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ABSTRACT 

FastScat is a state-of-the-art program for computing electromagnetic scattering and 
radiation. Its purpose is to support the study of recent algorithmic advancements, such 
as the fast multipole method, that promise speed-ups of several orders of magnitude 
over conventional algorithms. The complexity of these algorithms and their associated 
data structures led us to adopt an object-oriented methodology for FastScat. We discuss 
the program's design and several lessons learned from its C++ implementation includ­
ing the appropriate level for object-orientedness in numeric software, maintainability 
benefits, interfacing to Fortran libraries such as LAPACK, and performance issues. 
© 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Current problems of interest in computational 
electromagnetics include the prediction of radar 
cross sections and the modeling of antenna radia­
tion patterns (see Fig. 1). Methods for computing 
electromagnetic scattering and radiation generally 
involve the solution of a matrix equation derived 
from the discretization of an appropriate integral 
equation [1]. The matrix equation is often written 
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Z · I = V, where the impedance matrix Z depends 
on the geometry and composition of the scattering 
or radiating surface, I is a vector containing the 
expansion coefficients of the current density over 
the surface, and the excitation vector V represents 
a dual expansion of the current. The number of 
unknowns, N, required for accurate modeling of 
such problems is very large, and, in the past, has 
severely limited problem size and solution accu­
racy. 

There are two primary areas of difficulty in con­
ventional solutions of these problems. The first is 
accurate computation of the Z matrix elements. In 
general, each element of the N X N matrix re­
quires numeric integration of a function that is 
often singular on portions of the surface. The sec­
ond difficulty is the actual solution of such a large 
matrix equation. This has been done by direct de­
composition of the sometimes ill-conditioned Z 
matrix (fJ(l'{1) time), or alternatively by iterative 
methods requiring repeated matrix-vector multi­
plications (fJ(N 2) time for each step). 

Recently, a technique called the fast multipole 
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FIGURE 1 Model scattering problem. An incident 
plane wave p (excitation) induces a current on S which 
re-radiates as the scattered wave q. 

method (FMM) was discovered, which essentially 
factors the Z matrix into sparse components [2-
5 J. With this representation, the matrix-vector 
multiplications required by iterative solvers can be 
done in{) (N log N) time. Thus, total solution time 
is greatly reduced, allowing the study of much 
larger objects. 

Our ongoing effort is to develop a code capable 
of accurately computing scattering and radiation 
from surfaces of arbitrary shape and size, repre­
sented in either two or three dimensions. In this 
program, called FastScat, we are implementing 
conventional solution techniques as well as new 
computational algorithms, such as the FMM. We 
also plan to incorporate the ability to scatter from 
dielectrics and other materials, and to efficiently 
treat periodic bodies. In addition, FastScat is be­
ing used as a testbed to determine the effective­
ness of various enhancements such as more accu­
rate surface models, higher order expansion 
(basis) functions, and more accurate quadrature 
rules. 

To support this work, FastScat must be written 
in such a way as to be highly modifiable and ex­
tensible, as well as reasonably efficient. Specifi­
cally, we require a design methodology and lan­
guage support that can provide a clear 
implementation of the algorithms and a sensible 
structure for the underlying data. Our experience 
in modifying an existing program written in For­
tran demonstrated that this, mostly procedural, 
code lacked important elements needed to incor­
porate the features described above. Instead, we 
have turned to an object-oriented methodology 
[ 6 J in which features such as inheritance, data 
encapsulation, polymorphism, and dynamic 
binding allow the key elements of the problem to 
be expressed and manipulated in a more natural 
wav. 

2 AN OBJECT-ORIENTED DESIGN 

The design of FastScat is based on the kev ab­
stractions of the physics of scattering. In the ob­
ject-oriented paradigm, a class is used to define a 
new data type and encapsulates not only the oper­
ations that can be performed on that type (meth­
ods ), but also the implementation or actual data 
structure of the type. Defining classes to model the 
physics of the problem provides a clear mapping 
of the theory and algorithms onto the resulting 
computer code. For example, the FastScat classes 
Surface, Z_Matrix, Current, and Exci ta­
tion come directly from the problem formulation 
given in Section 1. Once defined and imple­
mented, the manipulation of these new types is 
straightforward and can closely resemble the orig­
inal equations from physics, thus improving code 
readability. Using this approach, we have found 
that when a new class or method seemed awkward 
or difficult to add it often did not adequately 
model the physics. As an added benefit of object­
oriented thinking, we have sometimes gained a 
better understanding of physical or theoretical re­
lationships in the problem. On occasion, difficul­
ties in implementation have directed us to a flaw 
or gap in our physical understanding rather than 
with the design. The remainder of this section de­
scribes some of FastScat's design and the result­
ing maintainability benefits. 

2.1 Modeling Surfaces 

In FastScat, the scattering surface or antenna 
(scatterer) is described using a collection of ele­
mentary surfaces. In the current version of 
F astScat, the elementary surfaces are limited to 
patches. In two dimensions, a patch is simply a 
curve in a plane, and in three dimensions, it is a 
surface. The simplest 3d patch is a flat triangle. 

The Surface class hierarchy (Fig. 2) provides 
support for FastScat's surface description. Class 
Surface is abstract and defines basic operations 
required for all surfaces. These basic operations, 
which include translate, rotate, scale, and read­
ing/writing, must then be implemented in de­
scendent classes of Surf ace. 

A collection of surfaces is maintained by Com­
posi te_Surface, which descends from Sur­
face. An element of a Composi te_Surface is 
itself a Surf ace. This organization makes it easy 
to implement many methods, and permits model­
ing of hierarchical scatterers. For example, the 
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FIGURE 2 Surface class hierarchy. 

translate method in Composi te_Surface simply 
calls the translate method of each of its elements. 
An ancillary class supports iteration over all of the 
elements in a composite surface. 

Cltimately, the surface is described in terms of 
instances of class Elementary_Surface. This 
class, which is derived from Surface, currently 
has two descendants, Patch2D and Patch3D. In 
the future, the descendants Wire2D and Wire3D 
will be added to support the modeling of wires. 
The patch classes define several methods. For ex­
ample, in Patch2D, there is a method called map, 
which takes a single parameter u E [0, 1: and 
returns a Vector to the corresponding point on 
the patch. The endpoints of the patch are at u = 0 
and u = 1. Another method is tangent, which 
returns the tangent to the patch for a given u. A 
parallel set of methods is defined by Patch3D, 
except the parameters are u and u. These methods 
are used by many calculations in FastScat. The 
important point is that most of the FastScat code 
is written in terms of Surface, Composi te_Sur­
face, and Elementary_Surface objects. The 
underlying surface model, 2d or 3d, flat, curved, 
etc., is hidden from most of the code. This eases 
maintenance and the addition of new features. 

2.2 Modeling the Physics 

The basic principle behind FastScat's design is to 
model the physics as closely as possible. The com­
mon object-oriented approach is to identify the 
entities in the problem and proposed solution and 
to model these using classes. The Surface class 
hierarchy was designed using this approach. :Yiod­
eling some of the physical concepts is more ab­
stract. Some entities, such as a plane wave. are 
simple. For a plane wave, we defined a class that 
contains the wave vector k and provides a method 
to evaluate the wave at any point in space. 

A key physics abstraction is a Surface_Func­
tion. It is defined on the surface of the scatterer 
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and maps a particular location on the scatterer to 
a tensor. The Current and Excitation classes 
are descendants of Surface_Function. Various 
operations are supported on surface functions, in­
cluding addition, scalar multiplication, and inner 
product. These operators are used extensively in 
FastScat's calculations. Although the Surface­
_Function class is currently implemented using 
class Array described in Section 3.2, this repre­
sentation can and will be changed in the future to 
implement a different method (l\ystrom) of dis­
cretizing the integral equation. 

Closely related to Surface_Function is Sur­
face_Operator, which maps one surface func­
tion onto another. The mapping is performed by 
the apply method. An important example of a 
Surface_Operator is Z_Matrix (Z) which 
takes a Current (!)and maps it into an Exci ta­
tion (V). Another example is the FYIM, which is 
implemented in the FMM class. 

The system V = Z · I can be solved directly 
using LC decomposition if Z is dense, or by using 
an iterative solver. Iterative solvers can be used for 
both dense (Z_Matrix) and sparse (FMM) sur­
face operators. The iterative solvers are written in 
terms of Surface_Operators and Surface­
_Functions. When support for the FM:M was 
added to FastScat, we only had to concentrate on 
the details of the FYIYI as encapsulated by class 
FMM. The solvers did not require modification be­
cause they are defined at a higher level of abstrac­
tion. The maintainability I extensibility benefits of 
FastScat's design are discussed further in the next 
section. 

FastScat also contains a class hierarchv for 
modeling basis functions, which is conceptually 
similar to that of the surface classes. There is a 
top-level abstract class Basis_Function with 
descendants for two and three dimensions (Ba­
sis_Function2D and Basis_Function3D). 
Descendants of these two classes describe partic­
ular basis functions, such as Legendre polynomi­
als. 

2.3 Maintainability/Extensibility Benefits 

One of the major objectives of FastScat was the 
implementation of the FMM. In the previous sec­
tion we mentioned how the FYIM fit easilv into the 
program's design. This design is also helping to 
achieve many of FastScat's other objectives. For 
example, to support different surface models, it is 
onlv necessary to add a new descendant to 
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Patch2D or Patch3D. This flexibility has allowed 
us to study the importance of higher order surface 
models for accurate scattering calculations, and 
has also turned out to be verv useful for verifica­
tion. For a few special geometries, like circles and 
spheres, the cross section can be computed ana­
lytically. In FastScat, a circle can be approxi­
mated using flat patches. As the the number of 
patches increases, so does the solution accuracy. 
However, even using as many as 1,000 patches 
only results in a few digits of accuracy in the cross 
section. Our response was to add a descendant of 
Patch2D, called Arc_Patch2D, which represents 
a wedge of a circle. We used the arc patches to 

construct a perfect model of a circle and were able 
to compute answers accurate to 11 significant dig­
its. 

The structure of the basis function hierarchy 
allows for similar flexibility. F astScat was origi­
nally implemented in terms of pulse (constant) ba­
sis functions. Moving up to higher order basis 
functions was trivial; we simply generalized the 
pulse basis functions to Legendre polynomials. 
The rest of the program was unchanged.* 

There have been times when it was difficult to 
use a FastScat component. We have found this 
with the iterative solvers-they depend on Sur­
face_Function and Surface_Operator, 
which in turn depend on Surface. Cse of the 
solvers then requires a substantial amount of 
FastScat code, indicating a flaw in the design. The 
solvers should have been defined on classes more 
general than SurfaceJ'unction and Sur­
face_Qperator, namely Function and Oper­
ator. The surface versions would then just be 
subclasses of the more general versions, and the 
solvers could be used independently of F astScat 
by defining the appropriate functions and opera­
tors. 

3 LESSONS FROM A C + + 
IMPLEMENTATION 

The design of a program is independent of its im­
plementation. In principle, one can have an ob­
ject-based design and implement it in a traditional 
language (as is often done with Ada [7]). However, 

*It is not quite as simple as this. We had to plan ahead and 
put a method in the basis function class that returns the order 
of the quadrature required to exactly integrate the function. If 
we had noL we would have lost accuracy by moving to higher 
order basis functions. 

to get full benefit of the methodology, we chose to 
use an object-oriented language as well. 

Pure object-oriented languages, like Smalltalk 
[8] and CLOS [9], have a high overhead due to 
their generality, and are not commonly available 
on supercomputers. C++ [10] has the basic fea­
tures necessary (such as classes, inheritance, and 
dynamic binding) for an object-oriented imple­
mentation. Because it has been implemented as a 
translator into C, the language is portable and is 
widely available on supercomputers. This combi­
nation of features and availability led us to the 
choice of C++. 

This section presents some of the lessons we 
learned from implementing F astScat in C++. 
Most of what follows is related to performance is­
sues: how to arrange C++ programs so that they 
run efficiently. We also discuss some of the limita­
tions of C++. 

3.1 Overhead of Obiect-Orientedness 

The object-oriented facilities in C++ require run­
time support not needed in languages like For­
tran. If not properly addressed, this overhead can 
seriously degrade performance. \Vith our present 
C++ compiler, the dynamic binding associated 
with virtual functions takes twice as much time as 
a regular function call. Consider, for example, the 
descendants of class Patch2D described previ­
ously. Each patch must define the method map, 
which takes a parameter u and returns a Vector 
on the surface of the patch. For flat patches, this 
is a very simple computation and executes in less 
time than the virtual method call and return. Us­
ing inlined methods (type-checked macros) is no 
help because virtual calls cannot be expanded. 
However, as illustrated below, there is a simple 
solution that has the performance of an inline 
method, the generality of virtual methods, and 
gives the compiler an opportunity to perform ag­
gressive optimizations. 

We often use variations of Gaussian quadrature 
to perform our integrations. The basic form of a 
Gaussian quadrature to approximate the integral/ 
of a functionf(x) over some region is 

.\'-1 

I= L wJ(xi), 
i=O 

where the w, are weights and the Xi are sampling 
points (abscissae) for f. Assume we want to inte­
grate the magnitude of the map vector over a 



patch. An obvious C++ implementation is 

double Al(Patch2D& p) { 
double sum 0; 

} 

for (int i = 0; i < N; i++) 
sum+= w[i]*mag(p.map(x[i])); 

return sum; 

Although simple, this code runs slowly compared 
with equivalent inlined code due to the overhead 
in the virtual function call p. map. A solution to 
this problem is to add a map_all method that 
takes a list of places at which to evaluate map. The 
actual implementation is as follows: 

Class Flat_patch2D : public Patch2D { 
public: 

Vector2D map(double u) 
{ return vl + u*delta; 

void map_all(int N, double* u, 
Vector2D* results); 

private: 
Vector2D vl, delta; 

}; 

void Flat_Patch2D: :map_all(int N, 
double* u, Vector2D* results) { 

for (int i = 0; i < N; i++) 
results[i] = map(u[i]); 

} 

The equivalent of function Al is then 

double A2(Patch2D& p) { 
double sum = 0; 

} 

p.map_all(N, x, results); 
for (int i = 0; i < N; i++) 

sum+= w[i]*mag(results[i]); 

return sum; 

The loop in map_all can execute quickly because 
map can now be expanded. The overhead of the 
call to map_ all is negligible because the routine is 
doing a relatively large amount of work. Higher 
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level code can still be written in terms of the base 
class Patch2D because map_all is virtual. Fur­
thermore, the Vector2D addition and scalar mul­
tiplication can also be expanded. This gives an 
optimizer or vectorizer all the information it needs 
(up to aliasing) to generate good code. An addi­
tional benefit is that the loop in function A2 is now 
far simplier and can be optimized. The perfor­
mance differences between function Al and func­
tion A2 can be dramatic, we saw over a factor of 5 
improvement in our quadratures between the two 
codes, keeping all other conditions constant. 

A2 is slightly more complex than Al, primarily 
due to the fact that some piece of code has to take 
responsibility for managing results. In FastScat 
we have encapsulated this additional complexity 
in quadrature classes so that it is completely hid­
den from the user. Users of our quadrature classes 
only need to supply "all" versions of methods that 
are performance critical. For the surface classes, 
only 4 out of over 20 methods have "all" versions. 

By adding some additional methods to our 
classes, we have kept the benefits of object-ori­
ented programming without sacrificing perfor­
mance. The moral is to use object-oriented tech­
niques in all but the very small percentage of code 
that is executed often. Such code must be under­
standable by the optimizer, meaning that it should 
be short, and written in terms of fundamental 
types like int and double. Fortunately, the use of 
object-oriented techniques allows us to structure 
the code into easily understood and fast computa­
tional kernels. The next section discusses this ap­
proach further. 

3.2 Computational Kernels 

FastScat does a significant amount of linear alge­
bra, which is handled by the Array and Matrix 
classes. These classes call LAPACK [11] and the 
BLAS [12, 13] to perform the actual operations. 
LAPACK, a descendant of LINP ACK and EIS­
p ACK, is intended to be highly portable and exe­
cute efficiently on a large range of target ma­
chines. The BLAS is a set of basic linear algebra 
subprograms, such as matrix-array (vector) multi­
plication, that are hand tuned to each machine. 
For example, on a Cray, the BLAS is written to 
take maximum advantage of the machine's vector 
units. A good implementation of the BLAS on a 
scalar machine would ensure that code and data 
are cached most efficiently and that the execution 
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of the floating point and integer units 1s over­
lapped as much as possible.t 

The actual implementation of the Array class 
is simple: 

class Array { 
public: 

complex dot(Array& b) { 
ZDOTU(&length, data, &stride, 

b. data, &b. stride); 
} 

private: 
complex* data; 
int length, stride; 

} 

The routine ZDOTU is just a BLAS call that does a 
double precision complex dot product. The 
stride parameters tell how many elements to 
skip between consecutive array indices. Note that 
because dot can be inlined, the users of Array 
are effectively using the BLAS directly. This illus­
trates a useful technique: place C++ ''wrappers'' 
around high quality libraries implemented in 
other languages. The libraries then become C++ 
objects that can be used like any other object. 

By carefully isolating the critical code in an ap­
plication. the performance of an object-oriented 
program can be made as good as the best pro­
grams written in traditional languages. One addi­
tional benefit is that the object-oriented code is 
very portable. Only the kernels might need modifi­
cation for a particular architecture. 

3.3 C + + Limitations 

Despite its rich set of features, C++ does have 
limitations. One that we found particularly frus­
trating is the lack ofmultimethods [14. 15]. a gen­
eralization of virtual methods. A virtual method 
dynamically dispatches to code, which is selected 
based on the type of its first argument (this) . A 
multimethod can dispatch on the types of many 
arguments. Consider a Tensor class that has de­
scendants for Scalars, Vectors, Second-Rank 

t The array and matrix class were originally implemented 
entirely in C++. The implementation used the standard C 
convention that the rightmost index varies the fastest. When 
we switched over to the BLAS, we converted the internal stor­
age format. Although this was a major data representation 
change. not a single line of code outside the matrix class had to 
be changed. 

Tensors, an so on, for which we want to define a 
set of arithmetic operations. The base class Ten­
sor has a virtual method mul (Tensor) that 
must be defined by each derived class. The prob­
lem is in the implementation of mul in the derived 
classes: 

Rank2: :mul(Tensor& t) 
select (t.is_a()) { 
case scalar II do 

Rank2*Scalar 
case vector II do 

Rank2*Vector 
case rank2 II do Rank2*Rank2 
II make higher rank class do the work 
default : return t.mul(*this); } 

This code is ugly, it cannot be inlined, and using 
i s_a methods to return a type tag is a poor prac­
tice. The code is also difficult to maintain, be­
cause a class of a given rank must be a friend to all 
classes having a lower rank (scalar is rank 0, vec­
tor is rank 1, etc.). With multimethods, the solu­
tion is much cleaner and potentially more efficient 
because each method is responsible for only one 
kind of multiplication, for example, Scalar*Vec­
tor. Other solutions are possible in C++, but they 
are all similar in nature and suffer from the prob­
lems mentioned. This type of construction arises 
often in mathematics and it is unfortunate it does 
not have a clear expression in C++. 

A second limitation of C++ is its lack of auto­
matic memory management. Of course, any sort 
of memory management scheme can be imple­
mented in C++, but we have found that a signifi­
cant amount of effort goes into designing storage 
management solutions for various classes, and 
finding memory leaks. It is common for a C++ 
program to have several different storage manage­
ment schemes. For example. in FastScat we use a 
reference counting technique [ 15] for the Array 
class to eliminate unnecessary copying of large 
objects, and an ownership-based scheme in the 
Composi te_Surface class for patches. Several 
of the methods in a class (constructors, the de­
structor, and the assignment operator) must be 
concerned with memory management. The prob­
lem with multiple schemes and methods is that 
memory management must always be on the mind 
of the programmer and is a distraction from solv­
ing the problem of interest. We believe that some 
sort of default memory management, which can 



be overridden when necessarv. would be benefi­
cial. 

Finally, C++ tools are still immature. Some 
vendors have been slow to implement language 
features, such as templates. Also, the lack of ex­
ception handling in most implementations makes 
error handling clumsy. These problems should 
disappear with time. 

4 CONCLUDING REMARKS 

Object-oriented programming is not without costs. 
We have noticed that it takes more time to design 
an object-oriented program than a procedural 
one, which is consistent with some estimates that 
up to 40% of the effort required to write an object­
oriented program goes into the design phase. Also, 
when object-oriented languages are used in an 
overly procedural fashion (which is quite easy to 
do in C++), the benefits of the methodology are 
lost and the resulting code is often worse than a 
traditional program. This is similar to an effect 
noticed when Ada was first introduced. Many pro­
grammers were quickly retrained in the Ada syn­
tax but not its design philosophy. Of course, the 
payback to putting more effort in the design, is in 
reduced debugging time and easier maintainabil­
ity I extensibility. 

The use of object-oriented languages for nu­
merical applications is being hampered by the fact 
that object-oriented languages are not Fortran. 
Fortran is still the language of choice for a major­
ity of people doing computational science, partic­
ularly on supercomputers. There are a number of 
reasons for this: 

1. Supercomputer Fortran compilers typically 
vectorize code better than other compilers. 

2. Fortran is widely understood. 
3. A great deal of Fortran code exists. 
4. There is a built-in resistance to change. 

In order for object-oriented design and program­
ming to make serious inroads in computational 
science, scientists and programmers are going to 
have to see some obvious benefits. We think the 
most convincing argument will come from the ex­
tensibility of object-oriented programs. If a com­
putational scientist sees a group getting good 
results quickly, by virtue of being able to easily 
change their programs, the scientist will naturally 
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become interested in the programming tech­
niques. 

In summary, we based the top-level design of 
FastScat on the physics of scattering. This lead to 
a flexible code that is easv to maintain and ex­
tend, and yet does not necessarily sacrifice effi­
ciency. The fundamental calculations are per­
formed by computational kernels such as the 
BLAS and a small set of hand -tuned methods in 
the quadrature classes. The high-level classes 
simply orchestrate the operation of the kernels. In 
the future, we plan to extend FastScat to handle 
more complex scattering problems and to port the 
code to massively parallel machines and to vector 
machines such as the Crav. 
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