
C++ and Massively Parallel Computers

DANIEL J, LICKLY AND PHILIP J, HATCHER

Department of Computer Science, University of New Hampshire, Durham, NH 03824

ABSTRACT

Our goal is to apply the software engineering advantages of object-oriented program­
ming to the raw power of massively parallel architectures. To do this we have con­
structed a hierarchy of C++ classes to support the data-parallel paradigm. Feasibility
studies and initial coding can be supported by any serial machine that has a(++
compiler. Parallel execution requires an extended Cfront, which understands the data­
parallel classes and generates C* code. (C* is a data-parallel superset of ANSI C
developed by Thinking Machines Corporation.) This approach provides potential por­
tability across parallel architectures and leverages the existing compiler technology for
translating data-parallel programs onto both SIMD and MIMD hardware. © 1994 John

Wiley & Sons, Inc.

1 INTRODUCTION

The data -parallel programming model is based on
the simultaneous execution of the same operation
across a set of data [1]. Yfost scientific and engi­
neering problems, and many others, have data­
parallel solutions. The model's single locus of
control simplifies design, implementation, and
debugging of programs. The model is high level,
which greatly enhances the portability of pro­
grams across sequential, SIMD, and YIIMD plat­
forms. For these reasons data-parallel program­
ming environments are a crucial requirement to
allow a wide range of users to exploit massively
parallel computers.

To be most effective a data-parallel program­
ming environment must have three important
characteristics.

Received April 1993
Revised June 199.3

This work was supported by 1'\ational Science Foundation
grant CCR-8906622.

© 1994 by John Wiley & Sons. Inc.
Scientific Programming. Yo!. 2. pp. 19.3-20:2 (199.3)

CCC 10:;8-9244/94/04019.3-10

1. It should be based on synchronous execu­
tion semantics. The programming model
presented to the user should be single
threaded.

2. It should support virtual processors. The
programmer should be able to write pro­
grams independent of the number of physi­
cal processors available.

3. It should provide a shared-memory pro­
gramming model. The cost of accessing the
memory may be nonuniform, but the user
should be able to access all locations by
name.

We characterize systems with these three proper­
ties as strongly supporting data-parallel program­
ming.

C* is a data-parallel superset of ANSI C devel­
oped by Thinking Yfachines Corporation [2]. C*
strongly supports data-parallel programming. C*
programs can be translated for efficient execution
on both SIYID and YIIMD parallel hardware [3].
However. the fact that C* is a superset of C is
problematic for many potential users. First, being
a superset, C* requires programmers to learn new
syntax and semantics. Second, many users would

193

194 LICKL Y A~D HATCHER

prefer that C* be based on C++ rather than C.
They would like to use the object-oriented meth­
odology when programming parallel computers.
This article reports on an initial study of the feasi­
bility of integrating the C* programming model
within unaltered C++.

The template feature of C++ version 3.0 offers
a powerful mechanism to emulate the data-paral­
lel constructs of C* without leaving the syntax of
C++. A template can be used with a ''parallel
object" class to allow instantiation of parallel ob­
jects of different types. Our goal is to exploit the
potential efficiency and portability of explicitly
data-parallellanguages within the context of con­
ventional C++ code.

The first step has been the creation of a hierar­
chy of C++ classes to support the data-parallel
paradigm as presented in C*. These classes may
be used to define parallel objects. The resulting
aggregate objects may be manipulated elementally
by most of the C++ operators in a fashion similar
to the C* aggregate operators. An organization of
these classes has been defined and implemented
in C++ and can be executed on any machine with
a C++ version 3.0 compiler.

Our future complementary implementation
strategy will be to produce a C++ to C* translator.
This translator will exploit knowledge of the data­
parallel class hierarchy in order to generate C*
code. This will provide automatic portability to
any parallel platform that has a C* compiler.* The
strategy also allows us to leverage the rapidly de­
veloping compilation technology for data-parallel
programming languages.

2 RELATED WORK

There is currently intense interest in object-ori­
ented programming, and even in object-oriented
parallel programming. A host of research projects
are underway investigating the use of object-ori­
ented programming languages on parallel or dis­
tributed computing platforms. There is even a
large number of projects studying C++ for paral­
lel hardware. Our work can be distinguished from
these projects by our design goals:

*This. of course, includes Thinking :VIachines' Connection
Machine familv. In addition. in another project, we are investi­
gating the implementation of C* for a variety of MIMD hard­
war". including the Intd Delta/Paragon [14: and clusters of
Cnix workstations.

1. Support strongly the data -parallel para­
digm.

2. Tolerate no changes to C++.
3. Allow "automatic" generation of imple­

mentations for parallel hardware.

Ylentat [4] and CC++ [5] are both dialects of
C++ designed to exploit parallel hardware. Both
languages are most effective as SPMD program­
ming environments. Neither language strongly
supports the data-parallel model as they require
the programmer to explicitly perform synchroni­
zation and communication through dataflow-like
mechanisms. Both languages are extensions to
C++.

pC + + [6] and C** from the Cniversity of Wis­
consin [7] both strongly support the data-parallel
model. However, both languages are extensions to
C++. pC+ +also differs from our work in that it is
building on the high performance Fortran instan­
tiation of the data-parallel programming model,
whereas we begin with the C* programming
model. C**-Wisconsin is based on a "copy-in,
copy-out" semantics for the application of func­
tions to parallel aggregates. We believe the imple­
mentation of such semantics is problematic in C­
hased languages, at least in the short term. We
offer alternative function application semantics
similar to what is proposed for pC + +.

DPar is a language for which preliminary de­
signs were investigated at Los Alamos National
Laboratory [8]. DPar attempts to extract C*'s
data-parallel extensions to C and apply them to
C++. The key difficulty. which is also encoun­
tered in our work and the work with pC + +, is
deriving rules for allowing objects to have both
parallel and sequential instantiations. Although
the DPar approach would strongly support data­
parallelism, the language is constructed by ex­
tending C++ with C* constructs. Our approach is
also to try to apply the C* extensions to C++, but
within the existing syntax and semantics of C++.

A number of efforts are investigating the con­
struction of application-specific class libraries
with intemal parallelism [9-11:. The basic ap­
proach is to design a library with broad applicabil­
ity and then have experts port its intemals for
each parallel machine. For the appropriate appli­
cations this approach strongly supports the data­
parallel paradigm. The user may be totally un­
aware that multithreaded hardware is being
exploited. This approach does not rely on any ex­
tensions to C++. However, the internals of the
libraries must be ported "by hand" for each target

C++ Al\D .\IASSIVEL Y PARALLEL C0.\1PLTERS 195

machine. The goal of our approach is to allow a
C* compiler to be used to provide portability of
user-written application -specific classes.

This goal is shared by the C** programming
environment being developed by researchers at
the Australian .1'\ational Cniversity [12]. They also
support the C* programming model in C++ by
providing an appropriate set of classes. They
embed macro calls in the C++ code and have
instantiations of these macros for either generat­
ing "straight" C++ code or for generating C*
code. Their motivation was to provide a C* -like
programming environment on workstations for
teaching purposes. Consequently, their approach
does not combine the object-oriented and data­
parallel paradigms-rather they use the object­
oriented features of C++ to provide a C* environ­
ment. Csers are constrained in what objects can
be instantiated as parallel by the need to generate
C* code by macro expansion. Our eventual strat­
egy is to provide an extended Cfront (Cfront*) that
both converts C++ features to C and implements
parallel objects via C* code.

3 THE C* PROGRAMMING LANGUAGE

Our work is based on integrating the C* program­
ming model within unaltered C + + . This section
describes the C* programming model and is orga­
nized around the example program in Figure 1.
This program implements the Jacobi algorithm to
find the steady-state temperature distribution on
an insulated two-dimensional (2-D) plate, given
constant boundary conditions.

C* introduces a new data type, the shape type,
that describes array-like objects that are operated
on in parallel. A shape specifies the rank, dimen­
sions, and layout of explicitly parallel data.
Shapes can be used in the declaration of arith­
metic, structure, and union types. When a decla­
ration includes both a base type and a shape type,
then a parallel object is declared consisting of an
object of the base type at each position of the
shape. Line 5 of Figure 1 declares a shape and
lines 6-9 declare a set of parallel variables. t

Parallel objects can be operated on in parallel
via the overloading of standard C operators. The
operator is applied as if simultaneously at each
position of the shape. To specify a parallel opera­
tion, a current shape must first be established by a

t C* also includes a Boolean data type, used in line 6 of
Figure 1.

1. #include <math.h>

2. ldefine SIZE 128 I• Resolution of grid •I
3. ldefine TEMP 50.0 I• Arbitrary cut-off •I
4. ldefine EPSILON 0.1

5. shape [SIZE] [SIZE] cell;

6. bool:cell active; /• 0 if cell boundary; 1 otherwise •/
7. float:cell change; /• Change in temperature •/
8. float :cell new; I• Newly calculated temperature •I
9. float :cell old; I• Previous temperature •I

10. main () {

11. float max err;
12. int cool_cells;

I• Largest change in temp. over grid •/
I• Number of cells with temp. < TEMP •I

13. with (cell) { I• Initialize grid •I
14. where ((!pcoord(O)) II (!pcoord(l)) II (pcoord(1) ==
15. (SIZE-1))) {
16. active = 0;
17. old =new = 0.0;
18. } else where (pcoord(O) == (SIZE-1)) {

19. active = 0;
20. old = new = 100.0;
21. } else {
22. active= 1;
23. new = 50.0;
24. }

25. do { I• Compute steady-state temperatures •I
26. where (active) {

27. old = new;
28. new= ([.-1] [.]old+ [.+1] [.]old+
29. [.] [.+1]old + [.] [.-1]old) I 4.0;
30. change = fabs(old-new);

31.
32.

33.

maxerr = >'?= change;

} while (maxerr > EPSILON);

34. cool_ cells = (+= (new < TEMP));
35. }

36. printf (11 There are %d cells cooler than %5.2f degrees\n 11
,

37. cool_cells, TEMP);
38. }

FIGURE 1 Example C* program for the Jacobi algo­
rithm.

with statement. A where statement is provided
for masking off positions of the current shape.
Lines 13-24 of Figure 1 use the overloaded as­
signment operator to initialize parallel variables.
The pcoord intrinsic function creates a parallel
value of the current shape with each position con­
taining its coordinate along the specified axis.

C* also overloads most of the assignment oper­
ators to perform reductions of parallel values to a
single sequential value. Line 34 of Figure 1 uses
the +=operator to perform a sum reduction com­
puting the number of positions whose new tem­
perature is less than the cut-off temperature,
TEMP.:j:

:j: C* has added two new binary operations for min, (?, and
max,)?, which also have reduction forms,(?= and)?=. The
max reduction operator,)?= is used on line 31 of Figure 1 to
control the enclosing loop.

196 LICKL Y Al'iD HATCHER

C* allows parallel variables to be indexed.
However, parallel variables are not arravs and in­
dexing a parallel variable may be exp-ensive on
machines where the parallel variable is spread
across the distributed memories of a set of proces­
sors. To emphasize this potential inefficiency, the
index operator is moved to the left of the indexed
variable. When indexed by sequential indices, the
left index operator produces a sequential value.
When indexed by parallel indices, the left index
operator produces a parallel value.

The dot is used as a shorthand notation within
a left index expression. The dot stands for a
pcoord call on the axis being indexed. This al­
lows for the convenient referencing of neighboring
values in a shape. Lines 28-29 demonstrate the
reference of the four neighboring values in a 2-D
shape.

4 C++ CLASSES FOR DATA-PARALLELISM

This section describes the classes that we have
designed and implemented to support a C* pro­
gramming model within C++.

4.1 Shapes

A Shape class is provided to define shape objects
that perform the same role as C* shapes. They
contain the basic sizing and organization informa­
tion needed to define parallel variables. Parallel
variables are only compatible if they have the
same underlying shape object. Constructors are
provided for optionally defining the rank and di­
mensions of the shape.

Examples:

Shape shp1 (7);
Shape shp2 (64, 64) ;
Shape shp3;

The Shape class includes member functions
that emulate C* intrinsics: posi tionsof,
rankof, and dimof.

Examples:

int i,j,k;

i shpl. posi tionsof () ;
j shpl. rankof () ;
k shp2. dimof (1);

4.2 Parallel Variables

The Pvar class template is the mechanism for de­
fining parallel variables. Pvar takes a single tem­
plate argument that specifies the type of the object
being instantiated as a parallel. The constructors
for Pvar objects take a shape as an argument,
which defines the shape of the item being created.

Examples:

Pvar (float)
Pvar (int)
Pvar (Polygon)
Pvar (Polyline)

time (shp2) ;
distance (shp1);
pg (shp1);
pl (shp1) ;

The Pvar class includes member functions that
emulate C* intrinsics: shapeof, posi tionsof,
rankof, and dimoff. As in C* the latter three
query the parallel variable's underlying shape.

Examples:

shp3 = pg. shapeof () ;
i pl.positionsof();
j distance.rankof();
k time. dimof (1);

Additional member functions exist to emulate
C* operators that do not exist in "overloadable"
form in C++: the left-index operator and unary
forms of the reduction operators. For sequenti~l
indices the left-index function produces a refer­
ence that can act as either an lval or an rval. (Par­
allel left indices will be discussed in Section 5. 3.)

Examples:

i = distance. lindex (5);
time. lindex(8,i) = 1.7;
pl.positionsof();
distance.rankof();
time.dimof(1);

Note that the term "parallel variable" is a mis­
nomer. The Pvar class is also used to represent
intermediate results that cannot appear as lvals.

4.3 The Pcoord Intrinsic

The C* pcoord intrinsic is provided as a function
that takes two arguments: a shape and an axis
number. It returns an integer Pvar of the given
shape. Choosing to implement pcoord as a func­
tion, and not as a member of the Shape class, was
simply a matter of aesthetics-we prefer the func­
tion call syntax (pcoord (shape, axis)) in this

C++ A:\D YIASSIVEL Y PARALLEL COMPLTERS 197

case over the member function call syntax
((shape. pcoord (axis). We are still debating

this issue, and in fact many of the intrinsics dis­
cussed above as member functions are replicated
in the implementation as functions.

4.4 Manipulating Context

Shape objects include context information that in­
dicates which positions of the shape are currently
active (not masked off). Functions are provided
for manipulating the context. In C* a syntactic
construct, the where statement, allows the stack­
ing of context information. Because we are unwill­
ing to modify the syntax of C++, we provide a set
of functions to stack and unstack contexts. The
where function accepts a Pvar object, which
must have an underlying integer type, and modi­
fies the context associated with the shape of the
Pvar object. As in the C* where, our where func­
tion pushes a new context that is formed from
constricting the previous context according to the
values in the input object. The endwhere func­
tion pops the top of the context stack. The else­
where function pops the top of the context stack,
complements the popped context, optionally con­
stricts the complemented context, and then
pushes the result.

Examples:

where (adub < sdub)
elsewhere() ;
elsewhere (adub > 9);

endwhere () ;

4.5 Function Semantics

C*, of course, allows functions that accept and
return parallel values. These functions execute as
if fully synchronous: as if there is a synchroniza­
tion prior to entry; as if the body executes syn­
chronously at the operator level (as if the operands
are fetched at all positions of the active shape be­
fore the operator is evaluated at any position);
and, as if there is a synchronization upon retum.
This functionality is easily emulated in our system
by functions that accept and retum Pvar objects.

In addition our system provides elemental
functions. Elemental functions are executed as if
there is a function call performed at every position
of the active shape. Each invocation of the func­
tion proceeds as if independently with only a syn­
chronization upon retum. This requires that the
elemental function have no state between calls (no

static locals) and no side effects (no wntmg to
globals). Member functions of classes that are
provided as template arguments to the Pvar class
have elemental semantics when applied to parallel
objects. This imposes a restriction on the classes
that can be instantiated as parallels: member
functions that will be applied to parallels must
have no state and no side effects.

We also allow functions to be declared to be
elemental. This is particularly useful for providing
parallel versions of the common math functions:
sin, cos, etc.

4.6 The Pvar Class Hierarchy

Actually there are a collection of classes that pro­
vide the parallel variable capability. There are a
set of base classes that are abstract, and concrete
classes derived from them. The members of this
class hierarchy are:

1. PbaseO: an abstract class that serves as the
base for all parallel variables. It has all the
basic operations that are common to all
classes.

2. Pvar: a concrete class that is derived from
PbaseO. It is used for collections of classes
or structures without overloadings of the
usual arithmetic operators.

3. Pbasel: an abstract class derived from
PbaseO. This class has overloadings for the
usual arithmetic operators.

4. Pari th: a concrete class derived from
Pbasel. It has full support for the arith­
metic operators, and expects its template
argument to also fully support the arith­
metic operators. Pari this used mostly with
the builtin arithmetic types, int, float, etc.

5. Pbase2: an abstract class derived from
Pbasel. It supports parallel container
classes for parallel arithmetic objects. It
adds generic operations for groups of arith­
metic objects.

6. Ptensor: a concrete class derived from
Pbase2. It is a generic class for compound
arithmetic types that are treated in a uni­
form fashion.

The abstract classes are not directlv used bv us-. .
ers. They simply support the implementation of
the concrete classes.

The class hierarchy exists primarily to ease the
burden on the programmer. The user of the
Pari th class must provide overloadings for all the

198 LICKL Y A~D HATCHER

usual arithmetic operators for classes supplied as
the template argument to Pari th. A programmer
solving a non-numeric problem might find the
Pvar class more convenient. However, the
Pari th class allows arithmetic expressions in­
volving parallel variables to be written in the C*
style-a very concise notation. For example:

Shape shp (100) ;
Pari th(double) x (shp)
Pari th(double) y (shp)
Pari th(double) z (shp)

x = y + z;

The overloading of the arithmetic operators re­
quires that parallel operands be of the same
shape. Sequential operands are promoted to par­
allel.

1. linclude <Pvar .h>
2. hnclude <Pmath.h>

The user may also derive classes using this
class hierarchy. We have experimented with this
facility by building two additional classes. The
Pvector class is derived from Pbase2 and sup­
ports parallel variables containing a vector at each
position. The Pma tr ix class supports parallel
variables containing a matrix at each position.

4.7 The Jacobi Example Recast

Figure 2 recasts the C* program of Figure 1. Line
1 provides access to our parallel variable class hi­
erarchy. Line 2 provides elemental definitions of
the standard math functions. (Line 30 contains
an elemental application of the f abs function.)
Lines 28-29 describe the four-point Jacobi up­
date. We have used functions to hide the complex
left-index function calls that are required. The
complexity is due to the fact that we do not have a

3. I define SIZE 128
4. ldefine TEMP 50.0

I• Resolution of grid •I
I• Arbitrary cut-off •I

5. ldefine EPSILON 0.1

6. Shape cell(SIZE,SIZE);

7. Parith <int> active(cell);
8. Parith <float> change(cell);
9. Parith <float> new(cell);
10. Parith <float> old(cell);

11. main 0 {

I• 0 if cell boundary; 1 otherwise •I
I• Change in temperature •I
I• Newly calculated temperature •I
I* Previous temperature *I

12. float max err;
13. int cool_ cells;

I• Largest change in temp. over grid •/
I• Number of cells with temp. < TEMP •I

14. where ((!pcoord(cell,O)) II (!pcoord(cell,1)) II
15. (pcoord(cell,1) == (SIZE-1))) ;

16. old= new= 0.0;
17. active = 0;
18. elsewhere (pcoord(cell,O) == (SIZE-1))

19. active = 0;
20. old= new = 100.0;
21. elsewhere() ;
22. active = 1;

23. new = 50.0;
24. endwhere () ;

25. do { I• Compute steady-state temperatures •I
26. where (active)
27. old = new;
28. new = (west(old) + north(old) +
29. east (old) + south(old)) I 4. 0;
30. change = fabs(old-new);
31. maxerr = max(change);
32. endwhere () ;
33. } while (max err > EPSILON);

34. cool_cells = sum(new < TEMP);

35. printf (11 There are Y.d cells cooler than %5.2f degrees\n 11
•

36. cool_ cells, TEMP);
37.

FIGURE 2 Example C++ program for the Jacobi algorithm.

C++ A~D MASSI\ ELY PARALLEL COMPLTERS 199

feature corresponding to the C* dot operand. For
example, the following implements north in terms
of the left-index function:

old. lindex(pcoord(cell,O) ,modmod
(pcoord(cell,l)-l,dimof(cell,l)))

:Kote that we also must provide a modmod integer
function, corresponding to the C* %% operatoL to
support the torus-like behavior expected by the
Jacobi program.

Lines 31 and 34 contain the max-reduction
and sum-reduction operations, respectively, ex­
pressed as functions.

Another example program is given in the Ap­
pendix.

5 LIMITATIONS AND DIFFERENCES
FROM C*

Our current approach has several significant limi­
tations. We also provide a programming model
that differs from C* on a few points. This section
itemizes these shortcomings and differences.

5.1 No Overloading of the Selection
Operator

A significant limitation in our approach is encoun­
tered because the member selection operator can­
not be overloaded in C + + . When a parallel vari­
able is created with a base type defined by a user
class, the user may like to elementally access the
member functions via the dot operator.

For example, suppose a user has a class named
Circle and a function in that class named
getRadius. A parallel variable could be declared
as follows:

Pvar (Circle) pc (shpl) ;

The user may very well then want to write:

pc. getRadi us () ;

The intent is to have another parallel variable cre­
ated in which each position contains the result of
applying getRadi us at that position. However,
because we cannot overload the "." operator, the
above will fail because the member function is be­
ing applied to a Pvar object rather than a Circle
object.

To compensate we require the user to declare
which member functions can be applied elemen­
tallv. This declaration takes the form of a macro
call applied to the member function name. For
our serial implementation the macro expands into
an overloaded global (i.e., nonmember) function
definition of the same name. The function iterates
through the active positions and calls the member
function on the object stored at each position.
Therefore, instead of member function call syn­
tax, the user must utilize a conventional function
call:

getRadius (pc);

A benefit to this approach is that global func­
tions can also be declared to be invoked elemen­
tally on a parallel object. These declarations, as
with the case of member functions, take the form
of a macro invocation. Again, for our serial imple­
mentation, a new function is generated that ac­
cepts and returns parallel values by repeatedly
calling the underlying function at each position.

The macros are complicated by the need to
have the return type as well as all parameter types
provided as macro arguments. Currently, different
macros are provided for different numbers of pa­
rameters. For the above example the macro call
would be:

Pelemental_member_Q
(double, getRadius);

For a global function that takes two integer pa­
rameters and returns a double, the macro call
would be:

Pelemental_global_2
(double,globfuncname, int, int);

Elemental functions must adhere to the restric­
tions outlined in Section 4.5. These restrictions
require that the function keep no state and modify
no globals. Our current implementation has no
means to enforce these restrictions however.

5.2 Lack of a Syntactic Where Construct

C* has a where statement, explicit syntax to sup­
port the manipulation of context. The syntax
cleanly supports the nesting of context manipulat­
ing operations. For example, the popping of con­
text is done automatically upon exit from the
where statement.

200 LICKL Y A~D HATCHER

Our system implements context manipulation
via function calls, with no compile-time checking
of constraints on the placement of the functions.
However, to allow "dean" C* code to (eventually)
be generated, the programmer must use our con­
text manipulation functions in a manner sup­
ported by the C* where and else statements.

The user is also responsible for performing an
explicit endwhere at the appropriate times. This
is clearly a low-level and potentially error-prone
operation. This is one clear situation where our
refusal to introduce new svntax has burdened the
programmer.

We do enforce a run-time constraint on the
placement of these functions. .Keither the
endwhere nor the elsewhere statement take a
shape as a parameter. These functions are as­
sumed to manipulate the last (at runtime) stacked
context.

5.3 Problems with Lvals

Currently, parallel left-index operations may only
be used as rvals. Our implementation produces a
new parallel value, rather than a reference. We
cannot produce a reference because this could
produce incorrect semantics in the case. where a
value is wanted (in the presence of other opera­
tions that might be side-effecting the variable be­
ing referenced). And, at the function call level, we
cannot tell whether the result will be used as an
lval or an rval.

Our eventual solution most probably will be to
provide two functions: one to create a value and
one to produce a reference. This again is a situa­
tion where we require the programmer to program
at a slightly lower level than in C*.

A similar problem exists with elemental func­
tions that return references. Our implementation
currently produces a parallel variable containing
the values, rather than the references.

5.4 Conversion Difficulties

The usual C/C+ + conversions that apply to arith­
metic types do not work automatically for our par­
allel types. The attempt to combine a parallel int
and parallel double will generate an incompatible
type error by the C++ compiler. It would be nice if
the C++ compiler (and language) would produce
the usual conversions in these cases. We are still
investigating workable solutions. Extensive over-

loading of all the possible combinations is a po­
tential but lengthy solution.

5.5 Shape Checking

All checking to ensure that variables have identi­
cal shapes is done at runtime. As in C*, this
means that the two shapes must be derived from
the same shape variable, not just that the shape
has the same form. However, we do not support
the C* compile-time "intermediate shape equiva­
lence test on parallel variable usage" [2, p. 17].

5.6 C* Extensions

Our system anticipates several changes to C* that
we believe to be essential. For example, elemental
functions are very useful for incorporating into
parallel programs code written for serial applica­
tions. In addition they provide an escape hatch
into a less constrained control flow model.

We also support a limited form of parallel
pointers. We do not preclude a user class that
contains a pointer from being instantiated as a
parallel object. Our interpretation is that the
pointer will point ''locally,'' within the same posi­
tion of the shape. (Of course, in our current imple­
mentation we cannot provide any compile-time
check to ensure the assumption is accurate.)

Finally, our system does not support the C* no­
tion of "current shape." There is no with con­
struct to establish the current shape, and code
using different shapes can be mixed. For exam­
ple,

Shape sl (100) ;
Pvar (int) x (sl)

Shape s2 (50, 50);
Pvar (int) y (s2) ;

int z;

z = sum(x) + sum(y);

All these changes are being discussed by the
Data-Parallel C Extensions (DPCE) subgroup of
the Numerical C Extensions Group (.KCEG, A.KSI
X3J11.1). DPCE has taken the C* reference man­
ual as its "base document" and hopes to provide
a final set of recommendations based upon addi­
tions and deletions to C*. We anticipate features
similar to those provided by the above changes to
appear in the final DPCE report.

C++ Al\"D YIASSIVELY PARALLEL COMPLTERS 201

61MPLEMENTATION STRATEGY

6.1 Sequential Implementation

Our serial implementation has been done on a
workstation using the Gnu C++ compiler. We are
using version 2.3.3. It should be compatible with
C++ version 3.0.

The serial implementation was undertaken to
verify feasibility of concept and to learn how to
develop a language set that was truly compatible
with C++; would be compilable by a current
C++ compiler: and would execute with the de­
sired results. What we have attempted to produce
is a run-time model that will cope with the myriad
of C++ class and function combinations and vet
be compatible with the C* execution paradigm.

The implementation is woefully inefficient and
no attempt has been made to correct this. The
implementation is characterized by many small
loops with the results stored in temporaries that
are allocated just for that purpose. No attempt has
been made to manage the temporaries in a wise
fashion. Likewise, no attempt has been made to
reduce the many low-level loops by loop fusion or
by other analytical techniques.

6.2 C* Implementation

We believe that an effective C++ to C* preproces­
sor can be built. The obvious reason for this belief
is that we have designed our data-parallel class
library with the special characteristics of C* in
mind. Our shape class is the exact counterpart of
the shape variable in C*. Our parallel classes are
congruent to the parallel variable construct of C*.
Therefore, we expect that the translation of our
parallel constructs to C* to be a relatively easy
process.

The nonparallel code is either straight C code
or translatable to C as is done by Cfront. This
should be handled in the same manner as Cfront
does currently, because C* is nothing more than
an extended C. So the C++ to C* translator that
we envision is a Cfront with the extra capabilities
to detect our special data-parallel class constructs
and move them directly to C*. We call this special
preprocessor, Cfront*.

The advantage of this approach lies in the
leveraging of existing technology. Considerable
progress has been made on the compilation of
data-parallel programming languages like C*. By
translating to C*, we allow the C* compiler to solve
the problems of temporary management and loop

fusion, at least for programs that manipulate par­
allel variables of the basic arithmetic types. For
programs that use parallel variables of user class
types, our approach inherits the compilation chal­
lenges of C++. Our code efficiency will be no bet­
ter or worse than that produced by the existing
C++ compilers.

7 CONCLUSIONS

We have investigated the feasibility of supporting
a data-parallel programming model within unal­
tered C++. This is done by providing a hierarchy
of data-parallel classes. Our system is based upon
the C* programming model, but relies heavily on
extensions to C*, such as the elemental function.

Our approach, although not changing the C++
syntax, does require the user to program at a lower
level for some operations, most notably for context
manipulation. We need to experiment with more
test programs in order to better understand this
tradeoff, as well as other advantages and disad­
vantages of our notation.

Work on a parallel implementation is still in the
design stage. A key question to be researched is
what limitations will need to be placed on the
C++ programmer in order to allow the effective
translation to C*.

Whether or not an explicit translation to C* is
performed, we strongly believe that effective im­
plementation of data-parallel C++ dialects on
massively parallel architectures will require the in­
corporation of the technology that has been devel­
oped for the compilation of data-parallel pro­
gramming languages. This requires the clear
identification of operations that can be executed
elementally, thus empowering an implementation
to choose an execution order that makes best use
of resources. And, in fact, this approach will also
allow better code to be generated for serial ma­
chines than would be feasible using the conven­
tional C++ compilation strategies.

APPENDIX 1

A Sample Program: Calculation of'"

This program computes an approximation to 1r by
using numerical integration to find the area under
the curve 4/(1 + x 2) between 0 and 1 [3, 13]

202 LICKL Y A.">D HATCHER

#define INTERVALS 100000

main {

}

Shape shp (INTERVALS) ;

double sum = 0. 0;

Pari th (double) r (shp) ;
Pari th (double) rr (shp);

r = (pcoord(shp, 0) + .5)
I INTERVALS;

rr = 4.0/(l.O+r*r);

sum += rr;

sum = sum/INTERVALS
cout ((sum ((" This is the PI

sum \n";

REFERENCES

[1] W. Hillis and G. Steele Jr .. ·'Data parallel algo­
rithms."' Communications ACU. yoJ. 29. pp.
1170-1183. 1986.

:21 J. Frankel, A Reference Description of the C*
Language. Technical Report TR-2.5.3. Cam­
bridge. MA: Thinking ~lachines Corporation.
1991.

[3] P. Hatcher and ~1. Quinn, Data-Parallel Pro­
gramming on ,HJMD Computers. Cambridge. MA:
~1IT Press, 1991.

'4] A. Grimshaw. An 1 ntroduction to Parallel Object-

Oriented Programming with Mental, Technical
Report 91-07, LniYersity of Virginia. 1991.

[5] K. ChanJy and C. Kesselman .. CC++: A Declara­
tive Concurrent Object Oriented Programming
Notation. Pasadena: California Institute of Tech­
nology, 1992.

[6] F. Bodin, P. Beckman. D. Gannon. S. :'\arayana,
and S. Yang. Distributed tC++: Basic Ideas for
an Object Parallel Language. Bend. OR: 001\­
SKI. 199:3.

[7] J. Larus, B. Richards. and G. Viswanathan. C**:
A Large-Grain, Object-Oriented. Data-Parallel
Programming Language. Technical Report
1126. Lniyersity of Wisconsin, 1992.

[8] S. Pope. DPar-Data Parallel C++. Los Alamos,
.">~1: Los Alamos '1/ational Laboratory, 1990.

[9] T. Dennehy, Class Libraries as an Alternative to
Language Extensions for Distributed Program­
ming. Proceedings uf the CSENJ.Y Symposium un
Experience With Distributed and Multiprocessor
Systems, 1992. pp. 313-321.

[10] D. Quinlan and M. Lemke. P+ +,A Parallel C++
Array Class Library, OOiV-SKJ. 1993.

[11] A. Robinson, A. Ames, H. Fang. D. Pavlakos. C.
Vaughan, and P. Campbell, JHassive(y Parallel
Computing, C++ and J!.ydrocode Algorithms. Al­
buquerque, NM: Sandia 1\ational Laboratories.
1992.

[12: T. Bossomaier and D. Stewart. A hstracl Data
T,ypes for !ligh Performance Data Parallel Com­
puting? Canberra: Australian .\'ational LniYer­
sity, 1993.

[13] R. G. Babb. II. Programming Parallel Processors.
Reading, MA: Addison-Wesley. 1988.

[14 J A. Lapadula and K. Herold, A Retargetable C*
Compiler and Run-Time Library for c'vlesh-Con­
nected Ml/HD Multicomputers. Technical Report
92-1.5, Lniversity of :\ew Hampshire, 1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

