
Object-Oriented Support for Adaptive 
Methods on Parallel Machines 

SANDEEP BHATTI, MARINA CHEN2 , JAMES COWIE2 , CHENG-YEE LIN2 , AND PANGFENG LIU2 

1Bell Communications Research, Morristown, NJ 07962 
2Department of Computer Science, Yale University, New Haven, CT 06520 

ABSTRACT 

This article reports on experiments from our ongoing project whose goal is to develop a 
C++ library which supports adaptive and irregular data structures on distributed mem­
ory supercomputers. We demonstrate the use of our abstractions in implementing "tree 
codes" for large-scale N-body simulations. These algorithms require dynamically 
evolving treelike data structures, as well as load-balancing, both of which are widely 
believed to make the application difficult and cumbersome to program for distributed­
memory machines. The ease of writing the application code on top of our C++ library 
abstractions (which themselves are application independent), and the low overhead of 
the resulting C++ code (over hand-crafted C code) supports our belief that object­
oriented approaches are eminently suited to programming distributed-memory ma­
chines in a manner that (to the applications programmer) is architecture-independent. 
Our contribution in parallel programming methodology is to identify and encapsulate 
general classes of communication and load-balancing strategies useful across applica­
tions and MIMD architectures. This article reports experimental results from simulations 
of half a million particles using multiple methods. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Broadly speaking, parallel programs are written in 
either of two styles. In the reactive style of pro­
gramming, the user specifies the local computa­
tion and interaction between individual proces­
sors. On the other hand, within the global style, 
the user invokes operations on global data struc­
tures: the local behavior of each processor is de­
rived by the underlying programming language 
implementation. 

The message-passing programming paradigm, 
an example of the former, has been used in re­
search and development of parallel programs for 

at least a decade. High Performance Fortran 
(HPF) [ 1], however, is the result of a recent effort 
in supporting the latter. By and large, HPF inher­
its the Fortran programming model, whose imple­
mentations support array computation most effi­
ciently. From a standpoint similar to HPF, our 
goal is to adapt C++ (or some other object-ori­
ented language) for the global style of parallel pro­
gramming, but to stress the language interfaces 
and implementation strategies that will provide 
significant data structure support inC++ where it 
is lacking in HPF. * 
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* Fortran90, the base language of HPF, has adequately 
addressed derived data structure issues, and paid a great deal 
of attention to pointers. HoweveL HPF is currentlv based on a 
subset of Fortran90 where the distribution of such derived 
data structures is not addressed. Fortran90 also lacks object­
oriented support, which appears to pose a limitation for con­
structing flexible and specializable distributed data structures. 
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The application that motivates this work is N­
body simulation [2, 3], which presents several 
challenges: 

1. Data structures for solving such problems 
may change in a noncontinuous fashion 
during computation; for example, a small 
change in a particle location can result in a 
tree node removed from one subtree and 
grafted onto another. 

2. For true scalability, it is desirable that data 
structures be built, accessed, and updated 
in an incremental and distributed fashion. 

3. Data reference patterns need to be com­
puted dynamically because they change 
continuously during the computation. This 
situation is different from that of sparse ma­
trix computations where a reference pattern 
can be learned, cached, and reused at run­
time [4, 5]. 

4. Data must be redistributed to processors to 
maintain load balance. 

By way of analogy with Fortran90/HPF, we 
know that whatever distributed data structure 
we support must have global operators analogous 
to Fortran90 array intrinsics (e.g., CSHIFT, 
EOSHIFT) and data distribution directives analo­
gous to BLOCK and CYCLIC strategies in HPF. 
Yet to meet these challenges, we can no longer 
retain a single-layered application-system inter­
face such as that implied by HPF. 

A more general treatment of distributed derived 
data structures will require freer control and data 
flow between application and system modules. 
The challenges that seem considerably harder for 
derived data structures than for arrays are to sup­
port resolution between global and local naming 
spaces, as well as fine coordination between struc­
ture traversal and per-element computation. This 
style of interface, in turn, requires linguistic mech­
anisms such as polymorphic classes and functions 
(called templates inC++, not to be confused with 
TEMPLATE in HPF). 

From the user's standpoint, the distributed 
data structure (DDS) run-time system is a layer 
beneath an object-oriented application data 
structure (e.g .. a tensor library [6]) that an appli­
cation writer may define and an end-user may in­
herit and refine for a specific problem [T. Figure 
1 illustrates this layered approach. 

The DDS layer is common to multiple machines 
but optimized for porting to each machine. Thus, 
it shields the user from the details of machine ar-
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FIGURE 1 The layered approach. 

chitecture. The DDS layer also contains a library 
of distribution classes from which a user mav 
choose a particular strategy for the specific algo­
rithm at hand. Clearly. the distribution class 
library writer, analogous to a compiler writer 
responsible for implementing the BLOCK or CY­
CLIC strategy, needs much more intimate knowl­
edge of the DDS run-time system than the appli­
cation writer. 

We now focus on one type of DDS. a distributed 
tree called PTREE for discussing the run-time 
system organization. 

1.1 PTREE: Top Level Overview 

PTREE separates tree operations into two inter­
acting run-time subsystems, link traversal and 
per-node computation. A tree traversal begins as 
a single-link traversal to the logical root. following 
which control alternates between single-link tra­
versal and per-node evaluation until the traverse 
is complete. 

A third subsystem, the mailbox module .. sup­
ports the sending of raw or typed data between 
any two nodes, using some application-supplied 
global addressing method. Complex application­
specific protocols for PCT and GET. involving 
multiple synchronization and communication 
phases, can be constructed from this primitive 
basis. 

These three logical PTREE subsystems are in­
dependent of the physical implementation. de-
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FIGURE 2 Modules, ownership, and control flow within PTREE. 

coupling logical tree operations from knowledge 
about the extent or topology of the underlying pro­
cessor space. To accomplish this, a fourth subsys­
tem, the distribution module, provides key ser­
vices to the other three, resolving logical link 
traversals and global mailbox addresses to either 
local pointers or remote processor/pointer pairs. 

Implementation of the subsystems takes place 
in stages. The physical details of distribution are 
coded as one class, the logical protocols for tra­
versal and delivery in another two, and the per­
node computations in a fourth. Application de­
tails (distinguishing specific instances of user 
trees) are separated from generic tree operations, 
and these in turn from details of their multiproces­
sor instantiations. This top-level structure for 
PTREE is shown in Figure 2. 

1.2 Related Work 

Significant use of object-oriented technology in 
scientific computing and its advantage has been 
demonstrated [ 8-1 0 J. C++ has been adapted for 
parallel computing in a variety of contexts: PARA­

GO:\" C [11] supports distributed arrays; P++ [12: 
employs array class extensions specialized for 
concurrent structured -grid computation; PC++ 
[13, 14] contains distributed data structures such 
as arrays, priority queues, lists, etc., which can be 
distributed using directives such as whole, block, 
cyclic, random: and CC + + [ 151 is compositional 
language that allows a program to be built from 

parts that are based on different programming 
styles and models. 

The rest of the article is organized as follows: 
We show the key components of a PTREE run­
time system and their interactions via an applica­
tion tree Geo_ tree in Section 2. Mechanisms for 
maintaining a distributed data structure and al­
lowing adaptive remapping are described. The 
concept of structural coherence is introduced. 
Max-scan, an example of a global tree operator, 
is used to illustrate the link traverse and per-node 
computation dichotomy as well as the relationship 
between logical data transfer versus physical com­
munication. Section 3 describes an !V-body simu­
lation code written using classes of the PTREE 
system and some preliminary performance find­
ings. Some future directions are discussed in Sec­
tion 4. 

2 DISTRIBUTED DATA STRUCTURES: 
AN EXAMPLE 

Our goal is to provide the user with the perception 
of a global data structure while efficiently imple­
menting it as a collection of local data structures 
on the processors of a scalable, distributed-mem­
ory machine. Let us begin with an example tree, 
called Geo_ tree, which represents a two-dimen­
sional (2-D), rectangular domain that is divided 
recursively into smaller domains as shown in Fig­
ure 3a where the subdivisions are the children 
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FIGURE 3 Distribution strategy that is based on the ORB method. 

nodes of the original domain. The global tree (or a 
uniprocessor implementation of it) and its branch 
labels are shown in Figure 3b. 

A distributed implementation of traversal and 
computation over Geo_ tree takes the form of 
four cooperating run-time subsystems: tree distri­
bution, per-node computation. link traversal, and 
point-to-point mailbox services. 

2.1 Distribution Module: Mechanisms to 
Keep Track of the Global Structure 

Once a global encoding and distribution strategy 
for a data structure such as Geo_ tree has been 

determined, its operations can be coded and 
managed in the form of a distribution class. Any 
distribution class will have two major compo­
nents: distributed system state and system ser­
vices, implemented, respectively, as private class 
data and public class methods. 

2.1.1 Encoding, Partitioning, Sharing 
Strategy 

As shown in Figure 4, tree nodes have an encod­
ing, in this case, just the coordinates of the lower 
left and upper right comers of the rectangular 
boxes. 
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FIGURE 4 Encoding, global directory, and rendezvous-site function. 

This Geo_ tree, in reality, is distributed to 
multiple processors, where computations are car­
ried out on each of its parts and the partial results 
are merged in some ways so as to achieve the same 
effect as the uniprocessor implementation. Figure 
3c shows the Geo_ tree partitioned into two parts 
by a bisection line. Some tree nodes in the global 
tree are replicated on more than one processor 
because the bisection line passes through the 
boxes these nodes represent. 

Thus, the distributed implementation of a 
global tree node can be a set of shared nodes, 
each representing a portion of the box. A particu­
lar node of this node set, which is colored black in 
Figure 3c, is called the rendezvous site of the 
shared nodes. The rendezvous site is where the 
partial results from each processor are merged 
and sent back to other shared nodes in the same 
set. In this example, the rendezvous site of a set of 
shared nodes is the node representing the portion 

of a box that contains the geometric center of that 
box. 

2. J .2 System State 

The distribution class tracks which nodes are 
shared between processors, where each associ­
ated rendezvous site resides, and which edges 
leaving these nodes actually lead off-processor. 
For Geo_ tree, this means building a private ta­
ble on each processor describing the geometric 
bounding boxes owned locally, as well as the de­
gree of spatial overlap between the coverage pro­
vided by "neighboring" processors. 

To locate an arbitrary node in the tree, the dis­
tribution class also maintains a path prefix direc­
tory, which can be used locally to reconstruct the 
global tree distribution. In the Geo_ tree exam­
ple, the directory consists of the representation of 
the 2-D domain and a binary decision tree that 
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FIGURE 5 Global directory for partitions on to four processors. 

encodes the bisection lines. Figure 5 illustrates the 
directory structure for a four-processor imple­
mentation of the tree. 

2.1.3 System Services 

Using these fragments of system state, the distri­
bution class provides certain services to applica­
tion code, including the resolution of global node 
encoding to processor/pointer pairs, determina­
tion of whether a given node is locally resident, 
and interception of edge-traversals that leave the 
resident node set. 

These services are rarely used in their raw form; 
rather, they participate in the design by the appli­
cation writer of more abstract interfaces such as 
global Traverse, Deliver, and Remapping (de­
scribed later) over the Geo_ tree. 

2.2 Per-Node Functions: Computational 
Kernels 

Traditionally, tree computations are expressed as 
single decision and computation routines, exe­
cuted on each visit to a tree node, which compute 
results from node contents and "decide" which of 
the children to visit, and in what order. 

The per-node class provides a basis for sepa­
rating the processes of decision and computation 
from the system implementation. In the case of 
Geo_ tree used in the context of JV-bodv simula­
tion, a geometric traversal must decide at each 
node, based on particle density and the bounding 
box size, whether to accumulate results from sub­
bisections or to settle for the current approxima­
tion. 

This can be expressed as a public method of 
the per-node class that repeatedly passes control 
to the Geo_ tree link traverser for each child visit, 
accumulating a final result to be returned to the 
link traverser responsible for the original incoming 
tree edge. 

2.3 Link Traverse: Neighbor Access 

The link-traverser class provides the "control 
glue'' to carry out each of the traversal requests 
made by per-node methods. To accomplish this, 
the traverser makes use of the link resolution ser­
vice provided by the system in the Geo_ tree 
distribution class. 

This corresponds, in Geo_ tree, to making 
transitions between bounding boxes, pursuing the 
bisection tree into smaller and smaller regions 
of the problem space, potentially wandering out 
of the set of bounding boxes resident on this 
processor. 

2.4 Mail Boxes: Point-to-Point Access 

The mailbox class provides a basis for direct 
node-to-node data transfer. Like link traversaL 
mailboxes work at the purely logical level, relying 
on the distribution class to resolve target node en­
coding to processor I pointer pairs. 

In Geo_ tree. mailboxes are used to construct 
methods for tree accesses that do not respect bi­
section boundaries (i.e., dataflow between bound­
ing boxes that are spatial neighbors, but not tree 
siblings under the given bisection scheme). By us-
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ing the distribution class services to identify 
shared nodes, mailboxes can also be used to make 
local results available to other sharing-set partici­
pants and to pack multiple incoming results ac­
cording to a rule (such as maximum, exclusive-oL 
or first-arrival). 

2.5 Global Operations 

Using these four interacting run-time subsystems, 
the application writer builds derivative methods 
implementing more abstract global operations 
over Geo_ tree. Some examples of characteristic 
global operations of this type are, in increasing 
order of complexity and specialization: 

1. Traverse and Deliver, which do not modify 
tree structure and, therefore, distributed 
svstem state 

2. Insert and Delete, which modify distributed 
system state but can be coded as specializa­
tions of Traverse and Deliver 

3. Remap, which provides very high-level 
support for an adaptively load-balanced 
Geo_ tree class 

Two basic derivative methods with natural ap­
plication for Geo_ tree are Traverse and Deliver. 
Traverse, which performs the distributed local 
equivalent of a global tree traversal, computes a 
(generally associative, nondestructive) function 
from data in the nodes encountered along the 
way. Deliver performs data migration en masse 
among processors to propagate local results 
among sharing sets, synthesizing a global result. 

2.5. 7 Traverse 

Global Traverse can be defined as a per-node 
program, guiding the computation and visitation 
of children. To implement the global Traverse, the 
per-node and link-traversal subsystems repeat­
edly trade control to carry out a traversal of each 
processor's local resident subtree. To determine 
whether a tree link wanders out of the resident 
node set.. the link traverser consults the Geo 
_tree distribution class. When this occurs, pro­
cessors must synchronize and partial results must 
be communicated through each rendezvous site. 

2.5.2 Deliver 

This communication phase is implemented in De­
liver bv a combination of both local traversal 
(again, via the per-node and link-traverser sub-

systems) and point-to-point mailbox traffic (the 
mailbox subsystem). For many functions (asso­
ciative, nondestructive), Traverse and Deliver are 
completely separable, as only one global synchro­
nization is required. Others, with multiple com­
munication phases, will require Traverse and De­
liver to be mutually recursive, and to execute as 
paired coroutines. We give more details of this 
process in the later discussion of "structural co­
herence." 

As an example, operation max-scan is defined 
as a scan operation on the global Geo 
_tree such that field max of each node is as­
signed the maximum of the value fields of its de­
scendants (Fig. 6). This global operation can be 
implemented as a call to the Traverse function 
followed by a call to the Deliver function; Traverse 
computes partial results (local maxima) for all the 
nodes on the local tree, and then Deliver combines 
the partial results into final results by accumulat­
ing the local maxima on the shared nodes into the 
"home" nodes resident at the rendezvous site. 

2.5.3 Insert and Delete 

Given these basic methods, node insertion and 
deletion can be coded as traversal and delivery 
processes that modify the tree structure, using 
more complicated per-node functions that com­
bine normal traversal-oriented search with logic to 
sever and create tree edges. Again, the distribu­
tion class must be consulted to correctlv handle 
insertion and deletion of shared nodes. and to 
keep the distributed system state coherent. 

2.5.4 Remapping 

What happens if we want to change the distribu­
tion due to change of workload represented by 
each tree node? Suppose the new bisection line for 
Geo_ tree is now x = 2 as shown in Figure 7a. 
The updated directory and the new distribution, 
shared nodes. and rendezvous sites are shown in 
Figure 7. 

Fortunately, the Geo_ tree remapping can be 
expressed in terms of elemental insertion and de­
letion, serialized across processors. The Remap 
method can therefore take the form of a simple 
wrapper around insertion and deletion, plus some 
coordinating code between each processor in­
stance of the distribution class to determine the 
serialization ordering. Additional optimizations to 
pursue might include on-line hatching of the In­
sert and Delete orders in some consistent way. 
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FIGURE 6 Compute max-scan on distributed trees. 

7 8 

2.6 Structural Coherence 

Finally, we want to bring attention to the way we 
distribute and build a correct ensemble of local 
structures that is equivalent to the global struc-

ture. Clearly, in general, partltwning a global 
structure built from an input data set would not 
necessarily yield the same result as partitioning 
the input set and then building the local trees. 
Figure 8a shows a uniprocessor in-order search 
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F 

tree built from an input set of key and value pairs. 
Figures 8b and c contrast two different ways of 
distributing the global tree, and the erroneous 
result one might get for a distributed data struc­
ture that does not have structural coherence. The 

forest on the left is a result of dividing the input set 
into two portions, one for each processor, and 
then building two local in-order trees. The forest 
on the right has shared nodes and is obtained by 
preprocessing the input set by recursively bisect-
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ing the input set using "good" pivot elements that 
help to generate a balanced global tree. Such pre­
processing can be done on a central host, but 
large problems would require a distributed bisec­
tion sort over some arbitrary or random input dis­
tribution (fortunately, there exist many good par­
allel algorithms that accomplish this). For on-line 
problems, the input stream should be hatched so 
that the preprocessing can be done incrementally 
and distributed over the processor set with amor­
tized cost. 

3 APPLICATION: N-BODY SIMULATION 

3.1 Problem Description 

Computational methods to track the motions of 
particles that interact with one another have been 
the subject of extensive research for many years. 
So-called "N-body" methods have been applied 
to problems in astrophysics, semiconductor de­
vice simulation, molecular dynamics, plasma 
physics, and fluid mechanics. In this section we 
consider the example of gravitational N-body sim­
ulation. 

The gravitational N-body simulation is simply 
stated as follows. Given the initial positions and 
velocities of N particles, update their positions 
and velocities every T time-steps. The instantane­
ous acceleration on a single particle can be di­
rectly computed by summing the contributions 
from each of the other N- 1 particles. Although 
this method is conceptually simple, its O(N2) 

arithmetic complexity rules it out for large-scale 
simulations. 

Beginning with Appel [ 16] and Barnes and Hut 
[2], there has been a flurrv of interest in faster 
algorithms for large-scale particle simulations. 
The number of operations per time-step is O(N) 
for Appel's method, and O(N log N) for the 
Barnes-Hut algorithm provided the particles are 
uniformly distributed in physical space. 
Greengard [17] presented an O(N) algorithm that 
is provably correct to any fixed accuracy. How­
ever, because of the complexity and overhead in 
the fully adaptive version of Greengard's algo­
rithm, the algorithm of Barnes and Hut continues 
to enjoy application in astrophysical simulations. 

All these N-body algorithms are based on a di­
vide-and-conquer strategy. The basic idea is to 
group particles within an oct-tree, which is used to 
calculate interactions. Because the above algo­
rithms share the tree structure in common, they 
are all commonly referred to as "tree codes." 

To organize particles into a hierarchy of clus­
ters, the Barnes-Hut algorithm computes an oct­
tree partition of the 3-D box (region of space) en­
closing the set of particles. The partition is 
computed recursively by dividing the original box 
into eight octants of equal volume until each indi­
vidual box contains exactly one particle. t Each 
internal node of the BH-tree represents a cluster. 
Once the BH-tree has been built, the centers-of­
mass of the internal nodes are filled in a bottom­
up phase. 

The tree codes all exploit the idea that the effect 
of a cluster of particles at a distant point can be 
approximated by a small number of initial terms 
of an appropriate power-series. The Barnes-Hut 
algorithm uses a single-term, center-of-mass ap­
proximation. 

To compute accelerations, we perform a top­
down BH-tree traversal for each particle. When 
the traversal reaches an internal node, we com­
pute the distance between the particle and the box 
of this internal node.:j: If the distance is less than 
RAmcs(box)/0 then the particle visits each of the 
children recursively; otherwise, the acceleration 
due to the cluster is approximated by a single two­
body interaction between the particle and a point 
mass located at the center-of-mass of the cluster. 

Once the accelerations on all the particles are 
known, the new positions and velocities can be 
computed. The entire process, starting with the 
construction of the BH-tree, is then repeated for 
the desired number of time-steps. 

3.2 Distribution Strategy: ORB Class 

The orthogonal recursive bisection (ORB) is a 
well-known method for distributing particles to 
multiple processors by recursively bisecting a 
given region along alternating dimensions such 
that each subregion contains an approximately 
equal number of particles. This goal is to keep the 
processes load balanced. Our example Geo 
_tree. an abstraction of the BH-tree, uses this 
same method over a 2-D domain. 

InN-body simulation, the particles are first dis­
tributed onto processors by using ORB. Each pro­
cessor builds a local portion of the BH -tree with its 

t In practice it is more efficient to truncate each branch 
when the number of particles in its subtree decreases below a 
certain fixed bound. 

:j: The distance measured can be either the distance from 
the particle to the center-of-mass, or to the boundary of the 
box, and this distance can be in any preferred metric. The 
radius of a box is simply the length of a side of the box. 
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own share of particles. All the local trees share the 
same root corresponding to the enclosing region of 
all particles. Because the region for a node can be 
shared (or split) by more than one ORB partition. 
such nodes are shared between a set of processors 
to keep the tree structurally coherent-the super­
position of local trees is equivalent to the global 
tree. 

For the node encoding scheme. the geometric 
center of a node uniquely defines the node's posi­
tion, i.e., path and depth, in the global tree. The 
global directory replicated across all processors 
contains ORB bisection information. represented 
as a binarv decision tree as shown in the Geo 
_tree example. 

The node-to-processor mapping can be de­
rived by looking up the geometric center of a node 
in the directory. This mapping also determines the 
rendezvous site of a set of shared nodes. 

3.2. J Generic Distributed Tree: 
PTREE Class 

The support for distributed tree structures con­
sists of two parts: ( 1) a polymorphic C++ class for 
defining a distributed tree structure, and (2) poly­
morphic functions for applying computation and 
communication on the tree structure. An applica­
tion tree class is defined by customizing PTREE 
with type parameters for (1) the input data list for 
tree building, (2) the actual contents of a tree 
node, and (3) the distribution stratet,'Y· 

3.2.2 Customizing PTREE: BH-Tree Class 

BH-tree is the main data structure in this applica­
tion, it customizes the PTREE class template by 
supplying the types of particle lists, the node con­
tents, and the ORB distribution. 

3.2.3 Per-Node Functions for 
BH-Tree Class 

To perform global operations on the BH-tree. the 
application needs to supply the node computa­
tional kernels specific to this applications. One 
per-node function compares the geometric centers 
of the input node with the node currently being 
visited to determine if the search has terminated 
and, if not. which branch to extend the search 
along. Another wraps the particle data from an 
input list into a node to be inserted into the tree. 

3.2.4 Structural Modification and 
ORB Remapping 

In this application, particles move in space during 
the simulation, which may cause load imbalance 
and trigger remapping. Particles may move out of 
the region represented by a BH-tree leaf. causing 
the leaf to be deleted from the tree: conversely, 
when a particle enters a spatial region represented 
by a given BH-tree node., that leaf node may spliL 
spawning a new subtree. In particular. when a 
particle moves across the boundary of ORB subre­
gions, interprocessor communication is involved. 
Function de 1 i ver together with PTREE class 
per-node functions perform the interprocessor 
node movement in a wav consistent with the 
global tree structure. 

The ORB class provides a hierarchical remap­
ping function to rebalance the workload in an in­
cremental way. Instead of remapping on a global 
scale. the remapping is confined to processors 
within imbalanced regions. 

The remapping process works in a top-down 
fashion. On each level of bisection: 

1. Check whether the load difference between 
the two sides of bisection is within a balanc­
ing threshold. 

2. If true, remapping is not necessary on this 
level. ;\love down to the bisections on both 
sides. 

3. Otherwise: 
(a) Adjust the current bisecting plane to 

balance the load on both sides (using 
per-node functions with lookup service 
from the ORB class). 

(b) Relocate particles with respect to the 
adjusted bisection (a simplified version 
of the method used for structural 
change mentioned above). 

(c) Recursively adjust the bisections on 
both sides. 

3.2.5 Some Preliminary Performance 
Findings 

To determine the overhead due to the object-ori­
ented abstraction, a hand-written C version was 
compared with the C++ version using the PTREE 
distributed data structure. The hand-coded ver­
sion is based on traversals of lists and trees, 
whereas the C++ version uses derived classes to 
encapsulate the same algorithm. For the experi­
ments, a half million particles are simulated on a 
64-node iPSC/860 machine. This shows a rea-
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Step thand(ms) tPTREE(ms) Overhead(%) 

Update BH-tree 
list deliver 2937 3116 6.1 

list tr·averse 46 52 -

Compute & transmit Center-of-Mass 
tree traverse 558 635 13.8 
tree deliver 374 415 11.0 

Compute positions & velocities 
tree deliver 7928 8086 2.0 
list traverse 87917 88774 1.0 
Move to new positions 
list deliver 963 990 2.8 

Remapping 
list deliver 829 854 3.0 

Total 1015.52 102922 

FIGURE 9 Comparisons between handwritten and 
PTREE version. 

sonably good performance on PTREE version. 
with less than 2% overhead over its hand-written 
counterpart. ·With a 64-processor configuration 
and 8 K particles per processor. Figure 9 summa­
rizes the comparisons of timing results of averag­
ing of 10 simulation steps for five runs. 

These early experiments indicate that if BH­
tree performance is to scale well with problem 
size. four sources of distributed overhead must be 
amortized over the amount of per-node computa­
tion available: 

1. The basic communication cost of maintain­
ing shared node sets, which must synchro­
nize and share partial tree results 

2. The simple overhead of performing global 
node insertions and deletions to model par­
ticle migration, exclusive of load-balancing 
considerations 

3. The cost of performing global load balanc­
ing, either incrementally or periodically, to 
derive compact, balanced load trees within 
each processor and a roughly equitable dis­
tribution of particles among all processors 

4. The overhead of supporting a fine-grain in­
terface between application and system 
code, consisting of compositions of many 
lightweight class methods. with a significant 
amount of time tied up performing function 
calls 

Paying the cost of adaptive load balancing 
should help a BH-tree application recover some of 
the overhead of sharing, insertion, and deletion. lf 

the distributed tree can be kept globally in balance 
and locally compacL the number and size of 
shared node sets can be minimized. Furthermore. 
load balancing reduces the average local path 
length for search and computation, keeping down 
costs of traversal and deliverv. as well as tree 
maintenance. 

Finally. our comparisons to C hand-coded ver­
sions of identical distributed algorithms suggest 
that the last source of overhead, the only one that 
arises from adherence to an object-oriented inter­
face, is not significant compared to the others. 
which are common to any adaptive distributed 
implementation. 

It is important to note, though. that the perfor­
mance figures presented in the tables are prelimi­
nary, in that they represent runs on a single initial 
distribution of particles. \\! e are planning further. 
rigorous, experiments that will be reported in the 
future. 

4 CONCLUDING REMARKS 

In the future, users will continue to require in­
creasingly generic, specializable, distributable, 
flexible data structure packages. Explorations 
with PTREE indicate that this will create certain 
tensions for the implementors of object-oriented 
languages, including future versions of C++. 

Lnlike HPF -style parallel arrays. the new wave 
of inheritable generic data structures will offer lit­
tle opportunity for lifting out large blocks of com­
mon functionality to be implemented as mono­
lithic library interfaces. Rather. distributed data 
structure implementations will very likely require 

1. A higher degree of coordination between 
system and application code 

2. A proliferation of lightweight methods for 
providing small. encapsulated nm-time ser­
vices: 

3. Attention to reducing the amount of state 
retained bv each run-time subsvstem . . 
thread, with an emphasis on continuation-
passing programming styles and reentrant 
application code 

4. ::Vlore aggressive compiler support for inlin­
ing, perhaps at the expense of restricting the 
separate compilation model 

::vlore people will likely participate in the design 
of a distributed PTREE code than for an HPF 
application, though, to manage this complexity by 
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stages. A "system provider" might well code the 
underlying distribution class support, and a "data 
structure developer" the global tree operations 
(and the underlying common subsystems for per­
node and mailbox functionality). The end-user 
would perform the final (hopefully relatively triv­
ial) instantiation and class linking required to ac­
tually embed the PTREE-derived library in a 
given application. For example, theN-body simu­
lation will be written with a major user class BH­
Tree derived from the application classes Ceo Tree 
and ORB, which in turn are defined in terms of the 
system classes PTREE and DISTRIBCTE. 
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