
with size of 1to 3 RBCs

A-B-C: Subtraction of
segmented WBCs (B) and

dust particles (C)
from main mask (A)

Convex hull for single RBCs
and convex hull for partially

visible RBCs located
at the corner of the image

Hough transform for
central pallor

Extraction of markers by
extended minima transform

and marker-controlled
wateeshed segmentation

Median filtering

B = color segmentation in
lab to

remove WBC

C = color segmentation in
HSV to remove dsut particles

Figure 1: Steps of the algorithm as RBC segmentation (a), WBC segmentation (b), and dust particle segmentation (c).
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2.4. Refilling of Holes. The selective hole filling approach that
was explained in the preprocessing part was repeated with
the same area parameters. In order to prevent the fusion of
neighboring RBCs and platelets in the convex hull operation,
morphological image opening with disk-shaped structuring
elements with a radius of 5 was used before the convex hull
step.

2.5. Convex Hull. In case of physical damage, some RBCs
were disturbed and partially separated. These separate RBCs
were encapsulated using the convex hull technique. How-
ever, we have limited this method to single-sized RBCs as
the application of it to overlapped RBCs can cause loss of
RBC boundary details. In other studies, this method was uti-
lized for the detection of single or two overlapped cells [15,
16]. In our study, partially separated single-sized RBCs were
extracted by area filtering and the convex hull was used to
encapsulate these RCBs for intact segmentation. The convex
hull was also utilized for partially visible red blood cells at
the corner of the image where RBCs with the small area were
extracted and encapsulated by the convex hull. The result of
these two convex hull and selective hole refilling masks were
united with the union set operation. Final area filtering was
applied to ensure the removal of irrelevant objects (less than
750 pixels). The convex hull is defined as follows:

〠
∣x∣

i=1
αixi∣ ∀u : αi ≥ 0ð Þ,

〠
xj j

i=1
αi = 1,

ð1Þ

where ∣x ∣ defines set of finite points, as xi is a point in ∣x ∣ .
The weight of xi is αi while the sum of all normalized weight
mean must be equal to 1.

2.6. Hough Transform for Circle Detection. In the proposed
approach, hole filling of the high number of overlapping
red blood cells was avoided which makes the existence of
central pallor a problem. The central pallor is segmented as
background as it has the same colour intensity as the back-
ground. This can cause oversegmentation issues in water-
shed transformation. In order to overcome this problem,
these central pallors were segmented by Hough circle trans-
form with a range of 5 to 25 radius and 88% sensitivity. The
segmented circles were dilated with a disk-shaped structur-
ing element that has a radius of 5 to ensure total segmenta-
tion of central pallors. These segmented central pallors were
united with the previous mask. And finally, the segmenta-
tion of red blood cells was completed.

2.7. Watershed Segmentation. Foreground markers were
extracted by distance transformation followed by extended
minima transform. After that, watershed segmentation was
applied to separate overlapping red blood cells. The seg-
mented red blood cells were covered by a bounding box.
The bounding boxes with areas under 500 pixels have not
been counted as RBCs. The steps of the algorithm are visu-
ally illustrated in Figure 3. Note that each image has different
inputs to emphasize the significance of each step. Red blood
cell segmentation is illustrated in Figure 3(a), whereas the
removal of white blood cell and dust particles is illustrated
in Figures 3(b) and Figure 3(c), respectively. Figure 3(d)
shows convex hull application on physically disturbed red

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 50 100 150 200 250

Pe
rc

en
ta

ge
 (%

)

Intensity value

Figure 2: Orange sloping line on the histogram is smoothed histogram, and red stars are detected local minima on smoothed histogram.
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blood cells. This helps physically disturbed RBCs to be seg-
mented as one piece instead of being falsely oversegmented.
Moreover, Figure 3(e) shows the existence of central pallor
for 5 overlapping RBCs. Here, in order to fill those 3 holes
(central pallors) to prevent oversegmentation in the next
step, Hough transform was employed. Lastly, Figure 3(f),
extraction of markers and successful separation of overlap-
ping 8 red blood cells are shown.

2.8. Evaluation Method. Assessment of red blood cell seg-
mentation and counting is taken into consideration in this
section. To measure the performance of our algorithm, nec-
essary methodologies were acquired. The pixel segmentation
accuracy was measured by the Jaccard similarity coefficient,
which is a widely used segmentation evaluation technique
[17]. The similarity of final segmentation mask A with ground
truth mask B was computed with intersection over union. The
Jaccard similarity coefficient is expressed as follows:

Jaccard A, Bð Þ = ∣A ∩ B ∣
∣A ∪ B ∣

, ð2Þ

where A is the final segmentation mask and B is the ground
truth mask.

For the separation of overlapping red blood cells, the
watershed algorithm was used, resulting in a successful
counting of red blood cells. RBCs were counted by the con-
nectivity of pixels as cells were separated. The relationship
between manually and automatically counted RBCs can be

quantified by accuracy, accuracy, recall, and F1 score. For
calculating these parameters, the elements of the confusion
matrix were used as follows:

Accuracy =
∣TP + TN ∣

∣TP + FP + TN + FN ∣
, ð3Þ

Precision =
TPj j

∣TP + FP ∣
, ð4Þ

Recall =
TPj j

TP + FNj j , ð5Þ

F1 = 2 ×
precision × recall
precision + recall

, ð6Þ

where TP is truly counted cells and TN is the background
region that is not considered for cell detection purposes.
FP indicates false detections while FN refers to the number
of red blood cells that are missed.

(a) (b)

(c) (d)

(e) (f)

Figure 3: The visual outputs of the algorithm steps. The local minimum histogram background segmentation applied to the input image (a),
followed by white blood cell segmentation (b), dust segmentation (c), postprocessing with convex hull (d), and Hough circle detection (e),
leading to marker extraction and watershed segmentation (f).

Table 1: Jaccard similarity coefficient results.

Study Jaccard similarity coefficient

Proposed study 93.15%

Zack’s thresholding 85.53%

k-means clustering 88.34%

Molina et al. 87.79%
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Performance parameters are illustrated in 4-7, where
accuracy is the proportion of true results used to quantify
the relation between automated and manually counted data.
Precision is the proportion of truly counted cells among pos-
itive results. The recall is often referred to as sensitivity, that
is, the proportion of positives for correctly counted cells, and
F-measure (F1) is the harmonic mean of precision and
recall.

3. Results and Discussion

All of 66 images were evaluated with Jaccard index where
93.15% similarity coefficient as the overall average of the
samples was achieved. The proposed segmentation was com-
pared with Zach’s thresholding which is a popular histogram
segmentation algorithm employed for RBC segmentation
[18]. The k-means clustering algorithm with k = 2 was also
used for comparison. The proposed study was further com-
pared with a background segmentation of a recent study by
Molina et al. The recent study employed Otsu’s thresholding
with preprocessing and postprocessing steps. In order to
compare the algorithm performance on our dataset, the
recent study’s background segmentation was built along
with preprocessing and postprocessing steps. The border

cleaning operation, on the other hand, was not included
considering ground truth data included RBCs at the border
[19]. Table 1 illustrates the background segmentation per-
formance of these algorithms.

The proposed algorithm consists of several steps that
complement each other to have successful segmentation of
overlapped red blood cells. Our strategy to evaluate the con-
tribution of selective hole filling is to replace it with classic
hole filling while keeping the rest of the algorithm steps
the same. On the other hand, we also evaluated the contribu-
tion of local minimum histogram segmentation by replacing
it with k-means clustering with k = 2. For this comparison,
another image set with 15 images with an abundance of
overlapping red blood cells was used. The results of this
comparison are illustrated in Table 2. The extraction of
markers which is associated with the segmentation of over-
lapping red blood cells and segmentation of overlapping
red blood cells are illustrated in Figures 4 and 5, respectively,
for visual comparison.

For the first dataset, the overlapping ratio of red blood
cells versus entire red blood cells was analyzed as 17%, while
for the second, 34%. The first dataset, where background
segmentation was evaluated consists of 66 images where
the second dataset that was used for evaluation of

Table 2: Performance evaluation on high number of overlapping cells samples.

Method TP FP FN Accuracy Precision Recall F1

Proposed study 793 2 7 0.989 0.997 0.991 0.994

Classic hole filling replacement 728 2 28 0.960 0.997 0.962 0.979

k-means clustering replacement 733 15 64 0.902 0.979 0.919 0.948

TP: true positive; FP: false positive; FN: false negative.

(a) (b)

(c) (d)

Figure 4: Illustration of extracted foreground markers of red blood cells. The original image (a), extracted markers on the proposed study
(b), k-means clustering replacement (c), and classic hole filling replacement (d).
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segmentation of overlapped red blood cells consists of 15
images. In Figure 6, the ratios of the different numbers of
overlapping RBCs in these two datasets are illustrated. The
analysis of 2 datasets shows that the first dataset has an
abundance of two overlapped red blood cells while the sec-
ond one has 5 or more overlapped RBCs.

In this study, novel local minimum histogram segmenta-
tion was introduced for background segmentation. We have
shown that the selective hole filling approach improved the
segmentation of overlapping red blood cells by preserving
corner details on red blood cells in clusters. The drawback

of this approach is that some RBCs in clusters might have
central pallor which can cause oversegmentation issues.
Therefore, Hough transform for circle detection was
employed to overcome this issue. Considering not all central
pallors are circular, this issue remained for some of the
RBCs. And a convex hull algorithm was utilized to segment
physically disturbed red blood cells in an intact way, which
contributed to the quantification of RBCs.

The foreground markers are an important part of water-
shed segmentation which directly influences the perfor-
mance of the algorithm. The classic hole filling approach

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

2 overlapped 3 overlapped 4 overlapped

Overlapping red blood cells

First dataset
Second dataset

5 or more 
overlapped

Figure 6: The ratio of different numbers of overlapping RBCs to total number of overlapping RBCs.
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1 2
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(c)

Figure 5: The visual illustration of separated red blood cells by watershed segmentation. The proposed study (a), k-means clustering
replacement (b), and classic hole filling replacement (c).
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makes extraction of foreground markers difficult that causes
undersegmentation issues. The selective hole filling
approach was proposed in that regard. The contribution of
this approach is illustrated in Figure 4. However, an area
estimation of triple overlapping red blood cells is required
for the selective hole filling method. Hence, the area of triple
overlapped red blood cells should be evaluated for any other
dataset.

4. Conclusions

The proposed study introduces a novel background segmen-
tation algorithm that outperformed popular background
segmentation algorithms that have been utilized for RBC
segmentation. Another contribution is the selective hole fill-
ing approach, where morphological hole filling was limited
to 1-3 RBC-sized objects to preserve inner corners for a high
number of overlapped red blood cells. All these improve-
ments were aimed at improving segmentation of overlap-
ping red blood cells by watershed segmentation, which is
associated with background and foreground markers. Local
minimum histogram segmentation contributes to the back-
ground, and selective hole filling contributes to foreground
markers. As a result, the segmentation of overlapped red
blood cells by marker-controlled watershed segmentation
was improved.
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