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A new generation of Ti-xNb-3Fe-9Zr (x = 15, 20, 25, 30, 35wt %) alloys have been designed using various theoretical approaches
including DV-xα cluster, molybdenum equivalency, and electron to atom ratio. Afterward, designed alloys are fabricated using
cold crucible levitation melting technique. The microstructure and mechanical performances of newly designed alloys are
characterized in this work using scanning electron microscope and universal testing machine, respectively. Each alloy
demonstrates monolithic β phase except Ti-35Nb-3Fe-9Zr alloy which display dual α″ + β phases. Typically, niobium acts as
an isomorphous beta stabilizer. However, in this work, formation of martensitic α″ phases occurs at 35wt % of niobium
among the series of newly designed alloys. Furthermore, none of the alloys fail till the maximum load capacity of machine, i.e.,
100 KN except Ti-35Nb-3Fe-9Zr alloy. Moreover, the Vickers hardness test is carried out on Ti-xNb-3Fe-9Zr alloys which
demonstrate slip bands around the indentation for each alloy. Notably, the deformation bands and cracks around the
indentations of each alloy have been observed using optical microscopy; Ti-35Nb-3Fe-9Zr demonstrates some cracks along
with slip bands around its indentation. The Ti-25Nb-3Fe-9Zr alloy shows the highest yield strength of 1043 ± 20MPa, large
plasticity of 32 ± 0:5%, and adequate hardness of 152 ± 3:90Hv among the investigated alloys. The Ti-25Nb-3Fe-9Zr alloy
demonstrates good blend of strength and malleability. Therefore, Ti-25Nb-3Fe-9Zr can be used effectively for the biomedical
applications.

1. Introduction

During the last two decades, titanium (Ti) alloys have been
effectively employed in biomedical and high strength appli-
cations due to the combination of desired properties [1–3].
Many existing implant materials such as CP-Ti, Ti-6Al-4V,
and Ti-Ni alloys demonstrate problems and limitations such
as strength-ductility trade-off dilemma, stress-shielding
effect, bio-incompatibility, and corrosion among others [4,
5]. Among different types of Ti alloys, β-type Ti alloys have
been shown to be an effective solution for these aforemen-
tioned problems due to their excellent properties such as
high strength, low modulus, and good biocompatibility
among other qualities [6, 7]. The β-stability of newly

designed alloys can be enhanced by alloying Ti with β-sta-
bilizing elements such as Nb, Mo, Cr, and Fe [8]. Nb is a
strong β-isomorphous element that reduces elastic modulus
and increases β-phase stability, strength, shape memory
effect, and superelasticity of titanium alloy [1, 9, 10]. Fe is
a low-cost and a plentiful β-eutectoid element that has been
employed as one of the main constituent in high-strength Ti
alloys [11]. It was reported that 3wt% Fe alloyed with Ti-
25wt% Nb displays a lowest modulus with differing concen-
trations (i.e., 1, 3, 5, and 7wt%) of Fe elements [12]. Gener-
ally, Zr is regarded as a neutral element, but some studies
have shown that the addition of Zr reduces the formation
of ω phase in Ti alloys [13]. According to some studies,
8wt% Zr is sufficient for complete retardation of ω phase
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in Ti alloys [14]. It was well documented that β phase stabil-
ity and mechanical behavior of β-type Ti alloys are influ-
enced by the presence of some martensitic phases such as
α′, α″, and ω phases that are formed during quenching at
room temperature [15]. Therefore, it is necessary to investi-
gate the effects of the content of β-stabilizing elements on β
-phase stability and characterizations of β-type Ti alloys.
Accordingly, this work examines the effect of Nb on the for-
mation of β⟶ α″ martensitic phases. Moreover, the influ-
ence of Nb on microstructural and mechanical
characterizations of newly designed Ti-xNb-3Fe-9Zr
(x = 15, 20, 25, 30, and 35wt %) alloys is also investigated.
Notably, balanced combinations of alloying elements such
as β-isomorphous (Nb), β-eutectoid (Fe), and neutral (Zr)
elements that are alloyed with Ti are examined in this work.
These elements are chosen in order to attain an effective
blend of properties in newly designed Ti alloys for biomed-
ical and high-strength applications.

2. Experimental Methods

A novel series of Ti-xNb-3Fe-9Zr (where x = 15, 20, 25, 30,
and 35wt %) alloys were designed in this work and were
hereafter named as TixFZ (where x = 15, 20, 25, 30, and
35wt %). These newly designed TixFZ alloys were theoreti-
cally designed based on the DV-xα cluster technique devel-
oped by Morinaga et al. [16]. The phase stability map of
newly designed alloys is presented in Figure 1. Note that

the experimental results do not match with theoretical pre-
diction results developed by Morinaga et al. However, some
discrepancies have also been reported in the literature
between the actual deformation mechanism and spotted
location of each alloy on Bo-Md map [17]. Molybdenum
equivalency (Moeq) and electron to atom ratio (e/a) were
also used for the predication of β phase stability of newly
designed alloys [18, 19]. Further, in order to understand a
deformation mechanism in the TixFZ alloys, the martensitic
start temperature (Ms) was estimated for the TixFZ alloys
using the following equation [20]:

Ms = 1156 – 150Fewt% – 96Crwt% – 37Vwt% – 17Nbwt%
– 7Zrwt% + 15Alwt%:

ð1Þ

The values of theoretical parameters for all the TixFZ
alloys are presented in Table 1. The theoretical design was
kept in a manner based on these electronic parameters in
order to get high β phase stability.

Following this step, the designed alloys were cast using
the cold crucible levitation melting (CCLM) method. After
this, the molten elements were solidified in the form of metal
ingots that were flipped and remelted four to five times to
ensure the homogeneity of the alloy mixture. Subsequently,
circular rods of 3.5mm diameter were extracted from the
ingots for microstructural and mechanical characterizations.
The circular rods were then cut into different lengths of
flakes and then these flakes were ground and polished using
silicon carbide grinding papers of up to 2000 grits and OP-S
liquid on a polishing cloth, respectively. Afterward, surfaces
of circular flakes were etched using Kroll’s etchant contain-
ing 2 vol% HF, 6 vol% HNO3, and 92 vol% H2O for micro-
structural characterizations. Subsequently, microstructural
characterizations were carried out on etched surfaces of cir-
cular flakes using an FEI verios XHR 460 scanning electron
microscope (SEM) for all the TixFZ alloys. Accordingly,
the grain size of various grains has been measured using
ImageJ analysis, and average of at least ten measurements
has been considered as the grain size of each alloy. Further-
more, the chemical analyses of produced alloys have been
performed using energy-dispersive X-ray spectroscopy
(EDS). The quantities of alloying elements (in wt %) and
oxygen content (in ppm) are presented in Table 2. The
results of chemical analysis are almost identical to nominal
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Figure 1: The Bo-Md phase stability diagram of the Ti-xNb-3Fe-
9Zr alloys.

Table 1: The electronic parameters including average bond order
(Bo), average metal-d orbital energy level (Md), molybdenum
equivalency (Moeq), electron to atom ratio (e/a), and martensite
start temperature (Ms).

Alloys
Compositions

(wt%) Bo Md Moeq e/a Ms, K

Ti15FZ Ti-15Nb-3Fe-9Zr 2.8289 2.4225 11.666 4.20 388

Ti20FZ Ti-20Nb-3Fe-9Zr 2.8393 2.4240 13.055 4.24 303

Ti25FZ Ti-25Nb-3Fe-9Zr 2.8503 2.4253 14.444 4.27 218

Ti30FZ Ti-30Nb-3Fe-9Zr 2.8620 2.4240 15.833 4.31 133

Ti35FZ Ti-35Nb-3Fe-9Zr 2.8744 2.4225 17.222 4.36 48
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composition with low oxygen content (less than 2wt %) pre-
sented in each TixFZ alloy. Phase characterizations were car-
ried out using a PANalytical EMPYREAN diffractometer
with Cu-kα radiation (λ = 0:15406 nm). The X-ray diffrac-
tion (XRD) spectra of each TixFZ alloy were obtained in
the 2θ range from 20° to 90° with a scan step size of 0.02°.
Further, the lattice parameter of body-centred cubic (bcc)
β (ɑβ) TixFZ alloys was estimated using Nelson-Riley’s
extrapolation relation, i.e., ððcos 2θ/sin θÞ + ðcos 2θ/θÞÞ.

For mechanical characterization, the ratio of length to
diameter for all the TixFZ circular rods was kept as per
requirements of ASTM standards, i.e., 1.5-2. Multiple inde-
pendent uniaxial compression tests were performed for each
TixFZ alloy using an Instron 5982 universal testing machine
with a crosshead speed of 0.003mm/s. Further, in order to
achieve precised results, at least three samples of each alloy
have been tested and average of their values has been consid-
ered for mechanical characterizations. Moreover, the new
generation of alloys is subjected for compressive mechanical
test because of the reason that bone and hard tissues are sub-
jected to compressive loads rather than tension during daily
living activities (DLA’s) [7]. The values of true stress and
true strain for compression testing were obtained using the
following equations, respectively [21]:

ε′ = ln · 1 – εð Þ,
σ′ = σ · 1 – εð Þ,

ð2Þ

where ε’, ε, σ’ and σ are compressive true strain, engineering
strain, true stress, and engineering stress, respectively.

Vickers microhardness (Hv5) for all the TixFZ alloys
was measured on the polished surface of samples using a
Zwick-Roell hardness testing machine. An average of at least
twelve indentations was taken at varied positions over the
wide surface area of samples for all the TixFZ alloys. In order
to analyze the elastoplastic deformation mechanism, defor-
mation bands that formed around microhardness indenta-
tions were measured using a ZEISS Axiocam 208 color
microscope.

3. Results and Discussion

Phase characterizations for TixFZ alloys were executed using
XRD, and their results are presented in Figure 2. It can be
observed from Figure 2 that all the TixFZ alloys demonstrate
a single bcc β phase, except for Ti-35Nb-3Fe-9Zr which dis-
plays dual phases, i.e., bcc β and orthorhombic α″ phases.

The peaks of bcc β phase shifted towards lower 2θ angles
when the amount of Nb in the TixFZ alloys is increased.
This phenomenon can be ascribed to the higher Pauling’s
metallic radius of Nb (i.e., 0.1342 nm) then Ti (i.e.,
0.1324 nm) [21, 22]. The lattice parameters of bcc β phase
(ɑβ) are ranged from 0.3306 nm to 0.3337 nm for Ti15FZ
to Ti35FZ alloys, respectively. The ɑβ of the TixFZ alloys
increases with alloying amounts of Nb, where this phenom-
enon can be attributed to Nb’s high atomic radius [8].

The microstructural features displayed in Figure 3 dem-
onstrate that all the TixFZ alloys exhibit monolithic β phase
except for the Ti35FZ alloy. Generally, Nb is a β stabilizer
element that reduces transition temperature and increases
β stability [8]. However, it is interesting to note that Nb only
stabilizes the bcc β phase from 15–30wt% Nb in the TixFZ
alloys. In contrast, an acicular orthorhombic α″ phase forms
in the β matrix of Ti35FZ alloy. Hence, an excessive amount
of Nb, i.e., 35 wt% results in a reverse martensitic β⟶ α″
transformation in TixFZ alloys. Further, when an element
possessing a high melting point (i.e., Nb) is added to Ti
alloys, a dendritic substructure forms during solidification
[9]. Accordingly, Figures 3(a)–3(e) clearly display that the
density of dendritic substructure is raised with increasing
amounts of Nb in the TixFZ alloys. The instability in β↔
α″ transformation for a Nb enrich alloy is due to the occur-
rences of demixing process in alloy composition [23].

Table 2: The values of chemical composition of alloying elements (wt%) and oxygen concentration (ppm) of TixFZ alloys.

Alloys Chemical composition (wt %) Ti (wt %) Nb (wt %) Fe (wt %) Zr (wt %) O (ppm)

Ti15FZ Ti-15Nb-3Fe-9Zr Bal. 14:95 ± 2:8 3:45 ± 0:7 8:80 ± 0:4 904 ± 2:56
Ti20FZ Ti-20Nb-3Fe-9Zr Bal. 19:78 ± 2:9 2:98 ± 0:2 8:62 ± 2:0 1065 ± 22:3
Ti25FZ Ti-25Nb-3Fe-9Zr Bal. 24:60 ± 1:8 3:92 ± 0:4 9:44 ± 1:0 935 ± 17:5
Ti30FZ Ti-30Nb-3Fe-9Zr Bal. 29:61 ± 4:2 3:41 ± 0:4 8:62 ± 1:4 902 ± 3:16
Ti35FZ Ti-35Nb-3Fe-9Zr Bal. 34:4 ± 3:3 2:42 ± 0:9 8:60 ± 0:6 794 ± 2:75
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Figure 2: The XRD spectra of the Ti-xNb-3Fe-9Zr alloys produced
via CCLM.
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Mechanical properties are interrelated with their phase
and microstructural characteristics [24], where Figures 4(a)
and 4(b) show that almost all the TixFZ alloys, except
Ti35FZ, did not fail during their compressive test because
of the existence of only bcc β phase [14]. Contrastingly,
Ti35FZ fails due to the presence of a dual-phase, i.e., mar-
tensitic orthorhombic α″ and bcc β phase [14]. It was
reported that Ms less than 90°C indicates the superelastic
nature of the alloy [25]. Hence, the reversible β⟶ α″

transformation in Ti35FZ alloys demonstrates its superelas-
tic behavior [26]. The Ti30FZ alloy demonstrates the highest
total elongation of 38 ± 5% among all the TixFZ alloys.
Notably, plasticity increases with increasing the Nb amount
in single β phase containing TixFZ alloys, which occurs due
to an increase in β-phase stability [27]. Cai et al. reported the
formation of α″⟶ β and unexpected counter-intuitive for-
mation β⟶ α″ during straining because of external
stress [28].
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Figure 3: The backscattered SEM microstructural images for the Ti-xNb-3Fe-9Zr alloys.
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Figure 4: The compressive stress-strain curves for Ti-xNb-3Fe-9Zr alloys: (a) engineering stress-strain and (b) true stress-strain.
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Figure 5 demonstrates the relationship between yield
strength (σ0:2) and mean β grain size (Dβ) for all tested
TixFZ alloys. According to Hall-Petch relationship, the σ0:2
decreases with an increase in the Dβ of a material, the
Hall-Petch relationship satisfies for all the TixFZ alloys,
i.e., the σ0:2 increases as the Dβ decreases [29, 30]. The
Ti25FZ alloy demonstrates the highest σ0:2, i.e., 1043 ± 20

MPa and the lowest Dβ, i.e., 62 ± 20 μm among all the inves-
tigated TixFZ alloys.

Figure 6 displays deformation bands around the Vickers
indentations along with values of Hv5 microhardness. It is
evident from Figure 6 that the TixFZ alloys form slip bands
around indentations. Moreover, crack originates from the
corner of the Ti35FZ alloy indentation due to the existence
of orthorhombic α″ phase [31]. Among all the investigated
alloys, the Ti25FZ exhibits the greatest number of slip bands
because of its highest yield strength [17, 32]. It was reported
that hardness is directly proportional to the yield strength,
where a similar trend has been found for all monolithic
bcc β phase the TixFZ alloys [33]. The hardness of the
Ti35FZ alloy is impacted by due to the presence of the
orthorhombic α″ phase, where it demonstrates the highest
microhardness value of 175 ± 8:65Hv among all the investi-
gated TixFZ alloys. The results of mechanical characteriza-
tions are in line with the results of phase and
microstructural characterizations.

4. Conclusion

In conclusion, a new series of metastable β-type Ti-Nb-Fe-Zr
alloys have been developed that demonstrate a combination of
high strength and large plasticity. Almost all the investigated
alloys demonstrated a monolithic β phase, except for the Ti-
35Nb-3Fe-9Zr alloy. Interestingly, higher content of Nb (i.e.,
35%) leads to a reversible martensitic β⟶ α″ transforma-
tion in Ti-xNb-3Fe-9Zr alloys demonstrating its superelastic
behavior based on their calculated values of Ms. Further, the
Ti-25Nb-3Fe-9Zr alloy shows the highest yield strength of
1043 ± 20MPa, large plasticity of 32 ± 0:5%, and adequate
hardness of 152 ± 3:90Hv among the investigated alloys.
Among all the investigated alloys, the Ti-25Nb-3Fe-9Zr pos-
sesses the highest yield strength which indicates that it pos-
sesses the highest number of slip bands. Further, almost all
Ti-Nb-Fe-Zr alloys except Ti-35Nb-3Fe-9Zr demonstrate sig-
nificant plasticity due to the presence of monolithic β phase in
their phase and microstructure analyses. By contrast, Ti-
35Nb-3Fe-9Zr possesses dual-phase (i.e., α″ + β) which leads
to its highest microhardness 175 ± 8:65Hv among the investi-
gated alloys.

Data Availability

The raw/processed data required to reproduce these findings
cannot be shared at this time as the data also forms part of
an ongoing research.
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