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ABSTRACT 

Frameworks are reusable object-oriented designs for domain-specific programs. In our 
estimation, frameworks are the key to productivity and reuse. However, frameworks 
require increased support from the programming environment. A framework-based 
environment must include design aides and project browsers that can mediate between 
the user and the framework. A framework-based approach also places new require­
ments on conventional tools such as compilers. This article explores the impact of 
object-oriented frameworks upon a programming environment, in the context of object­
oriented finite element and finite difference codes. The role of tools such as design aides 
and project browsers is discussed, and the impact of a framework-based approach 
upon compilers is examined. Examples are drawn from our prototype C++-based 
environment. © 1994 by John Wiley & Sons, Inc. 

1 FRAMEWORKS 

Object-oriented scientific programming aims to 
harness the power of object-oriented design and 
representation to the task of scientific computing. 
The goals of our work are: 

1. To provide useful computational tools to 
scientists and engineers so that they need 
not become programmers. 

2. To enhance user productivity via compo­
nent and design reuse. 
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3. To support a spectrum of computer archi­
tectures, including sequential, vector, and 
massively parallel processors. 

4. To reclaim any computational costs intro­
duced while satisfying the first three goals 
by developing and applying new translation 
technology to the resulting programs. 

Reusable designs, implemented as object-ori­
ented frameworks [1-31, are key to object-ori­
ented scientific programming. A framework de­
scribes the basic elements used to create a general 
solution. But a framework is not just a collection of 
design guidelines or libraries; it is an integrated 
collection of components and interfaces that is de­
signed to be easily extended into a working code. 
By choosing among various components, and by 
tailoring components to the exact problem at 
hand, a user can adapt a framework to yield the 
desired computation. 

Framework-based programming is a logical ex­
tension of object-oriented programming. Quite of-
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ten, a developer needs only to tailor an ex1stmg 
component by adding new functionality, or by 
modifying existing behavior. Object-oriented lan­
guages support this activity by providing ways to 
incrementally layer new behavior on to existing 
components. Adding the new behavior derives a 
new kind of component while the existing compo­
nents are not changed. 

The end user of an object-oriented framework 
is principally involved in specializing existing class 
elements to provide new or refined behavior. 
Thus, the dominant use of inheritance in a frame­
work is to support specialization of classes. This 
usage leads to widespread use of inheritance, 
"fat" interfaces [ 4] and dynamic function dis­
patches. 

In providing design reusability, frameworks of­
fer 

1. A design structure for developing reusable 
components 

2. A unit of transportability among diverse 
computer architectures 

3. A semantic structure for developing frame­
work-cognizant tools. 

1.1 Reusability of Components 

Designing reusable components is difficult. First, 
a reusable component is necessarily general. 
When an already developed module is to be made 
reusable, the designer's hardest task is to decide 
how the module should be generalized. Second, 
components are never used in isolation, but are 
combined with other components. Without con­
sidering the desired forms of interaction, a reus­
able component might not be, in fact, usable 
when combined with other components. A design 
framework provides the guidelines needed to solve 
these problems. Because the framework itself is 
general, the framework implicitly determines 
those ways in which a component must be gen­
eral. Because the framework specifies the neces­
sary interactions among its components, the 
framework explicitly determines the various inter­
actions among components that must be sup­
ported. 

Adoption of a common set of frameworks also 
creates the opportunity to exchange components 
of codes, as in the object-component industry now 
arising in general programming. Because the com­
ponents will work with the common framework, 
they will automatically work together. These fea­
tures make it possible in the future to develop new 

codes rapidly, to modify ex1stmg codes readily, 
and to reuse codes in a matter of hours or days. 

1.2 Transportability 

Because frameworks provide domain-specific ab­
stractions, frameworks provide a natural structure 
for moving codes among architectures. A frame­
work should be architecture independent, but 
may be reimplemented using different library 
components for different architectures. In effect, 
the framework stays the same while implementa­
tion details differ. 

Four levels of transportability are evident in a 
framework-based environment. Language trans­
lators provide the first level; by compiling and op­
timizing for different architectures, programs can 
occasionally be ported without change. Compo­
nent definitions provide the second level of trans­
portability: different implementations of matrices, 
for example, might be targeted for different archi­
tectures. The supporting code in the framework 
provides a third level. At this level, the choices 
made by a designer will still hold, but an alterna­
tive implementation of the framework itself may 
be useful. At the fourth level, the user may choose 
to revise prior implementation choices to derive a 
new program from the framework. For example 
the user might choose to move from an implicit to 
an explicit solution method using framework-cog­
nizant tools to replay and revise an earlier design. 

1.3 Framework-cognizant Tools 

Frameworks provide a meaningful and useful 
structure for developing support tools. Experience 
with language-based "intelligent" program edi­
tors, such as the Pan system [ 5], indicates that 
attempting to provide extensive support at the 
level of a programming language is probably inap­
propriate; even the forms of global information 
available to a user are limited to artifacts of pro­
gramming [6]. For example, a language-based 
environment can often provide an answer to the 
question, What functions call function A? With­
out design-specific knowledge, however, it cannot 
answer the question, Why is function A called? 
Frameworks, with distinct operational compo­
nents and definable interactions, provide a 
higher-level "pattern language" to which a useful 
design semantics can be applied. The connections 
among components can be annotated with se­
mantic information, and the choices made by a 
user can be traced and gathered into a design ra-



tional. It is at the framework or design level that 
intelligent tools are integrated. 

2 EXAMPLE: THE COMPUTATION-SPACE­
QUANTUM-CONTRO.LLER FRAMEWORK 

A framework provides a way to reuse designs: in 
our case methods for solving scientific problems 
[7-9]. In this section, we provide a brief introduc­
tion to the Computation-Space-Quantum-Con­
troller framework for finite element and finite dif­
ference codes. 

Figure 1 shows a high-level overview of the 
framework. As shown, each numeric code consists 
of one or more Computations. Each Computation 
provides the data and the solution for a single 
problem. Within a computation are a Controller 
and a Computational Space. The Computational 
Space (or Space) is where the actual computation 
takes place; the Controller is an object that starts 
(and continues) the computation by sending mes­
sages to the Space. The effect is to move the outer 
loop of a numeric computation into the Controller. 
Because Spaces contain the data being manipu­
lated, they are responsible for managing their own 
input and output. 

Within Computations, there are several inter­
locking and mutually dependent classes: Loop­
Control, Controller, ObjectHavingState, Space, 
and Quantum. Each of these is an abstract base 
class. Figure 2 illustrates the derivation hierarchy 
for these core classes. Multiple inheritance is used 
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L::j ~ 
FIGURE 2 Derivation hierarchy for core classes. 

to enforce two restrictions: that a Space support 
the same control interface as a LoopControl, and 
that a Space and a Quantum share the properties 
common to ObjectHavingState. A Space can also 
contain objects derived from ObjectHavingState. 
Thus, Spaces can contain embedded subspaces 
as well as Quanta. 

Each of the core classes plays a single role in 
the code: a LoopControl provides the switches 
and dials for controlling iteration and checkpoint­
ing. ObjectHavingState is the basic container for 
data and scientific behavior. Class Quantum is 
primarily a computational element. The Space is 
an abstraction that provides both data and con­
trol. Finally, the Computation class provides the 
stage for the other players. 

The ownership relationships (HAS) among the 
core classes are shown in Figure 3. Comparison 
between Figures 2 and 3 shows that a space both 
IS-A and HAS an ObjectHavingState. The ability 
of a Space to contain objects that are also Spaces 
provides much of the flexibility in the framework. 
Spaces may organize their subcomponents by 
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FIGURE 1 Overview of framework. 
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FIGURE 3 Key ownership relations. 

means of an abstract supporting class called a 
1\'eighborhood. Conceptually, the Space manipu­
lates many instances of objects derived from Ob­
jectHavingState, and many instances of 1\"eigh­
borhoods. In practice, a Space may be able to 
minimize the actual number of instances by repre­
senting them implicitly, or by carefully managing a 
few prototypical instances. An example of the lat­
ter case is when a variant of a 1\"eighborhood is 
used to represent an element in a finite element 
code; in many cases it is more efficient to swap 
Quanta representing nodes in and out of a single 
prototypical Element than to create one instance 
of an Element for each element appearing in the 
model. 

Why the distinction between Space and Quan­
tum? In our model, a Space glues a number of 
ObjectHavingState objects (typically Quanta) to­
gether. Within the Space, the Quanta may be rep­
resented explicitly as objects; implicitly by storing 
only their data fields; or as virtual Quanta in 
which the intemal representation may not be visi­
ble, but the Quanta appear to be explicitly repre­
sented. There is only a tenuous connection be­
tween explicitly represented Quanta and explicit 
codes: the framework allows an explicit code to be 
written using either implicit or virtual Quanta, but 
the use of explicit Quanta generally indicates the 
use of an explicit solution method. 

3 SUPPORTING FRAMEWORKS IN A 
PROGRAMMING ENVIRONMENT 

Effective use of design frameworks and object-ori­
ented development requires an innovative devel­
opment environment. The tools in the environ­
ment must understand and respond to the 
underlying framework and programming tech­
niques, as well as the programming language it­
self. Such tools include design aides that assist a 
user to elaborate a framework into a working code, 
browsers that allow a user to manage libraries of 
components, and compilers that directly support 
the framework-based approach. 

Construct 

Access 

~-
WExtend 

Extend 

Modify 

View Control 

FIGURE 4 An environment for framework-based pro­
gramming. 

Figure 4 illustrates the overall architecture of a 
framework-based environment. As expected, the 
frameworks themselves play a central role. The 
essential tools include a design aide that mediates 
between users and the framework, a project 
browser that simplifies access to the code-level as­
pects of an application, and a translator (or com­
piler) that is tuned for compiling the resulting pro­
grams. The data managed by the environment 
include the frameworks themselves, the libraries 
of components, the configured programs, and rec­
ords of the choices made by a user in elaborating 
her programs. The latter is denoted by the "User's 
Notebooks" in Figure 4. The next sections discuss 
the role of the design aide and the translator in 
more detail. 

Although our experience to date is limited, we 
remain convinced that frameworks also provide a 
structure for building truly knowledgeable tools. 
Prior experience with language-based tools [5. 6] 
has shown that the programming language level is 
too low to provide the kinds of assistance an end 
user can best use. Because a framework provides 
a problem-solving approach that is domain spe­
cific, it provides a natural structure for supporting 
high level assistance. For example, although a 
framework may support arbitrarv combinations of 
its elements, a framework-cognizant design tool 
can provide many techniques for guiding the us­
er's choice of components. 

4 DESIGN AIDES AND PROJECT 
BROWSERS 

A design aide is a sophisticated mechanism that 
helps the user elaborate a framework into a com-



plete program. The design aide uses information 
accompanying the framework, object, and class 
modules to assist the user. For instance, a partic­
ular finite element code may make commitments 
on boundary conditions. The design aide can rec­
ognize this, using information about the methods 
and class specifications of the objects and classes 
the user has chosen. This will assist not only the 
sophisticated user in designing complex codes 
quickly, but also remind the novice of the impor­
tant parameters of the code building process. In a 
simple sense the design aide can be seen as a nov­
ice tutor, assisting the beginning numeric pro­
grammer in understanding the important aspects 
of the code being developed. 

The design aide also assists the user by main­
taining notebooks of designs for scientific codes. 
By replaying a design from the notebook, a user 
can reconstruct (or modify) a previously imple­
mented code. Finally, an intelligent design aide, 
one augmented with rule-based expertise, can 
help to guide a user in making her choices. 

A screen dump of a prototype design aide 
for the Computation-Space-Quantum-Controller 
framework is shown in Figure 5. This prototype 
allows a user to select and modify components, 
either through the interface or through a comb ina­
tion of the design aide and direct browsing. In the 
illustration, our user has selected several compo­
nents, indicated by the filled-in selection wells. At 
this point, the Quantum component has yet to be 
elaborated. 

In Figure 6, the user has added instance vari­
ables and equations to the Quantum. The illustra­
tion shows both the browser for equations and 
fields, and the inspector being used to add a heat 
transfer equation. In this case, the user has cho­
sen to implement her equations directly in C++, 
augmented by higher level operations supported 
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by the design aide. The notation "N.sum(tem­
perature)'' in the equation will be translated into a 
special C++ iterator function that sums the val­
ues of the "temperature" instance variable over 
all of the neighbors of the Quantum. 

Project browsers help users to inspect the ob­
jects, classes, and inheritance relations in the en­
vironment. Unlike design aides, which are ori­
ented toward nonprogrammers, project browsers 
allow programmers to view, extend, and modify 
frameworks, libraries, and codes at the source 
code level. Additionally, a project browser can ex­
ploit annotations present in frameworks to provide 
enhanced functionalitv. 

A key feature of a project browser is its ability to 
provide integrated configuration management. By 
collecting information about the entire program 
into a program repository, the environment can 
better support both incremental compilation and 
interprocedural optimization. 

5 LANGUAGE AND TRANSLATOR 

The underlying object-oriented programming lan­
guage has several effects on the environment. 
First, it determines just what techniques can be 
used. For example, C++ supports multiple inher­
itance, making it easier to describe and imple­
ment the Computation-Space-Quantum-Control­
ler framework presented above. Second, the lan­
guage determines the degree of optimization that 
an environment can provide. Third, the size and 
complexity of the language have many implica­
tions for the ease with which an environment can 
be constructed, extended, and modified. 

The presence of a translator that is fully inte­
grated into an environment allows other tools to 
use translator facilities without replicating code. 

FIGURE 5 Using the design aide to specialize a computation. 
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is the heat transfer 
equation that will be used to 
update temperature to 
new_temperature. 

FIGURE 6 Elaborating a Quantum component. 

Reuse of translator components occurs at two lev­
els: by embedding calls to the translator itself, and 
by linking directly to phases and other facets of 
the translator. For example, the design aide must 
avail itself of the analysis phases of the translator 
in order to better support the user. These phases, 
and their results, must be sharable within the en­
vironment. Similarly, the class and project brows­
ers require information derivable from the source 
modules. 

5.1 Language: C + + 
C++ is an evolving object-oriented language 
based on C [ 10 J. C++ differs from C by adding 
classes, inheritance, user-defined overloaded op­
erators, dynamic function binding, reference vari­
ables, and run-time exceptions. Optimizing (and 
vectorizing) C++ requires a combination of tech­
niques drawn from both conventional high-qual­
ity C compilers as well as from optimizers for ob­
ject-oriented languages [11]. As with any new 
technology, existing techniques can be extended 

to handle new situations. However, besides ex­
tending the known to handle the novel, new tech­
niques are emerging. In particular, techniques 
now being developed in program annotation and 
partial evaluation show promise of more effective 
optimization strategies. 

Table 1 briefly enumerates some of the features 
of C++ and their impact on compiling frame­
works. In the table, a"+" denotes a feature help­
ful to an optimizer and a ''- '' denotes a feature 
detrimental to optimization. 

Locality of reference assists an optimizing com­
piler, because locality makes it more likely for a 
compiler to be able to determine the effect of oper­
ations. Classes help the optimizer because they 
support fine-grained encapsulation. On the other 
hand, classes can complicate the work because 
they tend to proliferate scopes. Similarly, member 
functions operate in encapsulated spaces, but 
tend to be numerous and small. Although small 
functions are "good" programming practice, they 
present problems to optimizers which want larger 
sections of program text to work on. One advan-
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Table 1. Impact of C + + Features on Optimization 

C++ Facility 

Classes 
Exceptions 
Member functions 
Overloaded operators 
References 
Static members 
Templates 
Virtual functions 

tage of procedure integration (or "inlining") is 
that it exposes a larger range of code for an op­
timizer to work on. Function calls also inhibit op­
timizations. 

Templates have much the same effect as 
classes, but have the additional benefit that differ­
ent template instantiations can be optimized in 
different ways. Consider a matrix template that 
can be instantiated using integers or doubles as 
the elements in the matrix; the compiler will be 
able to generate better code because the integer 
and the double versions are distinct. 

References and static members tend to help the 
optimizer by allowing a programmer to better con­
trol encapsulation and to better indicate the use of 
pointers. This contrasts well with C, in which 
pointers are used to implement both dynamic data 
structures and to effect call-by-reference. 

Exceptions cause two difficulties. FirsL they 
may incur either storage or execution time over­
head when a try-block (the block that specifies a 
possible handler) is entered. Second, because an 
exception may cause control to leave a block im­
mediately after a function is called, the optimizer 
cannot assume that control will continue normally 
after a call. In particular, the optimizer cannot 
leave values in temporary memory (registers, in 
particular) unless it is prepared to restore those 
values when an exception is thrown. Fortunately, 
techniques exist to handle this problem. 

Finally, overloaded operators and virtual func­
tion dispatch make good coding and optimization 
more difficult. Overloaded operators are problem­
atic because they give the programmer the ap­
pearance of being primitive operations without 
giving the compiler sufficient information to man­
age their resources properly. Virtual function calls 
are problematic because they complicate the call 
graph and can hide possible optimization . .Yleth­
ods for dealing with both overloading and virtual 
calls are discussed in the next section. 

Impact on Optimization 

± Proliferation of scopes 
- Inhibits/ complicates optimization 
± Proliferation of functions 
- :\1anagement of temporaries 
+ Well-behaved pointers 
+ Localization of global variables 
± Proliferation of code 
- Dynamic dispatch 

5.2 Optimizing Obiect-Oriented 
Scientific Programs 

A translator in a framework-based, object-ori­
ented, scientific code environment must provide a 
wide range of optimization techniques to assure 
that the final programs achieve necessary perfor­
mance standards. The needed optimizations in­
clude both the usual intraprocedural and in­
terprocedural techniques as well as new 
techniques specific to object-oriented programs. 

Especially for framework-based scientific 
codes, interprocedural analysis is essential. To be 
completely effective, interprocedural optimization 
demands full knowledge of the entire program, not 
just a function, a file, or a class. On the surface, 
this is contrary to the notion of object-oriented 
programming as iterative enhancement, in which 
encapsulation is used to hide the bulk of the de­
tails of the program from the programmer. How­
ever, it is the translator that is violating encapsula­
tion boundaries, not the programmer. Tools such 
as project browsers serve as useful intermediaries 
between the user and the translator by assisting 
the user in designating the actual configuration of 
the program and by transferring that information 
to the translator. The end result is that the user 
may not even be aware that she is providing the 
compiler with the information needed to complete 
interprocedural analysis. 

5.2.1 lntraprocedural Optimization 

All of the usual intraprocedural optimizations, 
such as strength reduction, constant folding, code 
motion, copy propagation, common subexpres­
sion elimination, and subscript analysis for un­
covering potential vectorization [12] are needed 
for object-oriented codes. These techniques are 
not specific to object oriented codes, and are pre­
sented in most textbooks that cover optimization 
of imperative languages [13]. 
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In C++ the ability to redefine operators en­
courages d~velopers t~ create new concrete data 
types. A concrete data type appears to be a primi­
tive type: it can be declared, assigned, and passed 
as an argument just like a primitive type [141. For 
example, a C++ programmer is free to define and 
use infix expressions such as 

A= B +(A* C); 

where A and B represent vectors, C is a matrix, 
and "+" and "*" have user-defined meanings. 

As presently defined, C++ does not provide 
sufficient information about user-defined opera­
tors to the translator to effect even common code 
improvements. Without extralinguistic informa­
tion a translator may not be able to bring its full 
ran~e of techniques t~ bear on the overloaded op­
erators. 

To a programmer, the appearance of the user­
defined operators suggests that they will work just 
like the standard operators. These appearances 
are deceiving, but nowhere more than in the arena 
of resource management. It is well known that the 
management of temporary objects is a difficult 
problem in C++ class libraries [ 15, 16]. 

One method for assisting the translator is to 
provide annotations on class and method defini­
tions. Annotations, in the form of compiler direc­
tives. are alreadv used in manv C and C++ trans­
lators. Properly expressed,· annotations can 
provide control over optimization, can convey se­
mantic information to the compiler, can be porta­
ble, and do not require language extension. 

One approach to annotations uses algebraic 
equations together with cost estimates to express 
potential transformations. Although not yet fully 
implemented, our goal is to use the equations as 
rewrite rules in the same wav that other rewrite 
rules are applied in advanced compilers [17]. 

Consider again the matrix expression 

A= B +(A* C); 

If the compiler can determine that A, B, and C do 
not share storage, this code can be rewritten as 

T1 =A* C 

A= B + T1 

Suppose that both a*= operator and a + = opera­
tor are defined. Given the rewrite rules A + B = 
B +A, A+= B =A= A+ B, and A*= B =A= 

A * B, an optimizer can easily rewrite this code to 

A*= C 

A+= B 

for a savings of at least two function calls in C++, 
and possibly saving the creation and destruction 
of two temporary values along with copying. Add­
ing such rewrite rules requires two mechanisms in 
a compiler: the ability to attach annotations to 
symbols or other language elements, and the abil­
ity to perform rule-directed rewrites. The trick, 
then is to be able to detect when A, B, and C do 
not share storage. This requires some form of in­
terprocedural alias analysis, along with the infor­
mation about storage management. 

5.2.2 lnterprocedural Analysis 

The interprocedural analysis and optimization 
techniques used for imperative languages, such as 
Fortran [18], are also needed for statistically 
typed object-oriented languages like C++. Such 
techniques include interprocedural alias analysis 
[19, 20], constant propagation [21], data flow 
analysis [22, 23] and control dependence analysis 
[22, .24, 25] for determining potential paralleliza­
tion strategies. 

As an example, consider a Vector class having 
operations * and +, and consider the Vector ex­
pression 

A=B*C+D 

The simplest translation of this code from C++ 
into C results in several nested function calls: 

Vector: :operator=(A, 
Vector: :operator+( 

Vector:: operator* (B, C), D)) 

By linearizing and naming temporaries, a com­
piler can easily achieve 

Vector T1, T2 

T1 = B * C 

T2 = T1 + D 

A= T2 

Given a reasonable procedure integration (in­
lining) mechanism, the code can now be ex­
panded to something resembling 



II set up * 
for (i = basel; i < sizel; i++) 
{ t1 [i] = b [i] * c [i];} 
II set up+ 
for (j = base2; j < size2; j++) 
{ t2 [j] = tl [j] + d [j] ; } 
II set up copy 
for (k base3; k < size3; k++) 
{ a[k] = t2[k];} 

With interprocedural constant propagation, it 
may be possible to determine that base1 = base2 
= base3 and size1 = size2 = size3. In this case, 
the loops can be jammed: 

for (i = basel; i < sizel; i++) { 
tl[i] = b[i] * c[i]; 
t2 [i] = tl [i] + d[i]; 
a[i] =t2[i]; 

} 

Straightforward transformation then yields a 
nicely vectorizable loop using vector chaining. 
Again, this depends upon the presence of ade­
quate analysis: interprocedural constant propaga­
tion to allow the loop jamming,* alias analysis 
along with subscript analysis in the target com­
piler to detect that the loop is vectorizable. 

5.3 Function Specialization 

Framework-based programs make heavy use of 
virtual (dynamic) function dispatch. It is a virtue 
of object-oriented languages that any specific ob­
ject A can be used wherever a more general object 
B can be used, so long as A is derived from B. This 
virtue, of course, has a cost in the form of virtual 
functions. Virtual functions have two costs: they 
inhibit optimization and they incur cycles during 
execution. 

In a framework, most of the apparent classes 
are abstract; they will be replaced by specific 
classes and objects quite uniformly in the resulting 
code. For example, although a component may be 
defined in terms of a matrix object, the final code 
might use only one specific class of matrices. In 
this case, the virtual function calls could be elimi­
nated in the optimized code in favor of direct calls 
to the class being used. 

* Full interprocedural constant propagation is not essential 
to this example: a compiler can generate multiple versions of 
the overall procedure by dynamically testing the sizes, and if 
they are all equaL executing the jammed and optimized loop. 
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Function call specialization [26, 27] is the 
elimination of run-time procedure dispatch by de­
termining at compile time the actual function be­
ing invoked. Specialization requires interproce­
dural type propagation, along with the ability to 
examine the entire program being compiled. 

For example, consider a C++ fragment in 
which the doSomething member function is in­
voked on anObj ect. 

anObject.doSomething() 

The actual function invoked depends on the type 
of anObj ect: it may be inherited or it may be a 
member function defined in some class derived 
from anObj ect 's class. In the presence of a vir­
tual function, a basic translator will generate a 
dynamic procedure call that consults the table of 
functions associated with anObj ect 's class dur­
ing execution. 

However. whenever the actual class of the re­
cipient (anObj ect in this case) can be determined 
at compile time, the dynamic call can be replaced 
bv a static call. Better, by determining the exact 
d~finition of doSomething, the translator can in­
tegrate the body of doSomething directly into the 
loop. Procedure integration may create new op­
portunities for improvement. Integrated configu­
ration management also supports this optimiza­
tion by providing access to all of the sources 
needed for procedure integration, whether or not a 
programmer has specified the functions to be "in­
line" using the nominal C++ directive. 

Manv C++ translators already generate direct 
calls to. virtual functions provided that the type of 
the recipient can be derived locally. However, in­
terprocedural type propagation will enable a com­
piler to fully deploy this optimization. In its sim­
plest form, type propagation is just a form of 
constant propagation on type values. 

Specialization does not require that only a sin­
gle function ,be invoked. For example, consi~er a 
code fragment in which an iterator over a list of 
Shapes invokes member functions on each indi­
vidual shape. 

for (p = firstShape; p != 0; 
p = p->nextinList()) { 

p->resize ( ... ) ; 
p->move( ... ); 
p->redraw ( ... ) ; 

} 

Each iteration involves three dynamic function 
dispatches. Now suppose that a variable P can 



120 BALLANCE ET AL. 

refer to any of several different classes derived 
from Shape. If the derived classes are known at 
compile time (or even if only a subset is known), a 
compiler can factor out the dynamic dispatch and 
then use statically compiled calls: 

for (p = firstShape; p!= 0; 
p = p->nextinList()) { 

if( isASquare(p)) { 
II Call Square functions 

Square: :resize (p, .. ) ; 
Square: :move(p, ... ) ; 
Square: :redraw(p, . ) ; 

} else if (isACircle(p)) { 

} 

The details of run-time type determination are 
omitted. In this case, the tests isA ... can be gen­
erated by the compiler. The proposed run-time 
type identification facility being considered by the 
C++ standards committee also is sufficient [28]. 

Performing specialization effectively conflicts 
with the separate compilation model embraced by 
C and C++. Ideally, an optimizing compiler for 
C++ will have access to all of the source code for 
an application. Full access to the source code 
does not, however. compromise the object-ori­
ented programming model. When full access is 
unavailable, the compiler must fall back to con­
servative assumptions and produce correct out­
put. 

5.4 Partial Evaluation 

Partial evaluation results from combining a (pos­
sibly empty) subset of a program's data with a 
program to produce a new, simpler, program [29]. 
In a sense, conventional optimizations such as 
constant folding are just forms of partial evalua­
tion using an empty input data set. 

Berlin [30, 31 ~ has shown that partially evalu­
ated scientific codes can show significant speed­
ups. Although it is unclear how to extrapolate 
these results from small Scheme programs to large 
scientific codes, the results are encouraging. 

Koo and Sundaresh [32] have recently shown 
that partial evaluation can be used to implement 
function call specialization. Their work is based 
on a high-level semantic model, but the results 
confirm the following observation: by using partial 
evaluation and by tracking the types of the objects 
created, a system can determine the actual types 

of objects involved in virtual function calls. Thus, 
rather than implementing a static analysis to 
propagate data types, the system simply performs 
an abstract interpretation on the program and 
tracks the results. Krishna [33] is currently work­
ing on the general problem of partial evaluation in 
C and C++ for scientific codes. 

On its own, using partial evaluation would be 
too expensive to apply to most programs. How­
ever, an optimizer can use results from the partial 
evaluation to simplify other optimization passes 
such as interprocedural constant propagation. In 
the long term, partial evaluation may become an 
important technique in optimizing large scientific 
codes because many scientific codes operate on 
relatively fixed data sets for which a partially eval­
uated program would be appropriate. 

6 CONCLUSION 

This article has presented a framework-based 
environment for object-oriented scientific pro­
gramming and has examined the impact of a 
framework-based approach upon programming 
environments for object-oriented scientific codes. 
The use of a framework simplifies the creation of 
domain-specific, intelligent tools that can assist in 
the elaboration of programs from the framework. 
These same tools can be used to support project 
browsing and configuration management. With 
integrated configuration management, the envi­
ronment is able to provide the interprocedural 
analysis needed to fully optimize scientific and 
numerical programs. Finally, the article has 
briefly touched upon optimization of object-ori­
ented codes, including function specialization, 
partial evaluation, and the need for interproce­
dural analvses. 
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