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ABSTRACT 

Our goal is to apply the software engineering advantages of object-oriented program­
ming to the raw power of massively parallel architectures. To do this we have con­
structed a hierarchy of C++ classes to support the data-parallel paradigm. Feasibility 
studies and initial coding can be supported by any serial machine that has a(++ 
compiler. Parallel execution requires an extended Cfront, which understands the data­
parallel classes and generates C* code. (C* is a data-parallel superset of ANSI C 
developed by Thinking Machines Corporation.) This approach provides potential por­
tability across parallel architectures and leverages the existing compiler technology for 
translating data-parallel programs onto both SIMD and MIMD hardware. © 1994 John 

Wiley & Sons, Inc. 

1 INTRODUCTION 

The data -parallel programming model is based on 
the simultaneous execution of the same operation 
across a set of data [ 1]. Yfost scientific and engi­
neering problems, and many others, have data­
parallel solutions. The model's single locus of 
control simplifies design, implementation, and 
debugging of programs. The model is high level, 
which greatly enhances the portability of pro­
grams across sequential, SIMD, and YIIMD plat­
forms. For these reasons data-parallel program­
ming environments are a crucial requirement to 
allow a wide range of users to exploit massively 
parallel computers. 

To be most effective a data-parallel program­
ming environment must have three important 
characteristics. 
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1. It should be based on synchronous execu­
tion semantics. The programming model 
presented to the user should be single 
threaded. 

2. It should support virtual processors. The 
programmer should be able to write pro­
grams independent of the number of physi­
cal processors available. 

3. It should provide a shared-memory pro­
gramming model. The cost of accessing the 
memory may be nonuniform, but the user 
should be able to access all locations by 
name. 

We characterize systems with these three proper­
ties as strongly supporting data-parallel program­
ming. 

C* is a data-parallel superset of ANSI C devel­
oped by Thinking Yfachines Corporation [2]. C* 
strongly supports data-parallel programming. C* 
programs can be translated for efficient execution 
on both SIYID and YIIMD parallel hardware [ 3]. 
However. the fact that C* is a superset of C is 
problematic for many potential users. First, being 
a superset, C* requires programmers to learn new 
syntax and semantics. Second, many users would 
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prefer that C* be based on C++ rather than C. 
They would like to use the object-oriented meth­
odology when programming parallel computers. 
This article reports on an initial study of the feasi­
bility of integrating the C* programming model 
within unaltered C++. 

The template feature of C++ version 3.0 offers 
a powerful mechanism to emulate the data-paral­
lel constructs of C* without leaving the syntax of 
C++. A template can be used with a ''parallel 
object" class to allow instantiation of parallel ob­
jects of different types. Our goal is to exploit the 
potential efficiency and portability of explicitly 
data-parallellanguages within the context of con­
ventional C++ code. 

The first step has been the creation of a hierar­
chy of C++ classes to support the data-parallel 
paradigm as presented in C*. These classes may 
be used to define parallel objects. The resulting 
aggregate objects may be manipulated elementally 
by most of the C++ operators in a fashion similar 
to the C* aggregate operators. An organization of 
these classes has been defined and implemented 
in C++ and can be executed on any machine with 
a C++ version 3.0 compiler. 

Our future complementary implementation 
strategy will be to produce a C++ to C* translator. 
This translator will exploit knowledge of the data­
parallel class hierarchy in order to generate C* 
code. This will provide automatic portability to 
any parallel platform that has a C* compiler.* The 
strategy also allows us to leverage the rapidly de­
veloping compilation technology for data-parallel 
programming languages. 

2 RELATED WORK 

There is currently intense interest in object-ori­
ented programming, and even in object-oriented 
parallel programming. A host of research projects 
are underway investigating the use of object-ori­
ented programming languages on parallel or dis­
tributed computing platforms. There is even a 
large number of projects studying C++ for paral­
lel hardware. Our work can be distinguished from 
these projects by our design goals: 

*This. of course, includes Thinking :VIachines' Connection 
Machine familv. In addition. in another project, we are investi­
gating the implementation of C* for a variety of MIMD hard­
war". including the Intd Delta/Paragon [14: and clusters of 
Cnix workstations. 

1. Support strongly the data -parallel para­
digm. 

2. Tolerate no changes to C++. 
3. Allow "automatic" generation of imple­

mentations for parallel hardware. 

Ylentat [4] and CC++ [5] are both dialects of 
C++ designed to exploit parallel hardware. Both 
languages are most effective as SPMD program­
ming environments. Neither language strongly 
supports the data-parallel model as they require 
the programmer to explicitly perform synchroni­
zation and communication through dataflow-like 
mechanisms. Both languages are extensions to 
C++. 

pC + + [ 6] and C** from the Cniversity of Wis­
consin [7] both strongly support the data-parallel 
model. However, both languages are extensions to 
C++. pC+ +also differs from our work in that it is 
building on the high performance Fortran instan­
tiation of the data-parallel programming model, 
whereas we begin with the C* programming 
model. C**-Wisconsin is based on a "copy-in, 
copy-out" semantics for the application of func­
tions to parallel aggregates. We believe the imple­
mentation of such semantics is problematic in C­
hased languages, at least in the short term. We 
offer alternative function application semantics 
similar to what is proposed for pC + +. 

DPar is a language for which preliminary de­
signs were investigated at Los Alamos National 
Laboratory [8]. DPar attempts to extract C*'s 
data-parallel extensions to C and apply them to 
C++. The key difficulty. which is also encoun­
tered in our work and the work with pC + +, is 
deriving rules for allowing objects to have both 
parallel and sequential instantiations. Although 
the DPar approach would strongly support data­
parallelism, the language is constructed by ex­
tending C++ with C* constructs. Our approach is 
also to try to apply the C* extensions to C++, but 
within the existing syntax and semantics of C++. 

A number of efforts are investigating the con­
struction of application-specific class libraries 
with intemal parallelism [9-11:. The basic ap­
proach is to design a library with broad applicabil­
ity and then have experts port its intemals for 
each parallel machine. For the appropriate appli­
cations this approach strongly supports the data­
parallel paradigm. The user may be totally un­
aware that multithreaded hardware is being 
exploited. This approach does not rely on any ex­
tensions to C++. However, the internals of the 
libraries must be ported "by hand" for each target 
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machine. The goal of our approach is to allow a 
C* compiler to be used to provide portability of 
user-written application -specific classes. 

This goal is shared by the C** programming 
environment being developed by researchers at 
the Australian .1'\ational Cniversity [12]. They also 
support the C* programming model in C++ by 
providing an appropriate set of classes. They 
embed macro calls in the C++ code and have 
instantiations of these macros for either generat­
ing "straight" C++ code or for generating C* 
code. Their motivation was to provide a C* -like 
programming environment on workstations for 
teaching purposes. Consequently, their approach 
does not combine the object-oriented and data­
parallel paradigms-rather they use the object­
oriented features of C++ to provide a C* environ­
ment. Csers are constrained in what objects can 
be instantiated as parallel by the need to generate 
C* code by macro expansion. Our eventual strat­
egy is to provide an extended Cfront (Cfront*) that 
both converts C++ features to C and implements 
parallel objects via C* code. 

3 THE C* PROGRAMMING LANGUAGE 

Our work is based on integrating the C* program­
ming model within unaltered C + + . This section 
describes the C* programming model and is orga­
nized around the example program in Figure 1. 
This program implements the Jacobi algorithm to 
find the steady-state temperature distribution on 
an insulated two-dimensional (2-D) plate, given 
constant boundary conditions. 

C* introduces a new data type, the shape type, 
that describes array-like objects that are operated 
on in parallel. A shape specifies the rank, dimen­
sions, and layout of explicitly parallel data. 
Shapes can be used in the declaration of arith­
metic, structure, and union types. When a decla­
ration includes both a base type and a shape type, 
then a parallel object is declared consisting of an 
object of the base type at each position of the 
shape. Line 5 of Figure 1 declares a shape and 
lines 6-9 declare a set of parallel variables. t 

Parallel objects can be operated on in parallel 
via the overloading of standard C operators. The 
operator is applied as if simultaneously at each 
position of the shape. To specify a parallel opera­
tion, a current shape must first be established by a 

t C* also includes a Boolean data type, used in line 6 of 
Figure 1. 

1. #include <math.h> 

2. ldefine SIZE 128 I• Resolution of grid •I 
3. ldefine TEMP 50.0 I• Arbitrary cut-off •I 
4. ldefine EPSILON 0.1 

5. shape [SIZE] [SIZE] cell; 

6. bool:cell active; /• 0 if cell boundary; 1 otherwise •/ 
7. float:cell change; /• Change in temperature •/ 
8. float :cell new; I• Newly calculated temperature •I 
9. float :cell old; I• Previous temperature •I 

10. main () { 

11. float max err; 
12. int cool_cells; 

I• Largest change in temp. over grid •/ 
I• Number of cells with temp. < TEMP •I 

13. with (cell) { I• Initialize grid •I 
14. where ((!pcoord(O)) II (!pcoord(l)) II (pcoord(1) == 
15. (SIZE-1))) { 
16. active = 0; 
17. old =new = 0.0; 
18. } else where (pcoord(O) == (SIZE-1)) { 

19. active = 0; 
20. old = new = 100.0; 
21. } else { 
22. active= 1; 
23. new = 50.0; 
24. } 

25. do { I• Compute steady-state temperatures •I 
26. where (active) { 

27. old = new; 
28. new= ([.-1] [.]old+ [.+1] [.]old+ 
29. [.] [.+1]old + [.] [.-1]old) I 4.0; 
30. change = fabs(old-new); 

31. 
32. 

33. 

maxerr = >'?= change; 

} while (maxerr > EPSILON); 

34. cool_ cells = (+= (new < TEMP)); 
35. } 

36. printf ( 11 There are %d cells cooler than %5.2f degrees\n 11
, 

37. cool_cells, TEMP); 
38. } 

FIGURE 1 Example C* program for the Jacobi algo­
rithm. 

with statement. A where statement is provided 
for masking off positions of the current shape. 
Lines 13-24 of Figure 1 use the overloaded as­
signment operator to initialize parallel variables. 
The pcoord intrinsic function creates a parallel 
value of the current shape with each position con­
taining its coordinate along the specified axis. 

C* also overloads most of the assignment oper­
ators to perform reductions of parallel values to a 
single sequential value. Line 34 of Figure 1 uses 
the +=operator to perform a sum reduction com­
puting the number of positions whose new tem­
perature is less than the cut-off temperature, 
TEMP.:j: 

:j: C* has added two new binary operations for min, (?, and 
max,)?, which also have reduction forms,(?= and)?=. The 
max reduction operator,)?= is used on line 31 of Figure 1 to 
control the enclosing loop. 
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C* allows parallel variables to be indexed. 
However, parallel variables are not arravs and in­
dexing a parallel variable may be exp-ensive on 
machines where the parallel variable is spread 
across the distributed memories of a set of proces­
sors. To emphasize this potential inefficiency, the 
index operator is moved to the left of the indexed 
variable. When indexed by sequential indices, the 
left index operator produces a sequential value. 
When indexed by parallel indices, the left index 
operator produces a parallel value. 

The dot is used as a shorthand notation within 
a left index expression. The dot stands for a 
pcoord call on the axis being indexed. This al­
lows for the convenient referencing of neighboring 
values in a shape. Lines 28-29 demonstrate the 
reference of the four neighboring values in a 2-D 
shape. 

4 C++ CLASSES FOR DATA-PARALLELISM 

This section describes the classes that we have 
designed and implemented to support a C* pro­
gramming model within C++. 

4.1 Shapes 

A Shape class is provided to define shape objects 
that perform the same role as C* shapes. They 
contain the basic sizing and organization informa­
tion needed to define parallel variables. Parallel 
variables are only compatible if they have the 
same underlying shape object. Constructors are 
provided for optionally defining the rank and di­
mensions of the shape. 

Examples: 

Shape shp1 (7); 
Shape shp2 (64, 64) ; 
Shape shp3; 

The Shape class includes member functions 
that emulate C* intrinsics: posi tionsof, 
rankof, and dimof. 

Examples: 

int i,j,k; 

i shpl. posi tionsof () ; 
j shpl. rankof () ; 
k shp2. dimof (1); 

4.2 Parallel Variables 

The Pvar class template is the mechanism for de­
fining parallel variables. Pvar takes a single tem­
plate argument that specifies the type of the object 
being instantiated as a parallel. The constructors 
for Pvar objects take a shape as an argument, 
which defines the shape of the item being created. 

Examples: 

Pvar (float) 
Pvar (int) 
Pvar (Polygon) 
Pvar (Polyline) 

time (shp2) ; 
distance (shp1); 
pg (shp1); 
pl (shp1) ; 

The Pvar class includes member functions that 
emulate C* intrinsics: shapeof, posi tionsof, 
rankof, and dimoff. As in C* the latter three 
query the parallel variable's underlying shape. 

Examples: 

shp3 = pg. shapeof () ; 
i pl.positionsof(); 
j distance.rankof(); 
k time. dimof (1); 

Additional member functions exist to emulate 
C* operators that do not exist in "overloadable" 
form in C++: the left-index operator and unary 
forms of the reduction operators. For sequenti~l 
indices the left-index function produces a refer­
ence that can act as either an lval or an rval. (Par­
allel left indices will be discussed in Section 5. 3.) 

Examples: 

i = distance. lindex (5); 
time. lindex(8,i) = 1.7; 
pl.positionsof(); 
distance.rankof(); 
time.dimof(1); 

Note that the term "parallel variable" is a mis­
nomer. The Pvar class is also used to represent 
intermediate results that cannot appear as lvals. 

4.3 The Pcoord Intrinsic 

The C* pcoord intrinsic is provided as a function 
that takes two arguments: a shape and an axis 
number. It returns an integer Pvar of the given 
shape. Choosing to implement pcoord as a func­
tion, and not as a member of the Shape class, was 
simply a matter of aesthetics-we prefer the func­
tion call syntax (pcoord (shape, axis) ) in this 
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case over the member function call syntax 
((shape. pcoord (axis). We are still debating 

this issue, and in fact many of the intrinsics dis­
cussed above as member functions are replicated 
in the implementation as functions. 

4.4 Manipulating Context 

Shape objects include context information that in­
dicates which positions of the shape are currently 
active (not masked off). Functions are provided 
for manipulating the context. In C* a syntactic 
construct, the where statement, allows the stack­
ing of context information. Because we are unwill­
ing to modify the syntax of C++, we provide a set 
of functions to stack and unstack contexts. The 
where function accepts a Pvar object, which 
must have an underlying integer type, and modi­
fies the context associated with the shape of the 
Pvar object. As in the C* where, our where func­
tion pushes a new context that is formed from 
constricting the previous context according to the 
values in the input object. The endwhere func­
tion pops the top of the context stack. The else­
where function pops the top of the context stack, 
complements the popped context, optionally con­
stricts the complemented context, and then 
pushes the result. 

Examples: 

where (adub < sdub) 
elsewhere() ; 
elsewhere (adub > 9); 

endwhere () ; 

4.5 Function Semantics 

C*, of course, allows functions that accept and 
return parallel values. These functions execute as 
if fully synchronous: as if there is a synchroniza­
tion prior to entry; as if the body executes syn­
chronously at the operator level (as if the operands 
are fetched at all positions of the active shape be­
fore the operator is evaluated at any position); 
and, as if there is a synchronization upon retum. 
This functionality is easily emulated in our system 
by functions that accept and retum Pvar objects. 

In addition our system provides elemental 
functions. Elemental functions are executed as if 
there is a function call performed at every position 
of the active shape. Each invocation of the func­
tion proceeds as if independently with only a syn­
chronization upon retum. This requires that the 
elemental function have no state between calls (no 

static locals) and no side effects (no wntmg to 
globals). Member functions of classes that are 
provided as template arguments to the Pvar class 
have elemental semantics when applied to parallel 
objects. This imposes a restriction on the classes 
that can be instantiated as parallels: member 
functions that will be applied to parallels must 
have no state and no side effects. 

We also allow functions to be declared to be 
elemental. This is particularly useful for providing 
parallel versions of the common math functions: 
sin, cos, etc. 

4.6 The Pvar Class Hierarchy 

Actually there are a collection of classes that pro­
vide the parallel variable capability. There are a 
set of base classes that are abstract, and concrete 
classes derived from them. The members of this 
class hierarchy are: 

1. PbaseO: an abstract class that serves as the 
base for all parallel variables. It has all the 
basic operations that are common to all 
classes. 

2. Pvar: a concrete class that is derived from 
PbaseO. It is used for collections of classes 
or structures without overloadings of the 
usual arithmetic operators. 

3. Pbasel: an abstract class derived from 
PbaseO. This class has overloadings for the 
usual arithmetic operators. 

4. Pari th: a concrete class derived from 
Pbasel. It has full support for the arith­
metic operators, and expects its template 
argument to also fully support the arith­
metic operators. Pari this used mostly with 
the builtin arithmetic types, int, float, etc. 

5. Pbase2: an abstract class derived from 
Pbasel. It supports parallel container 
classes for parallel arithmetic objects. It 
adds generic operations for groups of arith­
metic objects. 

6. Ptensor: a concrete class derived from 
Pbase2. It is a generic class for compound 
arithmetic types that are treated in a uni­
form fashion. 

The abstract classes are not directlv used bv us-. . 
ers. They simply support the implementation of 
the concrete classes. 

The class hierarchy exists primarily to ease the 
burden on the programmer. The user of the 
Pari th class must provide overloadings for all the 
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usual arithmetic operators for classes supplied as 
the template argument to Pari th. A programmer 
solving a non-numeric problem might find the 
Pvar class more convenient. However, the 
Pari th class allows arithmetic expressions in­
volving parallel variables to be written in the C* 
style-a very concise notation. For example: 

Shape shp (100) ; 
Pari th(double) x (shp) 
Pari th(double) y (shp) 
Pari th(double) z (shp) 

x = y + z; 

The overloading of the arithmetic operators re­
quires that parallel operands be of the same 
shape. Sequential operands are promoted to par­
allel. 

1. linclude <Pvar .h> 
2. hnclude <Pmath.h> 

The user may also derive classes using this 
class hierarchy. We have experimented with this 
facility by building two additional classes. The 
Pvector class is derived from Pbase2 and sup­
ports parallel variables containing a vector at each 
position. The Pma tr ix class supports parallel 
variables containing a matrix at each position. 

4.7 The Jacobi Example Recast 

Figure 2 recasts the C* program of Figure 1. Line 
1 provides access to our parallel variable class hi­
erarchy. Line 2 provides elemental definitions of 
the standard math functions. (Line 30 contains 
an elemental application of the f abs function.) 
Lines 28-29 describe the four-point Jacobi up­
date. We have used functions to hide the complex 
left-index function calls that are required. The 
complexity is due to the fact that we do not have a 

3. I define SIZE 128 
4. ldefine TEMP 50.0 

I• Resolution of grid •I 
I• Arbitrary cut-off •I 

5. ldefine EPSILON 0.1 

6. Shape cell(SIZE,SIZE); 

7. Parith <int> active( cell); 
8. Parith <float> change(cell); 
9. Parith <float> new(cell); 
10. Parith <float> old(cell); 

11. main 0 { 

I• 0 if cell boundary; 1 otherwise •I 
I• Change in temperature •I 
I• Newly calculated temperature •I 
I* Previous temperature *I 

12. float max err; 
13. int cool_ cells; 

I• Largest change in temp. over grid •/ 
I• Number of cells with temp. < TEMP •I 

14. where ((!pcoord(cell,O)) II (!pcoord(cell,1)) II 
15. (pcoord(cell,1) == (SIZE-1))) ; 

16. old= new= 0.0; 
17. active = 0; 
18. elsewhere (pcoord(cell,O) == (SIZE-1)) 

19. active = 0; 
20. old= new = 100.0; 
21. elsewhere() ; 
22. active = 1; 

23. new = 50.0; 
24. endwhere () ; 

25. do { I• Compute steady-state temperatures •I 
26. where (active) 
27. old = new; 
28. new = (west(old) + north(old) + 
29. east (old) + south(old)) I 4. 0; 
30. change = fabs(old-new); 
31. maxerr = max(change); 
32. endwhere () ; 
33. } while (max err > EPSILON); 

34. cool_cells = sum(new < TEMP); 

35. printf ( 11 There are Y.d cells cooler than %5.2f degrees\n 11
• 

36. cool_ cells, TEMP); 
37. 

FIGURE 2 Example C++ program for the Jacobi algorithm. 
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feature corresponding to the C* dot operand. For 
example, the following implements north in terms 
of the left-index function: 

old. lindex(pcoord(cell,O) ,modmod 
(pcoord(cell,l)-l,dimof(cell,l))) 

:Kote that we also must provide a modmod integer 
function, corresponding to the C* %% operatoL to 
support the torus-like behavior expected by the 
Jacobi program. 

Lines 31 and 34 contain the max-reduction 
and sum-reduction operations, respectively, ex­
pressed as functions. 

Another example program is given in the Ap­
pendix. 

5 LIMITATIONS AND DIFFERENCES 
FROM C* 

Our current approach has several significant limi­
tations. We also provide a programming model 
that differs from C* on a few points. This section 
itemizes these shortcomings and differences. 

5.1 No Overloading of the Selection 
Operator 

A significant limitation in our approach is encoun­
tered because the member selection operator can­
not be overloaded in C + + . When a parallel vari­
able is created with a base type defined by a user 
class, the user may like to elementally access the 
member functions via the dot operator. 

For example, suppose a user has a class named 
Circle and a function in that class named 
getRadius. A parallel variable could be declared 
as follows: 

Pvar (Circle) pc (shpl) ; 

The user may very well then want to write: 

pc. getRadi us () ; 

The intent is to have another parallel variable cre­
ated in which each position contains the result of 
applying getRadi us at that position. However, 
because we cannot overload the "." operator, the 
above will fail because the member function is be­
ing applied to a Pvar object rather than a Circle 
object. 

To compensate we require the user to declare 
which member functions can be applied elemen­
tallv. This declaration takes the form of a macro 
call applied to the member function name. For 
our serial implementation the macro expands into 
an overloaded global (i.e., nonmember) function 
definition of the same name. The function iterates 
through the active positions and calls the member 
function on the object stored at each position. 
Therefore, instead of member function call syn­
tax, the user must utilize a conventional function 
call: 

getRadius (pc); 

A benefit to this approach is that global func­
tions can also be declared to be invoked elemen­
tally on a parallel object. These declarations, as 
with the case of member functions, take the form 
of a macro invocation. Again, for our serial imple­
mentation, a new function is generated that ac­
cepts and returns parallel values by repeatedly 
calling the underlying function at each position. 

The macros are complicated by the need to 
have the return type as well as all parameter types 
provided as macro arguments. Currently, different 
macros are provided for different numbers of pa­
rameters. For the above example the macro call 
would be: 

Pelemental_member_Q 
(double, getRadius); 

For a global function that takes two integer pa­
rameters and returns a double, the macro call 
would be: 

Pelemental_global_2 
(double,globfuncname, int, int); 

Elemental functions must adhere to the restric­
tions outlined in Section 4.5. These restrictions 
require that the function keep no state and modify 
no globals. Our current implementation has no 
means to enforce these restrictions however. 

5.2 Lack of a Syntactic Where Construct 

C* has a where statement, explicit syntax to sup­
port the manipulation of context. The syntax 
cleanly supports the nesting of context manipulat­
ing operations. For example, the popping of con­
text is done automatically upon exit from the 
where statement. 
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Our system implements context manipulation 
via function calls, with no compile-time checking 
of constraints on the placement of the functions. 
However, to allow "dean" C* code to (eventually) 
be generated, the programmer must use our con­
text manipulation functions in a manner sup­
ported by the C* where and else statements. 

The user is also responsible for performing an 
explicit endwhere at the appropriate times. This 
is clearly a low-level and potentially error-prone 
operation. This is one clear situation where our 
refusal to introduce new svntax has burdened the 
programmer. 

We do enforce a run-time constraint on the 
placement of these functions. .Keither the 
endwhere nor the elsewhere statement take a 
shape as a parameter. These functions are as­
sumed to manipulate the last (at runtime) stacked 
context. 

5.3 Problems with Lvals 

Currently, parallel left-index operations may only 
be used as rvals. Our implementation produces a 
new parallel value, rather than a reference. We 
cannot produce a reference because this could 
produce incorrect semantics in the case. where a 
value is wanted (in the presence of other opera­
tions that might be side-effecting the variable be­
ing referenced). And, at the function call level, we 
cannot tell whether the result will be used as an 
lval or an rval. 

Our eventual solution most probably will be to 
provide two functions: one to create a value and 
one to produce a reference. This again is a situa­
tion where we require the programmer to program 
at a slightly lower level than in C*. 

A similar problem exists with elemental func­
tions that return references. Our implementation 
currently produces a parallel variable containing 
the values, rather than the references. 

5.4 Conversion Difficulties 

The usual C/C+ + conversions that apply to arith­
metic types do not work automatically for our par­
allel types. The attempt to combine a parallel int 
and parallel double will generate an incompatible 
type error by the C++ compiler. It would be nice if 
the C++ compiler (and language) would produce 
the usual conversions in these cases. We are still 
investigating workable solutions. Extensive over-

loading of all the possible combinations is a po­
tential but lengthy solution. 

5.5 Shape Checking 

All checking to ensure that variables have identi­
cal shapes is done at runtime. As in C*, this 
means that the two shapes must be derived from 
the same shape variable, not just that the shape 
has the same form. However, we do not support 
the C* compile-time "intermediate shape equiva­
lence test on parallel variable usage" [2, p. 17]. 

5.6 C* Extensions 

Our system anticipates several changes to C* that 
we believe to be essential. For example, elemental 
functions are very useful for incorporating into 
parallel programs code written for serial applica­
tions. In addition they provide an escape hatch 
into a less constrained control flow model. 

We also support a limited form of parallel 
pointers. We do not preclude a user class that 
contains a pointer from being instantiated as a 
parallel object. Our interpretation is that the 
pointer will point ''locally,'' within the same posi­
tion of the shape. (Of course, in our current imple­
mentation we cannot provide any compile-time 
check to ensure the assumption is accurate.) 

Finally, our system does not support the C* no­
tion of "current shape." There is no with con­
struct to establish the current shape, and code 
using different shapes can be mixed. For exam­
ple, 

Shape sl (100) ; 
Pvar (int) x (sl) 

Shape s2 (50, 50); 
Pvar (int) y (s2) ; 

int z; 

z = sum(x) + sum(y); 

All these changes are being discussed by the 
Data-Parallel C Extensions (DPCE) subgroup of 
the Numerical C Extensions Group (.KCEG, A.KSI 
X3J11.1 ). DPCE has taken the C* reference man­
ual as its "base document" and hopes to provide 
a final set of recommendations based upon addi­
tions and deletions to C*. We anticipate features 
similar to those provided by the above changes to 
appear in the final DPCE report. 
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61MPLEMENTATION STRATEGY 

6.1 Sequential Implementation 

Our serial implementation has been done on a 
workstation using the Gnu C++ compiler. We are 
using version 2.3.3. It should be compatible with 
C++ version 3.0. 

The serial implementation was undertaken to 
verify feasibility of concept and to learn how to 
develop a language set that was truly compatible 
with C++; would be compilable by a current 
C++ compiler: and would execute with the de­
sired results. What we have attempted to produce 
is a run-time model that will cope with the myriad 
of C++ class and function combinations and vet 
be compatible with the C* execution paradigm. 

The implementation is woefully inefficient and 
no attempt has been made to correct this. The 
implementation is characterized by many small 
loops with the results stored in temporaries that 
are allocated just for that purpose. No attempt has 
been made to manage the temporaries in a wise 
fashion. Likewise, no attempt has been made to 
reduce the many low-level loops by loop fusion or 
by other analytical techniques. 

6.2 C* Implementation 

We believe that an effective C++ to C* preproces­
sor can be built. The obvious reason for this belief 
is that we have designed our data-parallel class 
library with the special characteristics of C* in 
mind. Our shape class is the exact counterpart of 
the shape variable in C*. Our parallel classes are 
congruent to the parallel variable construct of C*. 
Therefore, we expect that the translation of our 
parallel constructs to C* to be a relatively easy 
process. 

The nonparallel code is either straight C code 
or translatable to C as is done by Cfront. This 
should be handled in the same manner as Cfront 
does currently, because C* is nothing more than 
an extended C. So the C++ to C* translator that 
we envision is a Cfront with the extra capabilities 
to detect our special data-parallel class constructs 
and move them directly to C*. We call this special 
preprocessor, Cfront*. 

The advantage of this approach lies in the 
leveraging of existing technology. Considerable 
progress has been made on the compilation of 
data-parallel programming languages like C*. By 
translating to C*, we allow the C* compiler to solve 
the problems of temporary management and loop 

fusion, at least for programs that manipulate par­
allel variables of the basic arithmetic types. For 
programs that use parallel variables of user class 
types, our approach inherits the compilation chal­
lenges of C++. Our code efficiency will be no bet­
ter or worse than that produced by the existing 
C++ compilers. 

7 CONCLUSIONS 

We have investigated the feasibility of supporting 
a data-parallel programming model within unal­
tered C++. This is done by providing a hierarchy 
of data-parallel classes. Our system is based upon 
the C* programming model, but relies heavily on 
extensions to C*, such as the elemental function. 

Our approach, although not changing the C++ 
syntax, does require the user to program at a lower 
level for some operations, most notably for context 
manipulation. We need to experiment with more 
test programs in order to better understand this 
tradeoff, as well as other advantages and disad­
vantages of our notation. 

Work on a parallel implementation is still in the 
design stage. A key question to be researched is 
what limitations will need to be placed on the 
C++ programmer in order to allow the effective 
translation to C*. 

Whether or not an explicit translation to C* is 
performed, we strongly believe that effective im­
plementation of data-parallel C++ dialects on 
massively parallel architectures will require the in­
corporation of the technology that has been devel­
oped for the compilation of data-parallel pro­
gramming languages. This requires the clear 
identification of operations that can be executed 
elementally, thus empowering an implementation 
to choose an execution order that makes best use 
of resources. And, in fact, this approach will also 
allow better code to be generated for serial ma­
chines than would be feasible using the conven­
tional C++ compilation strategies. 

APPENDIX 1 

A Sample Program: Calculation of'" 

This program computes an approximation to 1r by 
using numerical integration to find the area under 
the curve 4/(1 + x 2 ) between 0 and 1 [3, 13] 
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#define INTERVALS 100000 

main { 

} 

Shape shp (INTERVALS) ; 

double sum = 0. 0; 

Pari th (double) r (shp) ; 
Pari th (double) rr (shp); 

r = (pcoord(shp, 0) + .5) 
I INTERVALS; 

rr = 4.0/(l.O+r*r); 

sum += rr; 

sum = sum/INTERVALS 
cout (( sum (( " This is the PI 

sum \n"; 
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