
A Frameworl'-·Based Environment for
Object-Oriented Scientific Codes

ROBERT A. BALLANCE1·2 , ANTHONY J. GIANCOLA!, GEORGE F. LUGER2 , AND TIMOTHY J. ROSS3

1Kachina Technologies, Inc., Albuquerque, NM 87110
2Computer Science Dept., The University of New Mexico, Albuquerque, NM 87131
3Civil Engineering Dept., The University of New Mexico, Albuquerque, NM 87131

ABSTRACT

Frameworks are reusable object-oriented designs for domain-specific programs. In our
estimation, frameworks are the key to productivity and reuse. However, frameworks
require increased support from the programming environment. A framework-based
environment must include design aides and project browsers that can mediate between
the user and the framework. A framework-based approach also places new require­
ments on conventional tools such as compilers. This article explores the impact of
object-oriented frameworks upon a programming environment, in the context of object­
oriented finite element and finite difference codes. The role of tools such as design aides
and project browsers is discussed, and the impact of a framework-based approach
upon compilers is examined. Examples are drawn from our prototype C++-based
environment. © 1994 by John Wiley & Sons, Inc.

1 FRAMEWORKS

Object-oriented scientific programming aims to
harness the power of object-oriented design and
representation to the task of scientific computing.
The goals of our work are:

1. To provide useful computational tools to
scientists and engineers so that they need
not become programmers.

2. To enhance user productivity via compo­
nent and design reuse.

Received April 199:3
Revised .Tunc 1993

Work supported in part by the Air Force Phillips Laboratorv
under Contract F29601-91-C-00?4 and by the Cniversity of
New Mexico College of Engineering.

© 1994 by John Wilev & Sons, Inc.
Scientific Programming, Vol. 2. pp. 111-121 (1993)
CCC 1058-9244/94/040111-11

3. To support a spectrum of computer archi­
tectures, including sequential, vector, and
massively parallel processors.

4. To reclaim any computational costs intro­
duced while satisfying the first three goals
by developing and applying new translation
technology to the resulting programs.

Reusable designs, implemented as object-ori­
ented frameworks [1-31, are key to object-ori­
ented scientific programming. A framework de­
scribes the basic elements used to create a general
solution. But a framework is not just a collection of
design guidelines or libraries; it is an integrated
collection of components and interfaces that is de­
signed to be easily extended into a working code.
By choosing among various components, and by
tailoring components to the exact problem at
hand, a user can adapt a framework to yield the
desired computation.

Framework-based programming is a logical ex­
tension of object-oriented programming. Quite of-

111

112 BALLA."'JCE ET AL.

ten, a developer needs only to tailor an ex1stmg
component by adding new functionality, or by
modifying existing behavior. Object-oriented lan­
guages support this activity by providing ways to
incrementally layer new behavior on to existing
components. Adding the new behavior derives a
new kind of component while the existing compo­
nents are not changed.

The end user of an object-oriented framework
is principally involved in specializing existing class
elements to provide new or refined behavior.
Thus, the dominant use of inheritance in a frame­
work is to support specialization of classes. This
usage leads to widespread use of inheritance,
"fat" interfaces [4] and dynamic function dis­
patches.

In providing design reusability, frameworks of­
fer

1. A design structure for developing reusable
components

2. A unit of transportability among diverse
computer architectures

3. A semantic structure for developing frame­
work-cognizant tools.

1.1 Reusability of Components

Designing reusable components is difficult. First,
a reusable component is necessarily general.
When an already developed module is to be made
reusable, the designer's hardest task is to decide
how the module should be generalized. Second,
components are never used in isolation, but are
combined with other components. Without con­
sidering the desired forms of interaction, a reus­
able component might not be, in fact, usable
when combined with other components. A design
framework provides the guidelines needed to solve
these problems. Because the framework itself is
general, the framework implicitly determines
those ways in which a component must be gen­
eral. Because the framework specifies the neces­
sary interactions among its components, the
framework explicitly determines the various inter­
actions among components that must be sup­
ported.

Adoption of a common set of frameworks also
creates the opportunity to exchange components
of codes, as in the object-component industry now
arising in general programming. Because the com­
ponents will work with the common framework,
they will automatically work together. These fea­
tures make it possible in the future to develop new

codes rapidly, to modify ex1stmg codes readily,
and to reuse codes in a matter of hours or days.

1.2 Transportability

Because frameworks provide domain-specific ab­
stractions, frameworks provide a natural structure
for moving codes among architectures. A frame­
work should be architecture independent, but
may be reimplemented using different library
components for different architectures. In effect,
the framework stays the same while implementa­
tion details differ.

Four levels of transportability are evident in a
framework-based environment. Language trans­
lators provide the first level; by compiling and op­
timizing for different architectures, programs can
occasionally be ported without change. Compo­
nent definitions provide the second level of trans­
portability: different implementations of matrices,
for example, might be targeted for different archi­
tectures. The supporting code in the framework
provides a third level. At this level, the choices
made by a designer will still hold, but an alterna­
tive implementation of the framework itself may
be useful. At the fourth level, the user may choose
to revise prior implementation choices to derive a
new program from the framework. For example
the user might choose to move from an implicit to
an explicit solution method using framework-cog­
nizant tools to replay and revise an earlier design.

1.3 Framework-cognizant Tools

Frameworks provide a meaningful and useful
structure for developing support tools. Experience
with language-based "intelligent" program edi­
tors, such as the Pan system [5], indicates that
attempting to provide extensive support at the
level of a programming language is probably inap­
propriate; even the forms of global information
available to a user are limited to artifacts of pro­
gramming [6]. For example, a language-based
environment can often provide an answer to the
question, What functions call function A? With­
out design-specific knowledge, however, it cannot
answer the question, Why is function A called?
Frameworks, with distinct operational compo­
nents and definable interactions, provide a
higher-level "pattern language" to which a useful
design semantics can be applied. The connections
among components can be annotated with se­
mantic information, and the choices made by a
user can be traced and gathered into a design ra-

tional. It is at the framework or design level that
intelligent tools are integrated.

2 EXAMPLE: THE COMPUTATION-SPACE­
QUANTUM-CONTRO.LLER FRAMEWORK

A framework provides a way to reuse designs: in
our case methods for solving scientific problems
[7-9]. In this section, we provide a brief introduc­
tion to the Computation-Space-Quantum-Con­
troller framework for finite element and finite dif­
ference codes.

Figure 1 shows a high-level overview of the
framework. As shown, each numeric code consists
of one or more Computations. Each Computation
provides the data and the solution for a single
problem. Within a computation are a Controller
and a Computational Space. The Computational
Space (or Space) is where the actual computation
takes place; the Controller is an object that starts
(and continues) the computation by sending mes­
sages to the Space. The effect is to move the outer
loop of a numeric computation into the Controller.
Because Spaces contain the data being manipu­
lated, they are responsible for managing their own
input and output.

Within Computations, there are several inter­
locking and mutually dependent classes: Loop­
Control, Controller, ObjectHavingState, Space,
and Quantum. Each of these is an abstract base
class. Figure 2 illustrates the derivation hierarchy
for these core classes. Multiple inheritance is used

OBJECT-ORIENTED DESIGI'S 113

IS-A IS-A IS-A IS-A

L::j ~
FIGURE 2 Derivation hierarchy for core classes.

to enforce two restrictions: that a Space support
the same control interface as a LoopControl, and
that a Space and a Quantum share the properties
common to ObjectHavingState. A Space can also
contain objects derived from ObjectHavingState.
Thus, Spaces can contain embedded subspaces
as well as Quanta.

Each of the core classes plays a single role in
the code: a LoopControl provides the switches
and dials for controlling iteration and checkpoint­
ing. ObjectHavingState is the basic container for
data and scientific behavior. Class Quantum is
primarily a computational element. The Space is
an abstraction that provides both data and con­
trol. Finally, the Computation class provides the
stage for the other players.

The ownership relationships (HAS) among the
core classes are shown in Figure 3. Comparison
between Figures 2 and 3 shows that a space both
IS-A and HAS an ObjectHavingState. The ability
of a Space to contain objects that are also Spaces
provides much of the flexibility in the framework.
Spaces may organize their subcomponents by

NumaricCoda

,
Computation '

' , -·-Controller

' • _ • _ • Output

'
'

'
'

Manages one or
more

Computations

• • •

·-·-, ' Computation ' , ' Controller -.
~ '

' '
' \

' Space

.,/t~m' ,
' Output

FIGURE 1 Overview of framework.

114 BALLAI\'CE ET AL.

FIGURE 3 Key ownership relations.

means of an abstract supporting class called a
1\'eighborhood. Conceptually, the Space manipu­
lates many instances of objects derived from Ob­
jectHavingState, and many instances of 1\"eigh­
borhoods. In practice, a Space may be able to
minimize the actual number of instances by repre­
senting them implicitly, or by carefully managing a
few prototypical instances. An example of the lat­
ter case is when a variant of a 1\"eighborhood is
used to represent an element in a finite element
code; in many cases it is more efficient to swap
Quanta representing nodes in and out of a single
prototypical Element than to create one instance
of an Element for each element appearing in the
model.

Why the distinction between Space and Quan­
tum? In our model, a Space glues a number of
ObjectHavingState objects (typically Quanta) to­
gether. Within the Space, the Quanta may be rep­
resented explicitly as objects; implicitly by storing
only their data fields; or as virtual Quanta in
which the intemal representation may not be visi­
ble, but the Quanta appear to be explicitly repre­
sented. There is only a tenuous connection be­
tween explicitly represented Quanta and explicit
codes: the framework allows an explicit code to be
written using either implicit or virtual Quanta, but
the use of explicit Quanta generally indicates the
use of an explicit solution method.

3 SUPPORTING FRAMEWORKS IN A
PROGRAMMING ENVIRONMENT

Effective use of design frameworks and object-ori­
ented development requires an innovative devel­
opment environment. The tools in the environ­
ment must understand and respond to the
underlying framework and programming tech­
niques, as well as the programming language it­
self. Such tools include design aides that assist a
user to elaborate a framework into a working code,
browsers that allow a user to manage libraries of
components, and compilers that directly support
the framework-based approach.

Construct

Access

~-
WExtend

Extend

Modify

View Control

FIGURE 4 An environment for framework-based pro­
gramming.

Figure 4 illustrates the overall architecture of a
framework-based environment. As expected, the
frameworks themselves play a central role. The
essential tools include a design aide that mediates
between users and the framework, a project
browser that simplifies access to the code-level as­
pects of an application, and a translator (or com­
piler) that is tuned for compiling the resulting pro­
grams. The data managed by the environment
include the frameworks themselves, the libraries
of components, the configured programs, and rec­
ords of the choices made by a user in elaborating
her programs. The latter is denoted by the "User's
Notebooks" in Figure 4. The next sections discuss
the role of the design aide and the translator in
more detail.

Although our experience to date is limited, we
remain convinced that frameworks also provide a
structure for building truly knowledgeable tools.
Prior experience with language-based tools [5. 6]
has shown that the programming language level is
too low to provide the kinds of assistance an end
user can best use. Because a framework provides
a problem-solving approach that is domain spe­
cific, it provides a natural structure for supporting
high level assistance. For example, although a
framework may support arbitrarv combinations of
its elements, a framework-cognizant design tool
can provide many techniques for guiding the us­
er's choice of components.

4 DESIGN AIDES AND PROJECT
BROWSERS

A design aide is a sophisticated mechanism that
helps the user elaborate a framework into a com-

plete program. The design aide uses information
accompanying the framework, object, and class
modules to assist the user. For instance, a partic­
ular finite element code may make commitments
on boundary conditions. The design aide can rec­
ognize this, using information about the methods
and class specifications of the objects and classes
the user has chosen. This will assist not only the
sophisticated user in designing complex codes
quickly, but also remind the novice of the impor­
tant parameters of the code building process. In a
simple sense the design aide can be seen as a nov­
ice tutor, assisting the beginning numeric pro­
grammer in understanding the important aspects
of the code being developed.

The design aide also assists the user by main­
taining notebooks of designs for scientific codes.
By replaying a design from the notebook, a user
can reconstruct (or modify) a previously imple­
mented code. Finally, an intelligent design aide,
one augmented with rule-based expertise, can
help to guide a user in making her choices.

A screen dump of a prototype design aide
for the Computation-Space-Quantum-Controller
framework is shown in Figure 5. This prototype
allows a user to select and modify components,
either through the interface or through a comb ina­
tion of the design aide and direct browsing. In the
illustration, our user has selected several compo­
nents, indicated by the filled-in selection wells. At
this point, the Quantum component has yet to be
elaborated.

In Figure 6, the user has added instance vari­
ables and equations to the Quantum. The illustra­
tion shows both the browser for equations and
fields, and the inspector being used to add a heat
transfer equation. In this case, the user has cho­
sen to implement her equations directly in C++,
augmented by higher level operations supported

OBJECT-ORIENTED DESIGNS 115

by the design aide. The notation "N.sum(tem­
perature)'' in the equation will be translated into a
special C++ iterator function that sums the val­
ues of the "temperature" instance variable over
all of the neighbors of the Quantum.

Project browsers help users to inspect the ob­
jects, classes, and inheritance relations in the en­
vironment. Unlike design aides, which are ori­
ented toward nonprogrammers, project browsers
allow programmers to view, extend, and modify
frameworks, libraries, and codes at the source
code level. Additionally, a project browser can ex­
ploit annotations present in frameworks to provide
enhanced functionalitv.

A key feature of a project browser is its ability to
provide integrated configuration management. By
collecting information about the entire program
into a program repository, the environment can
better support both incremental compilation and
interprocedural optimization.

5 LANGUAGE AND TRANSLATOR

The underlying object-oriented programming lan­
guage has several effects on the environment.
First, it determines just what techniques can be
used. For example, C++ supports multiple inher­
itance, making it easier to describe and imple­
ment the Computation-Space-Quantum-Control­
ler framework presented above. Second, the lan­
guage determines the degree of optimization that
an environment can provide. Third, the size and
complexity of the language have many implica­
tions for the ease with which an environment can
be constructed, extended, and modified.

The presence of a translator that is fully inte­
grated into an environment allows other tools to
use translator facilities without replicating code.

FIGURE 5 Using the design aide to specialize a computation.

116 BALLANCE ET AL.

is the heat transfer
equation that will be used to
update temperature to
new_temperature.

FIGURE 6 Elaborating a Quantum component.

Reuse of translator components occurs at two lev­
els: by embedding calls to the translator itself, and
by linking directly to phases and other facets of
the translator. For example, the design aide must
avail itself of the analysis phases of the translator
in order to better support the user. These phases,
and their results, must be sharable within the en­
vironment. Similarly, the class and project brows­
ers require information derivable from the source
modules.

5.1 Language: C + +
C++ is an evolving object-oriented language
based on C [10 J. C++ differs from C by adding
classes, inheritance, user-defined overloaded op­
erators, dynamic function binding, reference vari­
ables, and run-time exceptions. Optimizing (and
vectorizing) C++ requires a combination of tech­
niques drawn from both conventional high-qual­
ity C compilers as well as from optimizers for ob­
ject-oriented languages [11]. As with any new
technology, existing techniques can be extended

to handle new situations. However, besides ex­
tending the known to handle the novel, new tech­
niques are emerging. In particular, techniques
now being developed in program annotation and
partial evaluation show promise of more effective
optimization strategies.

Table 1 briefly enumerates some of the features
of C++ and their impact on compiling frame­
works. In the table, a"+" denotes a feature help­
ful to an optimizer and a ''- '' denotes a feature
detrimental to optimization.

Locality of reference assists an optimizing com­
piler, because locality makes it more likely for a
compiler to be able to determine the effect of oper­
ations. Classes help the optimizer because they
support fine-grained encapsulation. On the other
hand, classes can complicate the work because
they tend to proliferate scopes. Similarly, member
functions operate in encapsulated spaces, but
tend to be numerous and small. Although small
functions are "good" programming practice, they
present problems to optimizers which want larger
sections of program text to work on. One advan-

OBJECT -ORIENTED DESIGNS 117

Table 1. Impact of C + + Features on Optimization

C++ Facility

Classes
Exceptions
Member functions
Overloaded operators
References
Static members
Templates
Virtual functions

tage of procedure integration (or "inlining") is
that it exposes a larger range of code for an op­
timizer to work on. Function calls also inhibit op­
timizations.

Templates have much the same effect as
classes, but have the additional benefit that differ­
ent template instantiations can be optimized in
different ways. Consider a matrix template that
can be instantiated using integers or doubles as
the elements in the matrix; the compiler will be
able to generate better code because the integer
and the double versions are distinct.

References and static members tend to help the
optimizer by allowing a programmer to better con­
trol encapsulation and to better indicate the use of
pointers. This contrasts well with C, in which
pointers are used to implement both dynamic data
structures and to effect call-by-reference.

Exceptions cause two difficulties. FirsL they
may incur either storage or execution time over­
head when a try-block (the block that specifies a
possible handler) is entered. Second, because an
exception may cause control to leave a block im­
mediately after a function is called, the optimizer
cannot assume that control will continue normally
after a call. In particular, the optimizer cannot
leave values in temporary memory (registers, in
particular) unless it is prepared to restore those
values when an exception is thrown. Fortunately,
techniques exist to handle this problem.

Finally, overloaded operators and virtual func­
tion dispatch make good coding and optimization
more difficult. Overloaded operators are problem­
atic because they give the programmer the ap­
pearance of being primitive operations without
giving the compiler sufficient information to man­
age their resources properly. Virtual function calls
are problematic because they complicate the call
graph and can hide possible optimization . .Yleth­
ods for dealing with both overloading and virtual
calls are discussed in the next section.

Impact on Optimization

± Proliferation of scopes
- Inhibits/ complicates optimization
± Proliferation of functions
- :\1anagement of temporaries
+ Well-behaved pointers
+ Localization of global variables
± Proliferation of code
- Dynamic dispatch

5.2 Optimizing Obiect-Oriented
Scientific Programs

A translator in a framework-based, object-ori­
ented, scientific code environment must provide a
wide range of optimization techniques to assure
that the final programs achieve necessary perfor­
mance standards. The needed optimizations in­
clude both the usual intraprocedural and in­
terprocedural techniques as well as new
techniques specific to object-oriented programs.

Especially for framework-based scientific
codes, interprocedural analysis is essential. To be
completely effective, interprocedural optimization
demands full knowledge of the entire program, not
just a function, a file, or a class. On the surface,
this is contrary to the notion of object-oriented
programming as iterative enhancement, in which
encapsulation is used to hide the bulk of the de­
tails of the program from the programmer. How­
ever, it is the translator that is violating encapsula­
tion boundaries, not the programmer. Tools such
as project browsers serve as useful intermediaries
between the user and the translator by assisting
the user in designating the actual configuration of
the program and by transferring that information
to the translator. The end result is that the user
may not even be aware that she is providing the
compiler with the information needed to complete
interprocedural analysis.

5.2.1 lntraprocedural Optimization

All of the usual intraprocedural optimizations,
such as strength reduction, constant folding, code
motion, copy propagation, common subexpres­
sion elimination, and subscript analysis for un­
covering potential vectorization [12] are needed
for object-oriented codes. These techniques are
not specific to object oriented codes, and are pre­
sented in most textbooks that cover optimization
of imperative languages [13].

118 BALLANCE ET AL.

In C++ the ability to redefine operators en­
courages d~velopers t~ create new concrete data
types. A concrete data type appears to be a primi­
tive type: it can be declared, assigned, and passed
as an argument just like a primitive type [141. For
example, a C++ programmer is free to define and
use infix expressions such as

A= B +(A* C);

where A and B represent vectors, C is a matrix,
and "+" and "*" have user-defined meanings.

As presently defined, C++ does not provide
sufficient information about user-defined opera­
tors to the translator to effect even common code
improvements. Without extralinguistic informa­
tion a translator may not be able to bring its full
ran~e of techniques t~ bear on the overloaded op­
erators.

To a programmer, the appearance of the user­
defined operators suggests that they will work just
like the standard operators. These appearances
are deceiving, but nowhere more than in the arena
of resource management. It is well known that the
management of temporary objects is a difficult
problem in C++ class libraries [15, 16].

One method for assisting the translator is to
provide annotations on class and method defini­
tions. Annotations, in the form of compiler direc­
tives. are alreadv used in manv C and C++ trans­
lators. Properly expressed,· annotations can
provide control over optimization, can convey se­
mantic information to the compiler, can be porta­
ble, and do not require language extension.

One approach to annotations uses algebraic
equations together with cost estimates to express
potential transformations. Although not yet fully
implemented, our goal is to use the equations as
rewrite rules in the same wav that other rewrite
rules are applied in advanced compilers [17].

Consider again the matrix expression

A= B +(A* C);

If the compiler can determine that A, B, and C do
not share storage, this code can be rewritten as

T1 =A* C

A= B + T1

Suppose that both a*= operator and a + = opera­
tor are defined. Given the rewrite rules A + B =
B +A, A+= B =A= A+ B, and A*= B =A=

A * B, an optimizer can easily rewrite this code to

A*= C

A+= B

for a savings of at least two function calls in C++,
and possibly saving the creation and destruction
of two temporary values along with copying. Add­
ing such rewrite rules requires two mechanisms in
a compiler: the ability to attach annotations to
symbols or other language elements, and the abil­
ity to perform rule-directed rewrites. The trick,
then is to be able to detect when A, B, and C do
not share storage. This requires some form of in­
terprocedural alias analysis, along with the infor­
mation about storage management.

5.2.2 lnterprocedural Analysis

The interprocedural analysis and optimization
techniques used for imperative languages, such as
Fortran [18], are also needed for statistically
typed object-oriented languages like C++. Such
techniques include interprocedural alias analysis
[19, 20], constant propagation [21], data flow
analysis [22, 23] and control dependence analysis
[22, .24, 25] for determining potential paralleliza­
tion strategies.

As an example, consider a Vector class having
operations * and +, and consider the Vector ex­
pression

A=B*C+D

The simplest translation of this code from C++
into C results in several nested function calls:

Vector: :operator=(A,
Vector: :operator+(

Vector:: operator* (B, C), D))

By linearizing and naming temporaries, a com­
piler can easily achieve

Vector T1, T2

T1 = B * C

T2 = T1 + D

A= T2

Given a reasonable procedure integration (in­
lining) mechanism, the code can now be ex­
panded to something resembling

II set up *
for (i = basel; i < sizel; i++)
{ t1 [i] = b [i] * c [i];}
II set up+
for (j = base2; j < size2; j++)
{ t2 [j] = tl [j] + d [j] ; }
II set up copy
for (k base3; k < size3; k++)
{ a[k] = t2[k];}

With interprocedural constant propagation, it
may be possible to determine that base1 = base2
= base3 and size1 = size2 = size3. In this case,
the loops can be jammed:

for (i = basel; i < sizel; i++) {
tl[i] = b[i] * c[i];
t2 [i] = tl [i] + d[i];
a[i] =t2[i];

}

Straightforward transformation then yields a
nicely vectorizable loop using vector chaining.
Again, this depends upon the presence of ade­
quate analysis: interprocedural constant propaga­
tion to allow the loop jamming,* alias analysis
along with subscript analysis in the target com­
piler to detect that the loop is vectorizable.

5.3 Function Specialization

Framework-based programs make heavy use of
virtual (dynamic) function dispatch. It is a virtue
of object-oriented languages that any specific ob­
ject A can be used wherever a more general object
B can be used, so long as A is derived from B. This
virtue, of course, has a cost in the form of virtual
functions. Virtual functions have two costs: they
inhibit optimization and they incur cycles during
execution.

In a framework, most of the apparent classes
are abstract; they will be replaced by specific
classes and objects quite uniformly in the resulting
code. For example, although a component may be
defined in terms of a matrix object, the final code
might use only one specific class of matrices. In
this case, the virtual function calls could be elimi­
nated in the optimized code in favor of direct calls
to the class being used.

* Full interprocedural constant propagation is not essential
to this example: a compiler can generate multiple versions of
the overall procedure by dynamically testing the sizes, and if
they are all equaL executing the jammed and optimized loop.

OBJECT -ORIENTED DESIGNS 119

Function call specialization [26, 27] is the
elimination of run-time procedure dispatch by de­
termining at compile time the actual function be­
ing invoked. Specialization requires interproce­
dural type propagation, along with the ability to
examine the entire program being compiled.

For example, consider a C++ fragment in
which the doSomething member function is in­
voked on anObj ect.

anObject.doSomething()

The actual function invoked depends on the type
of anObj ect: it may be inherited or it may be a
member function defined in some class derived
from anObj ect 's class. In the presence of a vir­
tual function, a basic translator will generate a
dynamic procedure call that consults the table of
functions associated with anObj ect 's class dur­
ing execution.

However. whenever the actual class of the re­
cipient (anObj ect in this case) can be determined
at compile time, the dynamic call can be replaced
bv a static call. Better, by determining the exact
d~finition of doSomething, the translator can in­
tegrate the body of doSomething directly into the
loop. Procedure integration may create new op­
portunities for improvement. Integrated configu­
ration management also supports this optimiza­
tion by providing access to all of the sources
needed for procedure integration, whether or not a
programmer has specified the functions to be "in­
line" using the nominal C++ directive.

Manv C++ translators already generate direct
calls to. virtual functions provided that the type of
the recipient can be derived locally. However, in­
terprocedural type propagation will enable a com­
piler to fully deploy this optimization. In its sim­
plest form, type propagation is just a form of
constant propagation on type values.

Specialization does not require that only a sin­
gle function ,be invoked. For example, consi~er a
code fragment in which an iterator over a list of
Shapes invokes member functions on each indi­
vidual shape.

for (p = firstShape; p != 0;
p = p->nextinList()) {

p->resize (...) ;
p->move(...);
p->redraw (...) ;

}

Each iteration involves three dynamic function
dispatches. Now suppose that a variable P can

120 BALLANCE ET AL.

refer to any of several different classes derived
from Shape. If the derived classes are known at
compile time (or even if only a subset is known), a
compiler can factor out the dynamic dispatch and
then use statically compiled calls:

for (p = firstShape; p!= 0;
p = p->nextinList()) {

if(isASquare(p)) {
II Call Square functions

Square: :resize (p, ..) ;
Square: :move(p, ...) ;
Square: :redraw(p, .) ;

} else if (isACircle(p)) {

}

The details of run-time type determination are
omitted. In this case, the tests isA ... can be gen­
erated by the compiler. The proposed run-time
type identification facility being considered by the
C++ standards committee also is sufficient [28].

Performing specialization effectively conflicts
with the separate compilation model embraced by
C and C++. Ideally, an optimizing compiler for
C++ will have access to all of the source code for
an application. Full access to the source code
does not, however. compromise the object-ori­
ented programming model. When full access is
unavailable, the compiler must fall back to con­
servative assumptions and produce correct out­
put.

5.4 Partial Evaluation

Partial evaluation results from combining a (pos­
sibly empty) subset of a program's data with a
program to produce a new, simpler, program [29].
In a sense, conventional optimizations such as
constant folding are just forms of partial evalua­
tion using an empty input data set.

Berlin [30, 31 ~ has shown that partially evalu­
ated scientific codes can show significant speed­
ups. Although it is unclear how to extrapolate
these results from small Scheme programs to large
scientific codes, the results are encouraging.

Koo and Sundaresh [32] have recently shown
that partial evaluation can be used to implement
function call specialization. Their work is based
on a high-level semantic model, but the results
confirm the following observation: by using partial
evaluation and by tracking the types of the objects
created, a system can determine the actual types

of objects involved in virtual function calls. Thus,
rather than implementing a static analysis to
propagate data types, the system simply performs
an abstract interpretation on the program and
tracks the results. Krishna [33] is currently work­
ing on the general problem of partial evaluation in
C and C++ for scientific codes.

On its own, using partial evaluation would be
too expensive to apply to most programs. How­
ever, an optimizer can use results from the partial
evaluation to simplify other optimization passes
such as interprocedural constant propagation. In
the long term, partial evaluation may become an
important technique in optimizing large scientific
codes because many scientific codes operate on
relatively fixed data sets for which a partially eval­
uated program would be appropriate.

6 CONCLUSION

This article has presented a framework-based
environment for object-oriented scientific pro­
gramming and has examined the impact of a
framework-based approach upon programming
environments for object-oriented scientific codes.
The use of a framework simplifies the creation of
domain-specific, intelligent tools that can assist in
the elaboration of programs from the framework.
These same tools can be used to support project
browsing and configuration management. With
integrated configuration management, the envi­
ronment is able to provide the interprocedural
analysis needed to fully optimize scientific and
numerical programs. Finally, the article has
briefly touched upon optimization of object-ori­
ented codes, including function specialization,
partial evaluation, and the need for interproce­
dural analvses.

REFERENCES

[1] F. Dearie, "Designing portable application
frameworks for C++,'" C++]., vol. 1, pp. 55-
59, 1990.

[2] L. P. Deutsch, Software Reusability: Volume II.
Applications and Experience. :\"ew York: ACM
Press, 1989, pp. 57-71.

[3] R. Johnson and R. Wirfs-Brock, OOPSLA Confer­
ence on Object-Oriented Programming Systems,
Languages, and Applications. New York: ACM
Press, 1991.

[4] B. Stroustrup, The C++ Programming Language
(2nd ed.). Reading, MA: Addison Wesley, 1991.

[5] R. A. Ballance, S. L. Graham, and :\1. L. Yan De
Y an teL "The Pan language-based editing sys­
tem," A C:l! Trans. Software Eng. !V!ethods. vol.
1, pp. 95-12?. 1992.

[6] ""1. L. Van De YanteL R. A. Ballance. and S. L.
Graham, "Coherent user interfaces for language­
based editing systems," Int.]. J1an-J1achine
Systems. vol. 3?, pp. 431-466, 1992.

[?] T. J. Ross, G. F. Luger, P. Ylorrow, and L.
Wagner, Proceedings of the ASCE 8th Conference
on Computing. ~ew York: ASCE, 1992, pp.
535-542.

r8] T. J. Ross, G. F. Luger, and L. Wagner, '·Object
oriented programming for scientific codes:
Thoughts and concepts," ASCE]. Comput. in
Civil Engineering, vol. 6, pp. 480-496. 1992.

[9] T. J. Ross, G. F. Luger, and L. Wagnec "Object
oriented programming for scientific codes. II: Ex­
amples in C++,'' ASCE]. Comput. in Civil Engi­
neering, vol. 6, pp. 49?-514, 1992.

[10] A~SI, X3]16, Working Paper for Draft Proposed
International Standard for Information Sys­
tems-Programming Language C++. Washing­
ton, DC: The American :\'ational Standards Insti­
tute, CBEMA.

[11] C. Chambers. The Design and Implementation of
the SELF Compiler, an Optimizing Compiler for
Object-Oriented Programming Languages. Re­
port l\'umber STAl\'-CS-92-1420, Department of
Computer Science, Stanford Cniversity, :\larch
1992.

[12] R. Allen and S. Johnson, Proceedings of AC:l-1
SJGPLAN 1988 Conference on Programming
Language Design and Implementation. ~ew

York: AC.\1 Press, 1988, pp. 241-249.
[13] A. V. Aho, R. Sethi, and J.D. Gilman, Compilers:

Principles, Techniques, and Tools. Reading, :viA:
Addison-Wesley Publishing Company, 1986.

[14] J. 0. Coplien, Advanced C++: Programming
Styles and Idioms. Reading, :\IA: Addison Wes­
ley, 1991.

[15] K. G. Budge, J. S. Perry, and A. C. Robinson,
Workshop Proceedings. Berkeley, CA: CSE~IX
Assoc., 1992, pp. 121-150.

[16] D. Forslund, et aL C++ Workshop Proceedings.
Berkeley, CA: CSE~IX Association, 1990.

[17] E. Pelegri-Llopart, Rewrite Systems, Pattern
/Watching, and Code Generation. Report ~umber
CCB/CSD 88/423, Computer Science Division,
University of California, Berkeley. June 1988.

[18] F. Allen, eta!., "An overview of the PTRA~ anal­
ysis system for multiprocessing,"]. Parallel Dis­
trib. Processing, vol. 5, pp. 617-640, 1988.

OBJECT-ORIE'J'TED DESIG~S 121

[19] W. Landi and B. Ryder, Proceedings of the AC:l1
SIGPLAJV 1992 Conference on Programming
Language Design and Implementation. ~ew

York: ACM Press. 1992.
[20] W. E. Weihl, Seventh Annual ACM Symposium

on Principles of Programming Languages. :\'ew
York: AC,'\1 Press, 1980, pp. 83-94.

[21] M. :\'. Wegman and F. K. Zadeck, ·'Constant
propagation with conditional branches,'' A CJ!
Trans. Programming Languages Systems. vol.
13. pp. 181-210, 1991.

[22] R. A. Ballance and A. B. Ylaccabe, PDGs for the
Rest of Cs. Technical Report 92-10, Department
of Computer Science, Cniversity of l\'ew :\texico,
Revised October 1992.

r23] B. G. Ryder and :\1. C. Paull, "Elimination algo­
rithms for data flow analysis .. , ACM Comput.
Surv. vol. 18, pp. 277-316. 1986.

[24] R. A. Ballance, A. B. Ylaccabe, and K. J. Otten­
stein, Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design
and Implementation. ~ew York: AC:\1 Press,
1990, pp. 25?-270.

[25] J. Ferrante. K. J. Ottenstein, and J. D. Warren.
"The program dependence graph and its use in
optimization," ACl! Trans. Programming Lan­
guages, vol. 9, pp. 319-349, 1987.

[26] C. Chambers and D. Cngar, Proceedings of the
ACM SJGPLAN 1989 Conference on Program­
ming Language Design and Implementation.
:\'ew York: AC,'\1 Press, 1989. pp. 146-160.

[2?] D. Lea, C++ Workshop Proceedings. Berkeley,
CA: CSE:\'IX Association, 1990, pp. 301-314.

[28] B. Stroustrup and D. Lenkov, "Runtime type
identification for C++," C++ Report, vol. 4, pp.
32-42, 1992.

[29] D. A. Bjorner, A. P. Ershov, and ~- D. Jones,
Partial Evaluation and Mixed Computation. Am­
sterdam: 1\'orth-Holland, 1988.

[30] A. Berlin, Proceeding of the 1990 ACM Confer­
ence on Lisp and Functional Programming. Loc:
Pub!, 1990, pp. 139-160.

[31] A. Berlin and D. Wiese, "Compiling scientific
code using partial evaluation," Computer, vol.
23, pp. 25-37, 1990.

[32] S. C. Koo and R. S. Sundaresh, Proceedings of
the Symposium on Partial Evaluation and Pro­
gram Manipulation PEPM. ~ew Haven, CT: Yale
Cniversity, 1991, pp. 211-222.

[33] K. Krishna, "Program specialization via partial
evaluation,'' Dissertation Proposal, Department
of Computer Science, The Cniversity of ~ew Ylex­
ico, Albuquerque, New Ylexico, July 1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

