
FastScat ™: An Object-Oriented Program for
Fast Scattering Computation

LISA HAMILTON, MARK STALZER, R. STEVEN TURLEY, JOHN VISHER,
AND STEPHEN WANDZURA

Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265

ABSTRACT

FastScat is a state-of-the-art program for computing electromagnetic scattering and
radiation. Its purpose is to support the study of recent algorithmic advancements, such
as the fast multipole method, that promise speed-ups of several orders of magnitude
over conventional algorithms. The complexity of these algorithms and their associated
data structures led us to adopt an object-oriented methodology for FastScat. We discuss
the program's design and several lessons learned from its C++ implementation includ­
ing the appropriate level for object-orientedness in numeric software, maintainability
benefits, interfacing to Fortran libraries such as LAPACK, and performance issues.
© 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Current problems of interest in computational
electromagnetics include the prediction of radar
cross sections and the modeling of antenna radia­
tion patterns (see Fig. 1). Methods for computing
electromagnetic scattering and radiation generally
involve the solution of a matrix equation derived
from the discretization of an appropriate integral
equation [1]. The matrix equation is often written

Received April 1993
Revised June 1993

FastScat 'M is a trademark of Hughes Aircraft Company.
This research was partially supported by the Advaneed Re­

search Projects Ageney of the Department of Defense and was
monitored bv the Air Force Office of Scientific Research under
Contract No: F49620-91-C-0064. The United States Govern­
ment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright nota­
tion hereron.

© 1994 by John Wiley & Sons, Inc.

Scientifie Programming. Vol. 2, pp. 171-178 (1993)

CCC 1058-9244/94/040171-08

Z · I = V, where the impedance matrix Z depends
on the geometry and composition of the scattering
or radiating surface, I is a vector containing the
expansion coefficients of the current density over
the surface, and the excitation vector V represents
a dual expansion of the current. The number of
unknowns, N, required for accurate modeling of
such problems is very large, and, in the past, has
severely limited problem size and solution accu­
racy.

There are two primary areas of difficulty in con­
ventional solutions of these problems. The first is
accurate computation of the Z matrix elements. In
general, each element of the N X N matrix re­
quires numeric integration of a function that is
often singular on portions of the surface. The sec­
ond difficulty is the actual solution of such a large
matrix equation. This has been done by direct de­
composition of the sometimes ill-conditioned Z
matrix (fJ(l'{1) time), or alternatively by iterative
methods requiring repeated matrix-vector multi­
plications (fJ(N 2) time for each step).

Recently, a technique called the fast multipole

171

172 HAMIL TO!'\ ET AL.

FIGURE 1 Model scattering problem. An incident
plane wave p (excitation) induces a current on S which
re-radiates as the scattered wave q.

method (FMM) was discovered, which essentially
factors the Z matrix into sparse components [2-
5 J. With this representation, the matrix-vector
multiplications required by iterative solvers can be
done in{) (N log N) time. Thus, total solution time
is greatly reduced, allowing the study of much
larger objects.

Our ongoing effort is to develop a code capable
of accurately computing scattering and radiation
from surfaces of arbitrary shape and size, repre­
sented in either two or three dimensions. In this
program, called FastScat, we are implementing
conventional solution techniques as well as new
computational algorithms, such as the FMM. We
also plan to incorporate the ability to scatter from
dielectrics and other materials, and to efficiently
treat periodic bodies. In addition, FastScat is be­
ing used as a testbed to determine the effective­
ness of various enhancements such as more accu­
rate surface models, higher order expansion
(basis) functions, and more accurate quadrature
rules.

To support this work, FastScat must be written
in such a way as to be highly modifiable and ex­
tensible, as well as reasonably efficient. Specifi­
cally, we require a design methodology and lan­
guage support that can provide a clear
implementation of the algorithms and a sensible
structure for the underlying data. Our experience
in modifying an existing program written in For­
tran demonstrated that this, mostly procedural,
code lacked important elements needed to incor­
porate the features described above. Instead, we
have turned to an object-oriented methodology
[6 J in which features such as inheritance, data
encapsulation, polymorphism, and dynamic
binding allow the key elements of the problem to
be expressed and manipulated in a more natural
wav.

2 AN OBJECT-ORIENTED DESIGN

The design of FastScat is based on the kev ab­
stractions of the physics of scattering. In the ob­
ject-oriented paradigm, a class is used to define a
new data type and encapsulates not only the oper­
ations that can be performed on that type (meth­
ods), but also the implementation or actual data
structure of the type. Defining classes to model the
physics of the problem provides a clear mapping
of the theory and algorithms onto the resulting
computer code. For example, the FastScat classes
Surface, Z_Matrix, Current, and Exci ta­
tion come directly from the problem formulation
given in Section 1. Once defined and imple­
mented, the manipulation of these new types is
straightforward and can closely resemble the orig­
inal equations from physics, thus improving code
readability. Using this approach, we have found
that when a new class or method seemed awkward
or difficult to add it often did not adequately
model the physics. As an added benefit of object­
oriented thinking, we have sometimes gained a
better understanding of physical or theoretical re­
lationships in the problem. On occasion, difficul­
ties in implementation have directed us to a flaw
or gap in our physical understanding rather than
with the design. The remainder of this section de­
scribes some of FastScat's design and the result­
ing maintainability benefits.

2.1 Modeling Surfaces

In FastScat, the scattering surface or antenna
(scatterer) is described using a collection of ele­
mentary surfaces. In the current version of
F astScat, the elementary surfaces are limited to
patches. In two dimensions, a patch is simply a
curve in a plane, and in three dimensions, it is a
surface. The simplest 3d patch is a flat triangle.

The Surface class hierarchy (Fig. 2) provides
support for FastScat's surface description. Class
Surface is abstract and defines basic operations
required for all surfaces. These basic operations,
which include translate, rotate, scale, and read­
ing/writing, must then be implemented in de­
scendent classes of Surf ace.

A collection of surfaces is maintained by Com­
posi te_Surface, which descends from Sur­
face. An element of a Composi te_Surface is
itself a Surf ace. This organization makes it easy
to implement many methods, and permits model­
ing of hierarchical scatterers. For example, the

Surface

Elementary....SUrface Composite__Surface

r-----_
Patch2D Patch3D

Flat..J'atch~2D Fl~l)'atdl3D
0Uadratic;._Patm3D BiCublc:._Patm3D

FIGURE 2 Surface class hierarchy.

translate method in Composi te_Surface simply
calls the translate method of each of its elements.
An ancillary class supports iteration over all of the
elements in a composite surface.

Cltimately, the surface is described in terms of
instances of class Elementary_Surface. This
class, which is derived from Surface, currently
has two descendants, Patch2D and Patch3D. In
the future, the descendants Wire2D and Wire3D
will be added to support the modeling of wires.
The patch classes define several methods. For ex­
ample, in Patch2D, there is a method called map,
which takes a single parameter u E [0, 1: and
returns a Vector to the corresponding point on
the patch. The endpoints of the patch are at u = 0
and u = 1. Another method is tangent, which
returns the tangent to the patch for a given u. A
parallel set of methods is defined by Patch3D,
except the parameters are u and u. These methods
are used by many calculations in FastScat. The
important point is that most of the FastScat code
is written in terms of Surface, Composi te_Sur­
face, and Elementary_Surface objects. The
underlying surface model, 2d or 3d, flat, curved,
etc., is hidden from most of the code. This eases
maintenance and the addition of new features.

2.2 Modeling the Physics

The basic principle behind FastScat's design is to
model the physics as closely as possible. The com­
mon object-oriented approach is to identify the
entities in the problem and proposed solution and
to model these using classes. The Surface class
hierarchy was designed using this approach. :Yiod­
eling some of the physical concepts is more ab­
stract. Some entities, such as a plane wave. are
simple. For a plane wave, we defined a class that
contains the wave vector k and provides a method
to evaluate the wave at any point in space.

A key physics abstraction is a Surface_Func­
tion. It is defined on the surface of the scatterer

FAST SCATTERI:\IG COMPCTATIO;\' 173

and maps a particular location on the scatterer to
a tensor. The Current and Excitation classes
are descendants of Surface_Function. Various
operations are supported on surface functions, in­
cluding addition, scalar multiplication, and inner
product. These operators are used extensively in
FastScat's calculations. Although the Surface­
_Function class is currently implemented using
class Array described in Section 3.2, this repre­
sentation can and will be changed in the future to
implement a different method (l\ystrom) of dis­
cretizing the integral equation.

Closely related to Surface_Function is Sur­
face_Operator, which maps one surface func­
tion onto another. The mapping is performed by
the apply method. An important example of a
Surface_Operator is Z_Matrix (Z) which
takes a Current (!)and maps it into an Exci ta­
tion (V). Another example is the FYIM, which is
implemented in the FMM class.

The system V = Z · I can be solved directly
using LC decomposition if Z is dense, or by using
an iterative solver. Iterative solvers can be used for
both dense (Z_Matrix) and sparse (FMM) sur­
face operators. The iterative solvers are written in
terms of Surface_Operators and Surface­
_Functions. When support for the FM:M was
added to FastScat, we only had to concentrate on
the details of the FYIYI as encapsulated by class
FMM. The solvers did not require modification be­
cause they are defined at a higher level of abstrac­
tion. The maintainability I extensibility benefits of
FastScat's design are discussed further in the next
section.

FastScat also contains a class hierarchv for
modeling basis functions, which is conceptually
similar to that of the surface classes. There is a
top-level abstract class Basis_Function with
descendants for two and three dimensions (Ba­
sis_Function2D and Basis_Function3D).
Descendants of these two classes describe partic­
ular basis functions, such as Legendre polynomi­
als.

2.3 Maintainability/Extensibility Benefits

One of the major objectives of FastScat was the
implementation of the FMM. In the previous sec­
tion we mentioned how the FYIM fit easilv into the
program's design. This design is also helping to
achieve many of FastScat's other objectives. For
example, to support different surface models, it is
onlv necessary to add a new descendant to

174 HAMIL TON ET AL.

Patch2D or Patch3D. This flexibility has allowed
us to study the importance of higher order surface
models for accurate scattering calculations, and
has also turned out to be verv useful for verifica­
tion. For a few special geometries, like circles and
spheres, the cross section can be computed ana­
lytically. In FastScat, a circle can be approxi­
mated using flat patches. As the the number of
patches increases, so does the solution accuracy.
However, even using as many as 1,000 patches
only results in a few digits of accuracy in the cross
section. Our response was to add a descendant of
Patch2D, called Arc_Patch2D, which represents
a wedge of a circle. We used the arc patches to

construct a perfect model of a circle and were able
to compute answers accurate to 11 significant dig­
its.

The structure of the basis function hierarchy
allows for similar flexibility. F astScat was origi­
nally implemented in terms of pulse (constant) ba­
sis functions. Moving up to higher order basis
functions was trivial; we simply generalized the
pulse basis functions to Legendre polynomials.
The rest of the program was unchanged.*

There have been times when it was difficult to
use a FastScat component. We have found this
with the iterative solvers-they depend on Sur­
face_Function and Surface_Operator,
which in turn depend on Surface. Cse of the
solvers then requires a substantial amount of
FastScat code, indicating a flaw in the design. The
solvers should have been defined on classes more
general than SurfaceJ'unction and Sur­
face_Qperator, namely Function and Oper­
ator. The surface versions would then just be
subclasses of the more general versions, and the
solvers could be used independently of F astScat
by defining the appropriate functions and opera­
tors.

3 LESSONS FROM A C + +
IMPLEMENTATION

The design of a program is independent of its im­
plementation. In principle, one can have an ob­
ject-based design and implement it in a traditional
language (as is often done with Ada [7]). However,

*It is not quite as simple as this. We had to plan ahead and
put a method in the basis function class that returns the order
of the quadrature required to exactly integrate the function. If
we had noL we would have lost accuracy by moving to higher
order basis functions.

to get full benefit of the methodology, we chose to
use an object-oriented language as well.

Pure object-oriented languages, like Smalltalk
[8] and CLOS [9], have a high overhead due to
their generality, and are not commonly available
on supercomputers. C++ [10] has the basic fea­
tures necessary (such as classes, inheritance, and
dynamic binding) for an object-oriented imple­
mentation. Because it has been implemented as a
translator into C, the language is portable and is
widely available on supercomputers. This combi­
nation of features and availability led us to the
choice of C++.

This section presents some of the lessons we
learned from implementing F astScat in C++.
Most of what follows is related to performance is­
sues: how to arrange C++ programs so that they
run efficiently. We also discuss some of the limita­
tions of C++.

3.1 Overhead of Obiect-Orientedness

The object-oriented facilities in C++ require run­
time support not needed in languages like For­
tran. If not properly addressed, this overhead can
seriously degrade performance. \Vith our present
C++ compiler, the dynamic binding associated
with virtual functions takes twice as much time as
a regular function call. Consider, for example, the
descendants of class Patch2D described previ­
ously. Each patch must define the method map,
which takes a parameter u and returns a Vector
on the surface of the patch. For flat patches, this
is a very simple computation and executes in less
time than the virtual method call and return. Us­
ing inlined methods (type-checked macros) is no
help because virtual calls cannot be expanded.
However, as illustrated below, there is a simple
solution that has the performance of an inline
method, the generality of virtual methods, and
gives the compiler an opportunity to perform ag­
gressive optimizations.

We often use variations of Gaussian quadrature
to perform our integrations. The basic form of a
Gaussian quadrature to approximate the integral/
of a functionf(x) over some region is

.\'-1

I= L wJ(xi),
i=O

where the w, are weights and the Xi are sampling
points (abscissae) for f. Assume we want to inte­
grate the magnitude of the map vector over a

patch. An obvious C++ implementation is

double Al(Patch2D& p) {
double sum 0;

}

for (int i = 0; i < N; i++)
sum+= w[i]*mag(p.map(x[i]));

return sum;

Although simple, this code runs slowly compared
with equivalent inlined code due to the overhead
in the virtual function call p. map. A solution to
this problem is to add a map_all method that
takes a list of places at which to evaluate map. The
actual implementation is as follows:

Class Flat_patch2D : public Patch2D {
public:

Vector2D map(double u)
{ return vl + u*delta;

void map_all(int N, double* u,
Vector2D* results);

private:
Vector2D vl, delta;

};

void Flat_Patch2D: :map_all(int N,
double* u, Vector2D* results) {

for (int i = 0; i < N; i++)
results[i] = map(u[i]);

}

The equivalent of function Al is then

double A2(Patch2D& p) {
double sum = 0;

}

p.map_all(N, x, results);
for (int i = 0; i < N; i++)

sum+= w[i]*mag(results[i]);

return sum;

The loop in map_all can execute quickly because
map can now be expanded. The overhead of the
call to map_ all is negligible because the routine is
doing a relatively large amount of work. Higher

FAST SCATTERI!'\G COMPCTATION 175

level code can still be written in terms of the base
class Patch2D because map_all is virtual. Fur­
thermore, the Vector2D addition and scalar mul­
tiplication can also be expanded. This gives an
optimizer or vectorizer all the information it needs
(up to aliasing) to generate good code. An addi­
tional benefit is that the loop in function A2 is now
far simplier and can be optimized. The perfor­
mance differences between function Al and func­
tion A2 can be dramatic, we saw over a factor of 5
improvement in our quadratures between the two
codes, keeping all other conditions constant.

A2 is slightly more complex than Al, primarily
due to the fact that some piece of code has to take
responsibility for managing results. In FastScat
we have encapsulated this additional complexity
in quadrature classes so that it is completely hid­
den from the user. Users of our quadrature classes
only need to supply "all" versions of methods that
are performance critical. For the surface classes,
only 4 out of over 20 methods have "all" versions.

By adding some additional methods to our
classes, we have kept the benefits of object-ori­
ented programming without sacrificing perfor­
mance. The moral is to use object-oriented tech­
niques in all but the very small percentage of code
that is executed often. Such code must be under­
standable by the optimizer, meaning that it should
be short, and written in terms of fundamental
types like int and double. Fortunately, the use of
object-oriented techniques allows us to structure
the code into easily understood and fast computa­
tional kernels. The next section discusses this ap­
proach further.

3.2 Computational Kernels

FastScat does a significant amount of linear alge­
bra, which is handled by the Array and Matrix
classes. These classes call LAPACK [11] and the
BLAS [12, 13] to perform the actual operations.
LAPACK, a descendant of LINP ACK and EIS­
p ACK, is intended to be highly portable and exe­
cute efficiently on a large range of target ma­
chines. The BLAS is a set of basic linear algebra
subprograms, such as matrix-array (vector) multi­
plication, that are hand tuned to each machine.
For example, on a Cray, the BLAS is written to
take maximum advantage of the machine's vector
units. A good implementation of the BLAS on a
scalar machine would ensure that code and data
are cached most efficiently and that the execution

176 HAMIL TO!\" ET AL.

of the floating point and integer units 1s over­
lapped as much as possible.t

The actual implementation of the Array class
is simple:

class Array {
public:

complex dot(Array& b) {
ZDOTU(&length, data, &stride,

b. data, &b. stride);
}

private:
complex* data;
int length, stride;

}

The routine ZDOTU is just a BLAS call that does a
double precision complex dot product. The
stride parameters tell how many elements to
skip between consecutive array indices. Note that
because dot can be inlined, the users of Array
are effectively using the BLAS directly. This illus­
trates a useful technique: place C++ ''wrappers''
around high quality libraries implemented in
other languages. The libraries then become C++
objects that can be used like any other object.

By carefully isolating the critical code in an ap­
plication. the performance of an object-oriented
program can be made as good as the best pro­
grams written in traditional languages. One addi­
tional benefit is that the object-oriented code is
very portable. Only the kernels might need modifi­
cation for a particular architecture.

3.3 C + + Limitations

Despite its rich set of features, C++ does have
limitations. One that we found particularly frus­
trating is the lack ofmultimethods [14. 15]. a gen­
eralization of virtual methods. A virtual method
dynamically dispatches to code, which is selected
based on the type of its first argument (this) . A
multimethod can dispatch on the types of many
arguments. Consider a Tensor class that has de­
scendants for Scalars, Vectors, Second-Rank

t The array and matrix class were originally implemented
entirely in C++. The implementation used the standard C
convention that the rightmost index varies the fastest. When
we switched over to the BLAS, we converted the internal stor­
age format. Although this was a major data representation
change. not a single line of code outside the matrix class had to
be changed.

Tensors, an so on, for which we want to define a
set of arithmetic operations. The base class Ten­
sor has a virtual method mul (Tensor) that
must be defined by each derived class. The prob­
lem is in the implementation of mul in the derived
classes:

Rank2: :mul(Tensor& t)
select (t.is_a()) {
case scalar II do

Rank2*Scalar
case vector II do

Rank2*Vector
case rank2 II do Rank2*Rank2
II make higher rank class do the work
default : return t.mul(*this); }

This code is ugly, it cannot be inlined, and using
i s_a methods to return a type tag is a poor prac­
tice. The code is also difficult to maintain, be­
cause a class of a given rank must be a friend to all
classes having a lower rank (scalar is rank 0, vec­
tor is rank 1, etc.). With multimethods, the solu­
tion is much cleaner and potentially more efficient
because each method is responsible for only one
kind of multiplication, for example, Scalar*Vec­
tor. Other solutions are possible in C++, but they
are all similar in nature and suffer from the prob­
lems mentioned. This type of construction arises
often in mathematics and it is unfortunate it does
not have a clear expression in C++.

A second limitation of C++ is its lack of auto­
matic memory management. Of course, any sort
of memory management scheme can be imple­
mented in C++, but we have found that a signifi­
cant amount of effort goes into designing storage
management solutions for various classes, and
finding memory leaks. It is common for a C++
program to have several different storage manage­
ment schemes. For example. in FastScat we use a
reference counting technique [15] for the Array
class to eliminate unnecessary copying of large
objects, and an ownership-based scheme in the
Composi te_Surface class for patches. Several
of the methods in a class (constructors, the de­
structor, and the assignment operator) must be
concerned with memory management. The prob­
lem with multiple schemes and methods is that
memory management must always be on the mind
of the programmer and is a distraction from solv­
ing the problem of interest. We believe that some
sort of default memory management, which can

be overridden when necessarv. would be benefi­
cial.

Finally, C++ tools are still immature. Some
vendors have been slow to implement language
features, such as templates. Also, the lack of ex­
ception handling in most implementations makes
error handling clumsy. These problems should
disappear with time.

4 CONCLUDING REMARKS

Object-oriented programming is not without costs.
We have noticed that it takes more time to design
an object-oriented program than a procedural
one, which is consistent with some estimates that
up to 40% of the effort required to write an object­
oriented program goes into the design phase. Also,
when object-oriented languages are used in an
overly procedural fashion (which is quite easy to
do in C++), the benefits of the methodology are
lost and the resulting code is often worse than a
traditional program. This is similar to an effect
noticed when Ada was first introduced. Many pro­
grammers were quickly retrained in the Ada syn­
tax but not its design philosophy. Of course, the
payback to putting more effort in the design, is in
reduced debugging time and easier maintainabil­
ity I extensibility.

The use of object-oriented languages for nu­
merical applications is being hampered by the fact
that object-oriented languages are not Fortran.
Fortran is still the language of choice for a major­
ity of people doing computational science, partic­
ularly on supercomputers. There are a number of
reasons for this:

1. Supercomputer Fortran compilers typically
vectorize code better than other compilers.

2. Fortran is widely understood.
3. A great deal of Fortran code exists.
4. There is a built-in resistance to change.

In order for object-oriented design and program­
ming to make serious inroads in computational
science, scientists and programmers are going to
have to see some obvious benefits. We think the
most convincing argument will come from the ex­
tensibility of object-oriented programs. If a com­
putational scientist sees a group getting good
results quickly, by virtue of being able to easily
change their programs, the scientist will naturally

FAST SCATTERI:\IG COMPCTATION 177

become interested in the programming tech­
niques.

In summary, we based the top-level design of
FastScat on the physics of scattering. This lead to
a flexible code that is easv to maintain and ex­
tend, and yet does not necessarily sacrifice effi­
ciency. The fundamental calculations are per­
formed by computational kernels such as the
BLAS and a small set of hand -tuned methods in
the quadrature classes. The high-level classes
simply orchestrate the operation of the kernels. In
the future, we plan to extend FastScat to handle
more complex scattering problems and to port the
code to massively parallel machines and to vector
machines such as the Crav.

REFERENCES

[1] R. F. Harrington, Field Computation by Moment
Methods. Kew York; Macmillan, 1968.

[2] R. Coifman, V. Rokhlin, and S. Wandzura, "The
fast multipole method: A pedestrian prescrip­
tion," IEEE Antennas Propagation Soc Maga­
zine, vol. 35, pp. 7-12, 1993.

[3] V. Rokhlin, "Solution of acoustic scattering prob­
lems by means of second kind integral equa­
tions." Wave Motion, vol. 5, pp. 257-272, 1983.

[4] V. Rokhlin, "Rapid solution of integral equations
of scattering theory in two dimensions."]. Com­
put. Phys. vol. 86, pp. 414-439, 1990.

[5] V. Rokhlin, Diagonal Form of Translation Oper­
ators for the Helmholtz Equation in Three Di­
mensions. Technical Report YALEC/DCS/RR-
894, Yale Cniversity, Department of Computer
Science, Ylarch 1992.

[6] B. Yleyer, Object-Oriented Software Construc­
tion. :'-lew York: Prentice Hall, 1988.

[7] G. Booch, Software Engineering with Ada. Ylenlo
Park, CA: Benjamin/Cummings, 1983.

[8] A. Goldberg and D. Robson, Smalltalk-80: The
Language and Its Implementation. Reading, MA:
Addison-Wesley. 1983.

[9] S. Keene, Object-Oriented Programming in Com­
mon Lisp. Reading, YlA: Addison-Wesley, 1988.

[10] Yl. A. Ellis and B. Stroustrup, The Annotated
C++ Reference Manual. Reading, MA: Addison­
Wesley, 1990.

[11] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum. S. Ham­
marling, A. McKenney, S. Ostouchov, and D.
Sorensen, LAPACK User's Guide. Philadelphia:
Society for Industrial and Applied Ylathematics,
1992.

[12] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Ham­
marling, "Algorithm 679: A Set of Level 3 Basic

178 HAMIL TON ET AL.

Linear Algebra Subprograms," ACM Transact.
Math. Software, vol. 16, pp. 18-28, 1990.

[13] J. J. Dongarra, J. Du Croz, S. Hammarling, and
R. J. Hanson, "Algorithm 656: An extended set of
Fortran basic linear algebra subprograms," A Ci\1
Transact. Math. Software, vol. 14, pp. 18-32,
1988.

[14] R. Agrawal, L. G. DeMichiel, and B. G. Lindsay,
OOPSLA Conference Proceedings. Reading, MA:
Addison- Wesley, 1991.

[15] J. 0. Coplien, Advanced C++: Programming
Systems and Idioms. Reading, MA: Addison­
Wesley, 1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

