
Object-Oriented Support for Adaptive
Methods on Parallel Machines

SANDEEP BHATTI, MARINA CHEN2 , JAMES COWIE2 , CHENG-YEE LIN2 , AND PANGFENG LIU2

1Bell Communications Research, Morristown, NJ 07962
2Department of Computer Science, Yale University, New Haven, CT 06520

ABSTRACT

This article reports on experiments from our ongoing project whose goal is to develop a
C++ library which supports adaptive and irregular data structures on distributed mem­
ory supercomputers. We demonstrate the use of our abstractions in implementing "tree
codes" for large-scale N-body simulations. These algorithms require dynamically
evolving treelike data structures, as well as load-balancing, both of which are widely
believed to make the application difficult and cumbersome to program for distributed­
memory machines. The ease of writing the application code on top of our C++ library
abstractions (which themselves are application independent), and the low overhead of
the resulting C++ code (over hand-crafted C code) supports our belief that object­
oriented approaches are eminently suited to programming distributed-memory ma­
chines in a manner that (to the applications programmer) is architecture-independent.
Our contribution in parallel programming methodology is to identify and encapsulate
general classes of communication and load-balancing strategies useful across applica­
tions and MIMD architectures. This article reports experimental results from simulations
of half a million particles using multiple methods. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

Broadly speaking, parallel programs are written in
either of two styles. In the reactive style of pro­
gramming, the user specifies the local computa­
tion and interaction between individual proces­
sors. On the other hand, within the global style,
the user invokes operations on global data struc­
tures: the local behavior of each processor is de­
rived by the underlying programming language
implementation.

The message-passing programming paradigm,
an example of the former, has been used in re­
search and development of parallel programs for

at least a decade. High Performance Fortran
(HPF) [1], however, is the result of a recent effort
in supporting the latter. By and large, HPF inher­
its the Fortran programming model, whose imple­
mentations support array computation most effi­
ciently. From a standpoint similar to HPF, our
goal is to adapt C++ (or some other object-ori­
ented language) for the global style of parallel pro­
gramming, but to stress the language interfaces
and implementation strategies that will provide
significant data structure support inC++ where it
is lacking in HPF. *

Received April 1993

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2. pp. 179-192 (1993)
CCC 1058-9244/94/040179-14

* Fortran90, the base language of HPF, has adequately
addressed derived data structure issues, and paid a great deal
of attention to pointers. HoweveL HPF is currentlv based on a
subset of Fortran90 where the distribution of such derived
data structures is not addressed. Fortran90 also lacks object­
oriented support, which appears to pose a limitation for con­
structing flexible and specializable distributed data structures.

179

180 BHATT ET AL.

The application that motivates this work is N­
body simulation [2, 3], which presents several
challenges:

1. Data structures for solving such problems
may change in a noncontinuous fashion
during computation; for example, a small
change in a particle location can result in a
tree node removed from one subtree and
grafted onto another.

2. For true scalability, it is desirable that data
structures be built, accessed, and updated
in an incremental and distributed fashion.

3. Data reference patterns need to be com­
puted dynamically because they change
continuously during the computation. This
situation is different from that of sparse ma­
trix computations where a reference pattern
can be learned, cached, and reused at run­
time [4, 5].

4. Data must be redistributed to processors to
maintain load balance.

By way of analogy with Fortran90/HPF, we
know that whatever distributed data structure
we support must have global operators analogous
to Fortran90 array intrinsics (e.g., CSHIFT,
EOSHIFT) and data distribution directives analo­
gous to BLOCK and CYCLIC strategies in HPF.
Yet to meet these challenges, we can no longer
retain a single-layered application-system inter­
face such as that implied by HPF.

A more general treatment of distributed derived
data structures will require freer control and data
flow between application and system modules.
The challenges that seem considerably harder for
derived data structures than for arrays are to sup­
port resolution between global and local naming
spaces, as well as fine coordination between struc­
ture traversal and per-element computation. This
style of interface, in turn, requires linguistic mech­
anisms such as polymorphic classes and functions
(called templates inC++, not to be confused with
TEMPLATE in HPF).

From the user's standpoint, the distributed
data structure (DDS) run-time system is a layer
beneath an object-oriented application data
structure (e.g .. a tensor library [6]) that an appli­
cation writer may define and an end-user may in­
herit and refine for a specific problem [T. Figure
1 illustrates this layered approach.

The DDS layer is common to multiple machines
but optimized for porting to each machine. Thus,
it shields the user from the details of machine ar-

Applications (Potential Field[BP91], N-body Simulation)

Application Data Structures

(Tensor Library[Bud91], BH-Tree)

Distributed Data Structures

(PARRAY, PLIST, PTREE)

Base Language Data Types

(Integer. Real, Double,

Array. Record)

~Iachines

Communication

Primitives

(u niprocessor/MPsh /Cube /Fat·tre<')

FIGURE 1 The layered approach.

chitecture. The DDS layer also contains a library
of distribution classes from which a user mav
choose a particular strategy for the specific algo­
rithm at hand. Clearly. the distribution class
library writer, analogous to a compiler writer
responsible for implementing the BLOCK or CY­
CLIC strategy, needs much more intimate knowl­
edge of the DDS run-time system than the appli­
cation writer.

We now focus on one type of DDS. a distributed
tree called PTREE for discussing the run-time
system organization.

1.1 PTREE: Top Level Overview

PTREE separates tree operations into two inter­
acting run-time subsystems, link traversal and
per-node computation. A tree traversal begins as
a single-link traversal to the logical root. following
which control alternates between single-link tra­
versal and per-node evaluation until the traverse
is complete.

A third subsystem, the mailbox module .. sup­
ports the sending of raw or typed data between
any two nodes, using some application-supplied
global addressing method. Complex application­
specific protocols for PCT and GET. involving
multiple synchronization and communication
phases, can be constructed from this primitive
basis.

These three logical PTREE subsystems are in­
dependent of the physical implementation. de-

OBJECT-ORIE;\;TED Sl'PPORT FOR PARALLEL MACHII'ES 181

PTREE-APP: Logical per-node PTREE-SYS: Logical link-level
...... 0 0 0 0 -.- ~ 0 0. 0 0 0. 0. 0

External: fca/ar
Computat!on

Node-By-fode
Node Action Processor 1-----~------l

Travers~/
Link Traverser

External:

Top-level PTREE

Traverse/Deliver

Interface
. . :
; ... ! ·······························}

Node-By-Node
PUT- and GET-service

Remote Node

Local/Remote Link
Resolution

Mailbox Class
Communication

1-----i-----l Distribution Model
Address j ervice

.
PTREE-SYS: Logical point-to-point PTREE-SYS: Physical link-level

FIGURE 2 Modules, ownership, and control flow within PTREE.

coupling logical tree operations from knowledge
about the extent or topology of the underlying pro­
cessor space. To accomplish this, a fourth subsys­
tem, the distribution module, provides key ser­
vices to the other three, resolving logical link
traversals and global mailbox addresses to either
local pointers or remote processor/pointer pairs.

Implementation of the subsystems takes place
in stages. The physical details of distribution are
coded as one class, the logical protocols for tra­
versal and delivery in another two, and the per­
node computations in a fourth. Application de­
tails (distinguishing specific instances of user
trees) are separated from generic tree operations,
and these in turn from details of their multiproces­
sor instantiations. This top-level structure for
PTREE is shown in Figure 2.

1.2 Related Work

Significant use of object-oriented technology in
scientific computing and its advantage has been
demonstrated [8-1 0 J. C++ has been adapted for
parallel computing in a variety of contexts: PARA­

GO:\" C [11] supports distributed arrays; P++ [12:
employs array class extensions specialized for
concurrent structured -grid computation; PC++
[13, 14] contains distributed data structures such
as arrays, priority queues, lists, etc., which can be
distributed using directives such as whole, block,
cyclic, random: and CC + + [151 is compositional
language that allows a program to be built from

parts that are based on different programming
styles and models.

The rest of the article is organized as follows:
We show the key components of a PTREE run­
time system and their interactions via an applica­
tion tree Geo_ tree in Section 2. Mechanisms for
maintaining a distributed data structure and al­
lowing adaptive remapping are described. The
concept of structural coherence is introduced.
Max-scan, an example of a global tree operator,
is used to illustrate the link traverse and per-node
computation dichotomy as well as the relationship
between logical data transfer versus physical com­
munication. Section 3 describes an !V-body simu­
lation code written using classes of the PTREE
system and some preliminary performance find­
ings. Some future directions are discussed in Sec­
tion 4.

2 DISTRIBUTED DATA STRUCTURES:
AN EXAMPLE

Our goal is to provide the user with the perception
of a global data structure while efficiently imple­
menting it as a collection of local data structures
on the processors of a scalable, distributed-mem­
ory machine. Let us begin with an example tree,
called Geo_ tree, which represents a two-dimen­
sional (2-D), rectangular domain that is divided
recursively into smaller domains as shown in Fig­
ure 3a where the subdivisions are the children

182 BHATT ET AL.

X= -5 I

I

I

1A
I

I

IB
I

I

I

I

I c I

I

I

I

(-16, -16)

(a) Recursive subdivision of
a rectagular domain .

(16,16)

A B

Branch label:

...

ill
~

.... , Region [(-8, 0), (0, ~)j I
(b) A uniprocessor tree representation.

. ····t
• I •

2

• C:

A: • I A: . : B .
••••••••••••••••• 1 ••••••••••••••••••••••••••••••••••

: ••••••••••••••••••••••••••••••••••••••• I. ••••• : • : • :

. ················
...

(c) Tree partition onto two processors.

FIGURE 3 Distribution strategy that is based on the ORB method.

nodes of the original domain. The global tree (or a
uniprocessor implementation of it) and its branch
labels are shown in Figure 3b.

A distributed implementation of traversal and
computation over Geo_ tree takes the form of
four cooperating run-time subsystems: tree distri­
bution, per-node computation. link traversal, and
point-to-point mailbox services.

2.1 Distribution Module: Mechanisms to
Keep Track of the Global Structure

Once a global encoding and distribution strategy
for a data structure such as Geo_ tree has been

determined, its operations can be coded and
managed in the form of a distribution class. Any
distribution class will have two major compo­
nents: distributed system state and system ser­
vices, implemented, respectively, as private class
data and public class methods.

2.1.1 Encoding, Partitioning, Sharing
Strategy

As shown in Figure 4, tree nodes have an encod­
ing, in this case, just the coordinates of the lower
left and upper right comers of the rectangular
boxes.

OBJECT-ORIE:\'TED SLPPORT FOR PARALLEL MACHINES 183

Encoding: the region corresponding to the node.

Node B: [(-8, 0), (0, 8)]

r------'-: _x_=_-_5 ___ ____,(16, 16)

(-16, -16)

Rendezvous-Site Function:

Directory:

Top-level Region: [(-16, -16), (16, 16))

Binary Decision Tree:

Directory

look-up
Region Geometric Center ---------;~ Processor ID

Node B: [(-8, 0), (0, 8)) (-4,4) -4 > -5 P1

FIGURE 4 Encoding, global directory, and rendezvous-site function.

This Geo_ tree, in reality, is distributed to
multiple processors, where computations are car­
ried out on each of its parts and the partial results
are merged in some ways so as to achieve the same
effect as the uniprocessor implementation. Figure
3c shows the Geo_ tree partitioned into two parts
by a bisection line. Some tree nodes in the global
tree are replicated on more than one processor
because the bisection line passes through the
boxes these nodes represent.

Thus, the distributed implementation of a
global tree node can be a set of shared nodes,
each representing a portion of the box. A particu­
lar node of this node set, which is colored black in
Figure 3c, is called the rendezvous site of the
shared nodes. The rendezvous site is where the
partial results from each processor are merged
and sent back to other shared nodes in the same
set. In this example, the rendezvous site of a set of
shared nodes is the node representing the portion

of a box that contains the geometric center of that
box.

2. J .2 System State

The distribution class tracks which nodes are
shared between processors, where each associ­
ated rendezvous site resides, and which edges
leaving these nodes actually lead off-processor.
For Geo_ tree, this means building a private ta­
ble on each processor describing the geometric
bounding boxes owned locally, as well as the de­
gree of spatial overlap between the coverage pro­
vided by "neighboring" processors.

To locate an arbitrary node in the tree, the dis­
tribution class also maintains a path prefix direc­
tory, which can be used locally to reconstruct the
global tree distribution. In the Geo_ tree exam­
ple, the directory consists of the representation of
the 2-D domain and a binary decision tree that

184 BHATT ET AL.

.---------=:_x_=_-_5 ___ __,(16, 16)

- - - - - -;

y=2
1 - - - - - - - - - -
I y = -3

(-16, -16)

Directory for distribution on 4 processors:

Top-level Region: [(-16, -16), (16, 16)]

Binary Decision Tree:

FIGURE 5 Global directory for partitions on to four processors.

encodes the bisection lines. Figure 5 illustrates the
directory structure for a four-processor imple­
mentation of the tree.

2.1.3 System Services

Using these fragments of system state, the distri­
bution class provides certain services to applica­
tion code, including the resolution of global node
encoding to processor/pointer pairs, determina­
tion of whether a given node is locally resident,
and interception of edge-traversals that leave the
resident node set.

These services are rarely used in their raw form;
rather, they participate in the design by the appli­
cation writer of more abstract interfaces such as
global Traverse, Deliver, and Remapping (de­
scribed later) over the Geo_ tree.

2.2 Per-Node Functions: Computational
Kernels

Traditionally, tree computations are expressed as
single decision and computation routines, exe­
cuted on each visit to a tree node, which compute
results from node contents and "decide" which of
the children to visit, and in what order.

The per-node class provides a basis for sepa­
rating the processes of decision and computation
from the system implementation. In the case of
Geo_ tree used in the context of JV-bodv simula­
tion, a geometric traversal must decide at each
node, based on particle density and the bounding
box size, whether to accumulate results from sub­
bisections or to settle for the current approxima­
tion.

This can be expressed as a public method of
the per-node class that repeatedly passes control
to the Geo_ tree link traverser for each child visit,
accumulating a final result to be returned to the
link traverser responsible for the original incoming
tree edge.

2.3 Link Traverse: Neighbor Access

The link-traverser class provides the "control
glue'' to carry out each of the traversal requests
made by per-node methods. To accomplish this,
the traverser makes use of the link resolution ser­
vice provided by the system in the Geo_ tree
distribution class.

This corresponds, in Geo_ tree, to making
transitions between bounding boxes, pursuing the
bisection tree into smaller and smaller regions
of the problem space, potentially wandering out
of the set of bounding boxes resident on this
processor.

2.4 Mail Boxes: Point-to-Point Access

The mailbox class provides a basis for direct
node-to-node data transfer. Like link traversaL
mailboxes work at the purely logical level, relying
on the distribution class to resolve target node en­
coding to processor I pointer pairs.

In Geo_ tree. mailboxes are used to construct
methods for tree accesses that do not respect bi­
section boundaries (i.e., dataflow between bound­
ing boxes that are spatial neighbors, but not tree
siblings under the given bisection scheme). By us-

OBJECT-ORIENTED SGPPORT FOR PARALLEL MACHINES 185

ing the distribution class services to identify
shared nodes, mailboxes can also be used to make
local results available to other sharing-set partici­
pants and to pack multiple incoming results ac­
cording to a rule (such as maximum, exclusive-oL
or first-arrival).

2.5 Global Operations

Using these four interacting run-time subsystems,
the application writer builds derivative methods
implementing more abstract global operations
over Geo_ tree. Some examples of characteristic
global operations of this type are, in increasing
order of complexity and specialization:

1. Traverse and Deliver, which do not modify
tree structure and, therefore, distributed
svstem state

2. Insert and Delete, which modify distributed
system state but can be coded as specializa­
tions of Traverse and Deliver

3. Remap, which provides very high-level
support for an adaptively load-balanced
Geo_ tree class

Two basic derivative methods with natural ap­
plication for Geo_ tree are Traverse and Deliver.
Traverse, which performs the distributed local
equivalent of a global tree traversal, computes a
(generally associative, nondestructive) function
from data in the nodes encountered along the
way. Deliver performs data migration en masse
among processors to propagate local results
among sharing sets, synthesizing a global result.

2.5. 7 Traverse

Global Traverse can be defined as a per-node
program, guiding the computation and visitation
of children. To implement the global Traverse, the
per-node and link-traversal subsystems repeat­
edly trade control to carry out a traversal of each
processor's local resident subtree. To determine
whether a tree link wanders out of the resident
node set.. the link traverser consults the Geo
_tree distribution class. When this occurs, pro­
cessors must synchronize and partial results must
be communicated through each rendezvous site.

2.5.2 Deliver

This communication phase is implemented in De­
liver bv a combination of both local traversal
(again, via the per-node and link-traverser sub-

systems) and point-to-point mailbox traffic (the
mailbox subsystem). For many functions (asso­
ciative, nondestructive), Traverse and Deliver are
completely separable, as only one global synchro­
nization is required. Others, with multiple com­
munication phases, will require Traverse and De­
liver to be mutually recursive, and to execute as
paired coroutines. We give more details of this
process in the later discussion of "structural co­
herence."

As an example, operation max-scan is defined
as a scan operation on the global Geo
_tree such that field max of each node is as­
signed the maximum of the value fields of its de­
scendants (Fig. 6). This global operation can be
implemented as a call to the Traverse function
followed by a call to the Deliver function; Traverse
computes partial results (local maxima) for all the
nodes on the local tree, and then Deliver combines
the partial results into final results by accumulat­
ing the local maxima on the shared nodes into the
"home" nodes resident at the rendezvous site.

2.5.3 Insert and Delete

Given these basic methods, node insertion and
deletion can be coded as traversal and delivery
processes that modify the tree structure, using
more complicated per-node functions that com­
bine normal traversal-oriented search with logic to
sever and create tree edges. Again, the distribu­
tion class must be consulted to correctlv handle
insertion and deletion of shared nodes. and to
keep the distributed system state coherent.

2.5.4 Remapping

What happens if we want to change the distribu­
tion due to change of workload represented by
each tree node? Suppose the new bisection line for
Geo_ tree is now x = 2 as shown in Figure 7a.
The updated directory and the new distribution,
shared nodes. and rendezvous sites are shown in
Figure 7.

Fortunately, the Geo_ tree remapping can be
expressed in terms of elemental insertion and de­
letion, serialized across processors. The Remap
method can therefore take the form of a simple
wrapper around insertion and deletion, plus some
coordinating code between each processor in­
stance of the distribution class to determine the
serialization ordering. Additional optimizations to
pursue might include on-line hatching of the In­
sert and Delete orders in some consistent way.

186 BHATT ET AL.

12 10 9 7 4 15 7 8 12 10 9 7

(a) Initial values and final results of max-scan on a uniprocessor tree.

I

:···· ···t···· ········ .. ········:

• 11:

12 6: : 9 7 • I 10: , ; 5 . 4
••••••••••••••••• 1 ••••••••••••••••••••••••••••••••••

: ••••••••••••••••••••••••••••••••••••••• 1 •••••• : .:.:

(b) Traverse phase for the tree distributed onto 2 processors.
Each local tree has partial results .

• . ·t

• 1(

I

15

P1

12 10 :9 7 , I 10: , : 9 . 4 15
' • • ••• • •• • •••••••• L ••••• • • • • • ••••••••••••• • • ••• • ••• •

: ••••••••••••••••••••••••••••••••••••••• 1 •••••• : .:.:

• 0 ••••••••••• ••••••••••••••••••••••••••••••••••••••

..........

(c) Deliver phase for local trees.
The partial results in shared nodes are combined into final results.

FIGURE 6 Compute max-scan on distributed trees.

7 8

2.6 Structural Coherence

Finally, we want to bring attention to the way we
distribute and build a correct ensemble of local
structures that is equivalent to the global struc-

ture. Clearly, in general, partltwning a global
structure built from an input data set would not
necessarily yield the same result as partitioning
the input set and then building the local trees.
Figure 8a shows a uniprocessor in-order search

OBJECT-ORIE~TED SCPPORT FOR PARALLEL MACHI~ES 187

X= -5 I X= 2

(-16, -16)

B

: ~ (16,16)
Directory:

Top-level Region: [(-16, -16), (16, 16)]

Binary Decision Tree:

Rendezvous-Site Function: Directory

look-up
Geometric Center ------=-----:~ Region Processor ID

Node b: [(-8, 0), (0, 8)] (-4, 4) -4 < 2 PO

(a) Adjust the bisection line.

I -~-

3

E F:

• D:

E:
•••••• "I •••••••••••• :· ••••••••••••••••• ·:· ••••••••••••

~ - --... -.... - - - ' .. -......... - .. - -.

(b) New distribution with bisection line x = 2.

FIGURE 7 Remapping: Adjust the bisecting line.

F

tree built from an input set of key and value pairs.
Figures 8b and c contrast two different ways of
distributing the global tree, and the erroneous
result one might get for a distributed data struc­
ture that does not have structural coherence. The

forest on the left is a result of dividing the input set
into two portions, one for each processor, and
then building two local in-order trees. The forest
on the right has shared nodes and is obtained by
preprocessing the input set by recursively bisect-

188 BHATT ET AL.

Inputs (key, value): (D, 5), (B, 2), (F, 6), (C, 3), (E, 9), (A, 4), (G, 2).

4 3 9 2 4 3 9 2

(a) Initial values and final results for max-scan on a uniprocessor inorder search tree.

Distribution by partitioning inputs

: ~ · · ·~· · · ;s·: shared node
:\!V I @:

_/······:·····~
® : ®

c£"© : ~'©
Distribution by processing inputs with

recursive bisection method

(b) Two different tree distributions onto 2 processors.
The distribution on the left builds incoherent local search trees, while
the distribution on the right builds coherent local trees .

. 9
• .5 I •

:~:

4~ (~
ci"© : ~'©

4 3 9 2

(c) Find max-scan results:
incorrect values for a distributed that is NOT structurally coherent.

FIGURE 8 Structural coherence.

OBJECT-ORIENTED SUPPORT FOR PARALLEL MACHINES 189

ing the input set using "good" pivot elements that
help to generate a balanced global tree. Such pre­
processing can be done on a central host, but
large problems would require a distributed bisec­
tion sort over some arbitrary or random input dis­
tribution (fortunately, there exist many good par­
allel algorithms that accomplish this). For on-line
problems, the input stream should be hatched so
that the preprocessing can be done incrementally
and distributed over the processor set with amor­
tized cost.

3 APPLICATION: N-BODY SIMULATION

3.1 Problem Description

Computational methods to track the motions of
particles that interact with one another have been
the subject of extensive research for many years.
So-called "N-body" methods have been applied
to problems in astrophysics, semiconductor de­
vice simulation, molecular dynamics, plasma
physics, and fluid mechanics. In this section we
consider the example of gravitational N-body sim­
ulation.

The gravitational N-body simulation is simply
stated as follows. Given the initial positions and
velocities of N particles, update their positions
and velocities every T time-steps. The instantane­
ous acceleration on a single particle can be di­
rectly computed by summing the contributions
from each of the other N- 1 particles. Although
this method is conceptually simple, its O(N2)

arithmetic complexity rules it out for large-scale
simulations.

Beginning with Appel [16] and Barnes and Hut
[2], there has been a flurrv of interest in faster
algorithms for large-scale particle simulations.
The number of operations per time-step is O(N)
for Appel's method, and O(N log N) for the
Barnes-Hut algorithm provided the particles are
uniformly distributed in physical space.
Greengard [17] presented an O(N) algorithm that
is provably correct to any fixed accuracy. How­
ever, because of the complexity and overhead in
the fully adaptive version of Greengard's algo­
rithm, the algorithm of Barnes and Hut continues
to enjoy application in astrophysical simulations.

All these N-body algorithms are based on a di­
vide-and-conquer strategy. The basic idea is to
group particles within an oct-tree, which is used to
calculate interactions. Because the above algo­
rithms share the tree structure in common, they
are all commonly referred to as "tree codes."

To organize particles into a hierarchy of clus­
ters, the Barnes-Hut algorithm computes an oct­
tree partition of the 3-D box (region of space) en­
closing the set of particles. The partition is
computed recursively by dividing the original box
into eight octants of equal volume until each indi­
vidual box contains exactly one particle. t Each
internal node of the BH-tree represents a cluster.
Once the BH-tree has been built, the centers-of­
mass of the internal nodes are filled in a bottom­
up phase.

The tree codes all exploit the idea that the effect
of a cluster of particles at a distant point can be
approximated by a small number of initial terms
of an appropriate power-series. The Barnes-Hut
algorithm uses a single-term, center-of-mass ap­
proximation.

To compute accelerations, we perform a top­
down BH-tree traversal for each particle. When
the traversal reaches an internal node, we com­
pute the distance between the particle and the box
of this internal node.:j: If the distance is less than
RAmcs(box)/0 then the particle visits each of the
children recursively; otherwise, the acceleration
due to the cluster is approximated by a single two­
body interaction between the particle and a point
mass located at the center-of-mass of the cluster.

Once the accelerations on all the particles are
known, the new positions and velocities can be
computed. The entire process, starting with the
construction of the BH-tree, is then repeated for
the desired number of time-steps.

3.2 Distribution Strategy: ORB Class

The orthogonal recursive bisection (ORB) is a
well-known method for distributing particles to
multiple processors by recursively bisecting a
given region along alternating dimensions such
that each subregion contains an approximately
equal number of particles. This goal is to keep the
processes load balanced. Our example Geo
_tree. an abstraction of the BH-tree, uses this
same method over a 2-D domain.

InN-body simulation, the particles are first dis­
tributed onto processors by using ORB. Each pro­
cessor builds a local portion of the BH -tree with its

t In practice it is more efficient to truncate each branch
when the number of particles in its subtree decreases below a
certain fixed bound.

:j: The distance measured can be either the distance from
the particle to the center-of-mass, or to the boundary of the
box, and this distance can be in any preferred metric. The
radius of a box is simply the length of a side of the box.

190 BHATT ET AL.

own share of particles. All the local trees share the
same root corresponding to the enclosing region of
all particles. Because the region for a node can be
shared (or split) by more than one ORB partition.
such nodes are shared between a set of processors
to keep the tree structurally coherent-the super­
position of local trees is equivalent to the global
tree.

For the node encoding scheme. the geometric
center of a node uniquely defines the node's posi­
tion, i.e., path and depth, in the global tree. The
global directory replicated across all processors
contains ORB bisection information. represented
as a binarv decision tree as shown in the Geo
_tree example.

The node-to-processor mapping can be de­
rived by looking up the geometric center of a node
in the directory. This mapping also determines the
rendezvous site of a set of shared nodes.

3.2. J Generic Distributed Tree:
PTREE Class

The support for distributed tree structures con­
sists of two parts: (1) a polymorphic C++ class for
defining a distributed tree structure, and (2) poly­
morphic functions for applying computation and
communication on the tree structure. An applica­
tion tree class is defined by customizing PTREE
with type parameters for (1) the input data list for
tree building, (2) the actual contents of a tree
node, and (3) the distribution stratet,'Y·

3.2.2 Customizing PTREE: BH-Tree Class

BH-tree is the main data structure in this applica­
tion, it customizes the PTREE class template by
supplying the types of particle lists, the node con­
tents, and the ORB distribution.

3.2.3 Per-Node Functions for
BH-Tree Class

To perform global operations on the BH-tree. the
application needs to supply the node computa­
tional kernels specific to this applications. One
per-node function compares the geometric centers
of the input node with the node currently being
visited to determine if the search has terminated
and, if not. which branch to extend the search
along. Another wraps the particle data from an
input list into a node to be inserted into the tree.

3.2.4 Structural Modification and
ORB Remapping

In this application, particles move in space during
the simulation, which may cause load imbalance
and trigger remapping. Particles may move out of
the region represented by a BH-tree leaf. causing
the leaf to be deleted from the tree: conversely,
when a particle enters a spatial region represented
by a given BH-tree node., that leaf node may spliL
spawning a new subtree. In particular. when a
particle moves across the boundary of ORB subre­
gions, interprocessor communication is involved.
Function de 1 i ver together with PTREE class
per-node functions perform the interprocessor
node movement in a wav consistent with the
global tree structure.

The ORB class provides a hierarchical remap­
ping function to rebalance the workload in an in­
cremental way. Instead of remapping on a global
scale. the remapping is confined to processors
within imbalanced regions.

The remapping process works in a top-down
fashion. On each level of bisection:

1. Check whether the load difference between
the two sides of bisection is within a balanc­
ing threshold.

2. If true, remapping is not necessary on this
level. ;\love down to the bisections on both
sides.

3. Otherwise:
(a) Adjust the current bisecting plane to

balance the load on both sides (using
per-node functions with lookup service
from the ORB class).

(b) Relocate particles with respect to the
adjusted bisection (a simplified version
of the method used for structural
change mentioned above).

(c) Recursively adjust the bisections on
both sides.

3.2.5 Some Preliminary Performance
Findings

To determine the overhead due to the object-ori­
ented abstraction, a hand-written C version was
compared with the C++ version using the PTREE
distributed data structure. The hand-coded ver­
sion is based on traversals of lists and trees,
whereas the C++ version uses derived classes to
encapsulate the same algorithm. For the experi­
ments, a half million particles are simulated on a
64-node iPSC/860 machine. This shows a rea-

OBJECT-ORIEi\\TED SLPPORT FOR PARALLEL YIACHii\\ES 191

Step thand(ms) tPTREE(ms) Overhead(%)

Update BH-tree
list deliver 2937 3116 6.1

list tr·averse 46 52 -

Compute & transmit Center-of-Mass
tree traverse 558 635 13.8
tree deliver 374 415 11.0

Compute positions & velocities
tree deliver 7928 8086 2.0
list traverse 87917 88774 1.0
Move to new positions
list deliver 963 990 2.8

Remapping
list deliver 829 854 3.0

Total 1015.52 102922

FIGURE 9 Comparisons between handwritten and
PTREE version.

sonably good performance on PTREE version.
with less than 2% overhead over its hand-written
counterpart. ·With a 64-processor configuration
and 8 K particles per processor. Figure 9 summa­
rizes the comparisons of timing results of averag­
ing of 10 simulation steps for five runs.

These early experiments indicate that if BH­
tree performance is to scale well with problem
size. four sources of distributed overhead must be
amortized over the amount of per-node computa­
tion available:

1. The basic communication cost of maintain­
ing shared node sets, which must synchro­
nize and share partial tree results

2. The simple overhead of performing global
node insertions and deletions to model par­
ticle migration, exclusive of load-balancing
considerations

3. The cost of performing global load balanc­
ing, either incrementally or periodically, to
derive compact, balanced load trees within
each processor and a roughly equitable dis­
tribution of particles among all processors

4. The overhead of supporting a fine-grain in­
terface between application and system
code, consisting of compositions of many
lightweight class methods. with a significant
amount of time tied up performing function
calls

Paying the cost of adaptive load balancing
should help a BH-tree application recover some of
the overhead of sharing, insertion, and deletion. lf

the distributed tree can be kept globally in balance
and locally compacL the number and size of
shared node sets can be minimized. Furthermore.
load balancing reduces the average local path
length for search and computation, keeping down
costs of traversal and deliverv. as well as tree
maintenance.

Finally. our comparisons to C hand-coded ver­
sions of identical distributed algorithms suggest
that the last source of overhead, the only one that
arises from adherence to an object-oriented inter­
face, is not significant compared to the others.
which are common to any adaptive distributed
implementation.

It is important to note, though. that the perfor­
mance figures presented in the tables are prelimi­
nary, in that they represent runs on a single initial
distribution of particles. \\! e are planning further.
rigorous, experiments that will be reported in the
future.

4 CONCLUDING REMARKS

In the future, users will continue to require in­
creasingly generic, specializable, distributable,
flexible data structure packages. Explorations
with PTREE indicate that this will create certain
tensions for the implementors of object-oriented
languages, including future versions of C++.

Lnlike HPF -style parallel arrays. the new wave
of inheritable generic data structures will offer lit­
tle opportunity for lifting out large blocks of com­
mon functionality to be implemented as mono­
lithic library interfaces. Rather. distributed data
structure implementations will very likely require

1. A higher degree of coordination between
system and application code

2. A proliferation of lightweight methods for
providing small. encapsulated nm-time ser­
vices:

3. Attention to reducing the amount of state
retained bv each run-time subsvstem . .
thread, with an emphasis on continuation-
passing programming styles and reentrant
application code

4. ::Vlore aggressive compiler support for inlin­
ing, perhaps at the expense of restricting the
separate compilation model

::vlore people will likely participate in the design
of a distributed PTREE code than for an HPF
application, though, to manage this complexity by

192 BHATT ET AL.

stages. A "system provider" might well code the
underlying distribution class support, and a "data
structure developer" the global tree operations
(and the underlying common subsystems for per­
node and mailbox functionality). The end-user
would perform the final (hopefully relatively triv­
ial) instantiation and class linking required to ac­
tually embed the PTREE-derived library in a
given application. For example, theN-body simu­
lation will be written with a major user class BH­
Tree derived from the application classes Ceo Tree
and ORB, which in turn are defined in terms of the
system classes PTREE and DISTRIBCTE.

REFERENCES

[1] High Performance Fortran Fon1m, High Perfor-
mance Fortran Language Specification
(DRAFT). Version 1.0 Draft, January 1993.

[2] J. Barnes and P. Hut, "A hierarchical 0(:'-/log l\)
force-calculation algorithm," Nature, vol. 32, pp.
446-449, 1986.

[3] J. Salmon, "Parallel hierarchical N-body meth­
ods," PhD thesis, Caltech, 1990.

[4] L.-C. LuandM. Chen, Fourth WorkshoponLan­
guages and Compilers for Parallel Computing,
1991.

[5] J. Saltz, R. Mirchandaney, and K. Crowley,
"Run-time parallelization and scheduling of
loops," IEEE Trans. Comput. vol. 40, pp. 603-
612, 1991.

[6] K. G. Budge, Physlib: A C++ Tensor Class Li­
brary. Technical Report, Sandia National Labo­
ratories, Albuquerque, :'-1M, October 1991.

[7] K. G. Budge and J. S. Peery, A Numerical Repre­
sentation of Fields Using C++ Classes. Technical
Report, Sandia National Laboratories, July 1991.

[8] I. G. Angus and W. T. Thompkins, Data Storage
Concurrency, and Portability: An Object Ori­
ented Approach to Fluid Mechanics. Palos
Verdes Peninsula, CA: 1\"orthrop Research and
Technology Center, 1989.

[9] D. W. Forslund, C. Wingate, P. Ford, S. Junkins,
J. Jackson, and S. C. Pope, "Experiences in writ­
ing a distributed particle simulation code in
C++," USENIX C++ Conference, pp.1-19, 1990.

[10] J. S. Peery, K. G. Budge, and A. C. Robinson,
"Using C++ as a scientific programming ian­
guage," CUG11, 1991.

[11] C. M. Chase, A. L. Cheung, and A. P. Reeves,
The Paragon Programming Environment User's
Guide. Ithaca, NY: School of Electrical Engineer­
ing, Cornell Lniversity, 1991.

[12] M. Lemke and D. Quinlan, "P++, a parallel
C++ array class library for architecture-indepen­
dent development of stTIIctured grid applica­
tions," Workshops on Languages, Compilers,
and Run- Time Environments for Distributed
Memory Multiprocessors. Boulder, CO, 1992.

[13] J. K. Lee and D. Gannon, "Object-oriented par­
allel programming experiments and results," Su­
percomputing, 1991.

[14] S. X. Yang, J. K. Lee, S. P. l\arayana, and D.
Gannon, "Programming an astrophysics applica­
tion in an object-oriented parallel language," in
Scalable High Performance Computing Confer­
ence SHPCC. Williamsburg, VA: IEEE Press,
1992.

[15] K. M. Chandy and C. Kesselman, Compositional
C++: Compositional Parallel Programming.
Technical Report Caltech-CS-TR-92-13, Com­
puter Science Department, California Institute of
Technology, 1992.

[16] A. W. Appel, "An efficient program for many­
body simulation," SIAM]. Sci. Stat. Comput.,
vol. 6, pp. 85-103, 1985.

[17] L. Greengard, The Rapid Evaluation of Potential
Fields in Particle Systems. MIT Press, 1988.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

