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ABSTRACT 

We describe C++ classes that simplify development of adaptive mesh refinement 
(AMR) algorithms. The classes divide into two groups, generic classes that are broadly 
useful in adaptive algorithms, and application-specific classes that are the basis for our 
AMR algorithm. We employ two languages, with C++ responsible for the high-level 
data structures, and Fortran responsible for low-level numerics. The C++ implementa­
tion is as fast as the original Fortran implementation. Use of inheritance has allowed us 
to extend the original AMR algorithm to other problems with greatly reduced develop­
ment time. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Advanced finite difference methods, by them­
selves, are unable to provide adequate resolution 
of three-dimensional (3D) phenomena without 
overwhelming currently available computer re­
sources. High-resolution 3D modeling requires al­
gorithms that focus computational effort where it 
is needed. Adaptive mesh refinement (AMR) algo­
rithms for hyperbolic systems of conservation laws 
have been shown to be effective for concentrating 
the computational effort [1-3]. A~1R is based on 
a sequence of nested grids with finer and finer 
mesh spacing in both time and space. These fine 
grids are recursively embedded in coarser grids 
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until the solution is sufficientlv resolved. The ac­
curacy of the solution is automatically estimated 
and rectangular fine grid patches are dynamically 
created or removed to achieve a desired accuracv. 
Special difference equations are used at the inter­
face between coarse and fine grids to enforce con­
servation. This is all handled dvnamicallv without . . 
user intervention. On large-scale calculations in 
shock physics, this AYIR algorithm has been 
shown to be one to two orders of magnitude more 
efficient than comparable uniform grid or expo­
nentially stretched grid algorithms [3]. 

A:\IIR is a complex algorithm, requiring approx­
imately 10,000 lines in a Fortran implementation 
of the core algorithm, exclusive of user interface. 
Only 20% of the lines are the finite difference inte­
grator. The rest of the lines are devoted to main­
taining the hierarchy of grids. The following oper­
ations are typical of the grid maintenance issues. 

1. The hierarchy of grids must be properly 
nested, with each grid of level n + 1 sepa­
rated by l\"PROPER cells of level n from a 
boundary with grids of level n - 1. 

2. Grids are advanced recursively. Advancing 
the grids at level n for one of their time-steps 
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causes the grids of level n + 1 to be ad­
vanced several of their time-steps until both 
levels of refinement are at the same time. 

3. When different levels of refinement reach 
the same point in time, consistency must be 
enforced. The conservation laws are en­
forced for all coarse grid cells overlain by 
fine grid cells, and at boundaries between 
fine and coarse grids. 

4. In time advancing a grid, boundary infor­
mation may be taken from adjoining grids of 
the same resolution. adjoining grids of 
coarser resolution, or from the boundary 
conditions. 

5. ~When new grid locations are being com­
puted, cells with high truncation error are 
tagged, then buffering cells tagged, then an 
efficient partition of tagged cells into prop­
erly nested rectangular grid patches is com­
puted. 

All of these operations require manipulation of 
complex data structures. which is difficult in For­
tran. The basic ideas of A:YlR are easy to under­
stand because they are primarily geometric in na­
ture. However geometric concepts are not 
naturally expressible in Fortran because that lan­
guage only directly supports algebraic imperative 
statements. The basic data representation of the 
solution changes its structure in time in order to 
represent the changing solution. Grid locations 
change, the number of grids in a refinement level 
change, even the number of levels of refinement 
changes. The dynamic character of the algo­
rithm's data structures is difficult to express in 
Fortran. which does not even have the concept of 
a data pointer built into the language. AMR is nat­
urally recursive in its time-stepping, whereas stan­
dard Fortran 77 does not support recursion. All 
these characteristics of A31R make it difficult to 
express in Fortran. 

A.\1R has been used for 3D calculations in gas 
dynamics that strain the capacity of the largest 
currently available vector supercomputers. In typ­
ical applications .. the time required to manage the 
grid hierarchy is too small to be reliably measured. 
1\"early all the time is spent in routines that act 
upon regular arrays of numbers, e.g .. finite differ­
ence time-step integration, interpolation, Ri­
chardson extrapolation. For the routines that per­
form these actions, Fortran is an excellent choice 
of language. First, the only data structure required 
by such routines is the rectangular array of float­
ing point numbers, which Fortran is adequate to 
handle. Second, Fortran compilers are still more 

efficient at producing vectonzmg code for these 
routines than any other language known to the 
authors. Because these routines dominate the 
computational cost of the A.VIR algorithm, use of a 
less optimized language would be unacceptable. 

AMR for systems of hyperbolic conservation 
laws is a generic numerical technology that is ap­
plicable to any set of hyperbolic conservation 
laws. However, our experience with the Fortran 
implementation was that the AMR implementa­
tion became intertwined with the underlying set of 
partial differential equations (PDEs). For exam­
ple, even the upper levels of the Fortran imple­
mentation were hard-wired with the number of 
variables per cell required by the PDE. This inter­
twining made it nontrivial to replace one PDE 
package with another, even if both packages mod­
eled hyperbolic systems of conservation laws. By 
way of comparison, the standard method for uti­
lizing mathematical software is to call a subrou­
tine from a precompiled library. Obviously if a hy­
pothetical mathematical subroutine had to be 
recompiled with modifications for every use, er­
rors would be much more common. If the A.\1R 
logic could be decoupled from the underlying 
PDE, it would become much more accessible to 
users. 

The A.\IR algorithm for systems of hyperbolic 
conservation laws has been undergoing continual 
development and enhancement. Between 1986 
and January 1991, the Applied Math Group at 
Lawrence Livermore 1\"ational Laboratorv devel­
oped nine separate implementations of the AMR 
algorithm. Several other similar implementations 
were developed by collaborators of the Applied 
Math Group. These implementations represented 
major new applications of the AMR methodology. 
e.g., A31R on quadrilateral grids [ 4 l, or A.VIR with 
front tracking [5]. At the same time, algorithmic 
improvements to the A.VIR internals took place, 
along with numerous bug-fixes. ·with so many 
versions to maintain, it became difficult to keep all 
implementations of the A.\1R algorithm up-to­
date with the latest fixes and improvements. 

Our experience with Fortran implementations 
of the hyperbolic AMR methodology was that writ­
ing and debugging an implementation took about 
two thirds of a man-year for an experienced im­
plementer. As we began to look toward using AMR 
in new physical regimes, i.e., introducing elliptic 
and parabolic terms to the system of hyperbolic 
conservation laws, we felt the need to look for 
methods of reducing the development time. 

In early 1991, we began to address these prob­
lems by reimplementing our AMR algorithms in 



the object-oriented language C++. We began 
with an A~R algorithm for the hyperbolic equa­
tions of in viscid gas dynamics (Euler equations) in 
conservative form. Our objective was to produce 
an efficient implementation that would be easier 
to develop and maintain. The ability to define ab­
stract data types (ADT) in C++ made it easy to 
define objects with an intuitive geometric basis, 
which made the A.\1R algorithms easier to under­
stand. The initial A:YIR implementation would 
then provide a basis for further AMR algorithms. 
Subsequent AMR algorithms would draw upon 
the object-oriented libraries developed for A:YIR 
inviscid gas dynamics. and also achieve reuse of 
code via inheritance. For reasons of efficiency, we 
chose not to totally reimplement A.\1R in C++. 
Low level numerical routines remain in Fortran. 
Only the high-level, organizational levels of the 
A:YIR algorithm were written in C++ (approxi­
mately soo;;) of total lines of code). In brieL each 
language was given a job commensurate to its 
abilities. 

As of March 1993, we have three major imple­
mentations of A.\IR for three different classes of 
PDEs: hyperbolic systems of conservation laws. 
hyperbolic systems of conservation laws with a 
Cartesian grid representation of boundaries, and 
coupled hyperbolic and parabolic systems of con­
servation laws. The implementations draw upon 
the same object libraries, and are coupled through 
the use of inheritance. At this time. we have three 
more implementations in various stages of com­
pletion: coupled hyperbolic, parabolic, and ellip­
tic systems of PDEs, hyperbolic systems with front 
tracking, and multifluid hyperbolic systems. 

In the following sections, we will describe our 
object-oriented implementation of AY1R algo­
rithms. In Section 2 we will describe the A.\IR al­
gorithm for systems of hyperbolic conservation 
laws in abstract. In Section 3 we describe the ob­
ject-oriented component libraries we base our im­
plementation upon. In Section 4 we will describe 
classes that are specific to our implementation of 
hyperbolic AMR. In Section 5 we describe how we 
have reused the hyperbolic A.\IR-specific classes 
in the derivation of related A:YIR algorithms. In 
conclusion, we describe the best and worst points 
of our experience with the object-oriented imple­
mentation of AMR. 

2 THE AMR ALGORITHM 

Because the requirements of hyperbolic A~R mo­
tivate our object-oriented classes, we will discuss 
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in this section the A~R algorithm for hyperbolic 
systems. For a less terse description. the reader is 
referred to Berger and Colella [2]. The A~IR algo­
rithm for hyperbolic systems of conservation laws 
is exemplified by our original A~R for inviscid gas 
dvnamics. 

The AMR algorithm for hyperbolic systems of 
conservation laws calculates its solution on a se­
quence of adaptively refined rectangular grid 
patches. The class of solutions of these equations 
consists of regions of smooth solution separated 
by discontinuities or steep gradients in the solu­
tion variables. To compute an accurate solution 
on a finite difference grid, the mesh spacing must 
be sufficiently refined to match the length scales of 
the important features of the solution. In the 
smooth regions a coarse grid solution is satisfac­
tory but a refined grid is necessary to accurately 
capture the discontinuities as steep gradients. The 
AMR algorithm begins with an underlying (level 0) 
coarse grid (or collection of grids) that covers the 
entire computational domain. An error estimation 
procedure identifies cells where the solution is not 
resolved to a given error tolerance. These tagged 
cells are grouped into rectangular patches that are 
spatially and temporally refined to form the level 1 
grids. The refinement ratio between the levels is 
an even constant specified at runtime. This proce­
dure is recursive: error estimation is performed on 
the level L grids, and tagged cells are grouped 
and refined to form the level L + 1 grid patches. 
The process is repeated until either the error toler­
ance is satisfied or a specified maximum level is 
reached. The grid patches at each level must be 
properly nested in the underlying coarse level. 
Proper nesting requires that the union of level L + 
1 grids be properly contained in the interior of the 
region covered by the level L grids (except at the 
boundary of the physical domain where all levels 
can be refined up to the edge). 

An example of the AMR grid structure can be 
seen in Figure 1, which shows the density contour 
map for the interaction of a shock with an inclined 
plane in inviscid gas dynamics. The inclined plane 
is modeled with a Cartesian Grid representation of 
the body. The Cartesian Grid A~R code is dis­
cussed brieflv in Section 5. Note that the finest 
level boxes track the large gradients in the solu­
tion. The grid placement is calculated without hu­
man intervention. 

For the inviscid gas dynamics A~R algorithm, 
we use an explicit second order Godunov method 
to advance the solution on each grid patch. The 
stability requirement for this method is that a sig­
nal not be able to pass entirely through a finite 
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~--------------~-------

FIGURE 1 Density contour~ for shock-ramp interac­
tions. 1\'ote that grids are automatically placed on re­
gions of large gradients in the solution. 

difference cell in anv given time-step. This re­
quirement is enforced by restricting the time-step 
such that S * dt/ dx < CFL < 1 where S is the 
speed of the fastest wave in the problem and CFL 
is the Courant number specified by the user. From 
this we can see that as we move from one level to 
the next finest with a refinement ratio of R the 
time-steps taken on the finer grids must be re­
duced by a factor of R. Further, for the fine grids 
to be advanced to the same point in time as the 
coarse level we must advance them R times for 
each coarse grid advancement. The time stepping 
algorithm is recursive: The grids at level L are ad­
vanced with a time-step dt(L). The grids at level 
L + 1 are advanced R times with time-step dt (L + 
1) = dt(L)/R. Finally, a synchronization step is 
performed between level L and L + 1. Note the 
costs involved in refining a region in 3D with a 
refinement ratio of R. The storage increases by a 
factor of H~ and the computational effort increases 
by a factor of R 4

. R is a small even integer, typi­
cally 2 or 4. 

The same integration module is used to ad­
vance both coarse and fine grids. The stencil for 

this integrator requires that a certain number of 
boundary values be supplied for each grid. The 
boundary values are supplied by either (1) copy­
ing from adjacent grids, (2) calling user supplied 
physical boundary condition functions or (3) in­
terpolating (both in space and time) from grids at 
a coarser level. When interpolating data from 
coarser grids, we obtain the data on the required 
sub-patch by a recursive call to this fill algorithm. 
Because a time interpolation must be used to sup­
ply boundary data on the coarse/fine grid inter­
face we must keep two copies of the data on the 
coarse levels. 

The synchronization step is used to ensure that 
the solutions on the coarse and fine levels remain 
consistent. It consists of an "average-down" step 
followed by a "refluxing" step. Because the nu­
merical method discretely respects the conserva­
tion laws, it is necessary that the amount of the 
conserved quantities contained in a fine grid be 
the same as that contained in the underlying 
coarse grid region. The average-down step is im­
plemented by averaging the fine grid data (in a 
volume weighted fashion) down to the coarse grid 
region covered by the fine grids. 

A conservative scheme updates the solution by 
computing fluxes across the faces of each finite 
difference cell. The state of the solution in a cell at 
the new time is the state at the old time plus the 
net flux across each of its faces. The fluxes com­
puted on the coarse grid are in general not equal 
to the cumulative fluxes over the same physical 
region on the fine grids. The "refluxing" step ef­
fectively replaces the coarse grid fluxes with the 
cumulative fine grid fluxes. The reflux step up­
dates the coarse grid cells adjacent to but not cov­
ered by the fine grids with a correction term that 
represents the difference between the coarse grid 
and fine grid fluxes. 

As the dynamics evolve in time the important 
features of the solution move through the compu­
tational domain in a way that cannot be predicted 
a priori. The hierarchical grid structure must be 
periodically regenerated to capture these features. 
Grid generation is performed from the finest level 
down to the coarsest. Error estimation is performed 
on the old level L grids to determine where the new 
level L + 1 grids will be placed. The new level L 
grids are determined by an error estimation proce­
dure on the level L - 1 grids with the added re­
striction that the new level L + 1 grids be properly 
nested within the new level L grids. Once the grid 
locations are determined for all levels, data space 
is allocated and state variables are defined by ei-



ther (1) copying on overlap from the old grid struc­
ture, or (2) spatial interpolation from the old grid 
structure. Care is taken to release the memory 
from the old grid structure as soon as possible and 
to delay memory allocation for the new grid struc­
ture to minimize memory consumption. 

The error estimation procedure consists of both 
a Richardson error estimation to detect errors in 
the solution as well as a physics-dependent error 
estimator that can detect slowly moving or station­
ery gradients missed by the Richardson estimator. 
High error cells are tagged, then buffered by tag­
ging neighbor cells. All the tagged cells are orga­
nized into a ''cluster," which consists of a list of 
tagged cells and the minimal rectangular box con­
taining them. We use a cutting algorithm based on 
a combination of signatures and edge detection 
used in computer vision and pattern recognition 
[ 6] to find the best place to chop the cluster. 
Chopping a cluster consists of sorting the tagged 
cells into two lists depending on which side of the 
cutting plane they lie. Minimal boxes are com­
puted for each cluster after the chop. This process 
is performed until the ratio of tagged cells to total 
number of cells in a cluster reaches a given effi­
ciency value. These clusters may be further 
chopped if necessary so that they lie within the 
proper nesting domain for the level in which they 
reside. The proper nesting domain for a level is the 
largest subregion of that level that can be refined 
to the next level without violating the proper nest­
ing requirement. Finally, the cluster boxes at level 
L are refined to level L + 1 to become the new 
level L + 1 grid structure. 

3 GENERIC OBJECT LIBRARIES FOR 
ADAPTIVE ALGORITHMS 

In the process of designing the C++ version of 
AMR we identified several basic classes that would 
serve as the building blocks for many of the larger 
classes used in AYIR. Considerable effort was 
spent in designing, implementing, optimizing, and 
testing these basic classes because their use was 
widespread. One of our goals was to implement 
k\1R in a dimension-independent manner, with 
the dimension specified at compile time. The base 
classes implement this goal with a macro for the 
class name that expands to the actual name of a 
class with the correct dimensionality. For exam­
ple, the "box" class is actually three classes, 
"box1d", "box2d" and "box3d", but the macro 
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FIGURE 2 Derivation/ composition graph for some of 
the generic library classes. Dashed lines show class der­
ivation and solid lines indicate class composition. Ar­
rows point from larger, more composite class to smaller, 
more fundamental class. 

name "BOX" can be used and will be translated 
to the appropriate name at compile time based on 
the spatial dimension. In general, the only excep­
tions to the dimension-independent interface are 
in certain dimension-specific constructors. 

Figure 2 shows the more important of the ge­
neric classes we have derived. In addition to the 
classes shown in Figure 2, we have implemented 
classes for X-Window or postscript graphics and 
character strings, such as are found in many class 
libraries. In Figure 2, lines indicate relationships 
between classes. Solid lines indicate that one class 
includes objects of the second class (composition). 
Dashed lines indicate that one class inherits from 
the second. The lines indicate a direction, going 
from the larger, more composite to the smaller, 
more fundamental. 

The most basic class is ll\TVECT, which im­
plements points in !\"-dimensional integer space. 
Operations include partial ordering relations, 1/0 
operations, selection of individual components, 
and basic arithmetic operations. 

One very useful class is the BOX class, which 
describes rectangular subregions of !\"-dimen­
sional integer space. A BOX consists of two 
INTVECTs, specifying the diagonal corners of the 
region. Boxes have a large number of operations 
including intersection, translation, refinement, 
and coarsening by a given ratio. BOX expansion, 
shrinking, and chopping operations are available 
as well as a full complement of access functions. 
The BOX class has 59 different member func­
tions, exclusive of the constructors, destructors, 
and access functions. In addition, a BOX can be 
defined to represent a rectangular region in either 
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cell centered or node centered coordinates in each 
index direction. The usefulness of defining a BOX 
class for adaptive algorithms can be illustrated 
with a code fragment. Very often in the A~IR algo­
rithm it is necessary to ask if two rectangular re­
gions have a non-null intersection. In Fortran, 
such a test would be expressed as: 

ixlo maxO(iplo,imlo) 
ixhi minO(iphi, imhi) 
jxlo maxO(jplo,jmlo) 
j xhi minO (j phi , j mhi) 
kxlo maxO(kplo,kmlo) 
kxhi minO(kphi,kmhi) 
if ((ixlo.le.ixhi) .and. 
(jxlo.le.jxhi) .and. 
(kxlo.le.kxhi)) then 

end if 

In comparison, with the use of the BOX class. the 
same test can be written as: 

if (pbox. intersects(mbox)) { 

} 

Clearly the second case is much easier to read and 
write, as well as much more likely to be entered 
correctly. By actual count, the hyperbolic A~R 
algorithm calls the BOX intersection test 19 times 
explicitly. In addition, the A~R algorithm calls 
many library functions that implicitly call the BOX 
intersection test. 

We have also implemented generic singly and 
doubly linked list classes. Through derivation 
from the BOX class and the doublv linked list 
class we have implemented a BOXLIST class. We 
have extended this class with functions thac for 
example, determine if a given box is contained 
in the union of the boxes in the list. ~We have 
used this class as the private representation of a 
FIDIL_DO~AIN [7] class which is used to 
represent arbitrary subregions of 1\"-dimensional 
integer space as a list of mutually disjoint boxes. 
Some interesting operations of the FIDIL_ 
DO~AIN class are union, intersection, comple­
ment and accrete. We use FIDIL_DOMAINS to 
represent the proper nesting regions of each level 
during the regridding process of the AMR algo­
rithm. 

A CLCSTER class consists of a list of 

INTVECTS and the minimal BOX containing 
them as described in the AMR algorithm above. A 
T AGBOX class is also defined. It consists of a 
BOX along with an integer tag array used in mark­
ing cells of a grid for masking operations. 

One of the most useful classes in the base li­
brary is the FARRAYBOX class. This class is a 
C++ implementation of a Fortran array. It con­
sists of a box defining the index extent of the array 
and a pointer into heap allocated storage where 
the array data are stored. The data are stored in 
Fortran column major order so that it can easily 
be passed to Fortran worker routines that manip­
ulate the data. The majority of data manipulated 
in the AMR code, such as the state arrays for a 
grid, are implemented as FARRAYBOX's. FAR­
RA YBOX operations include copying on intersect, 
selection of values, access functions, dynamic re­
sizing operations, index shifting, computing min 
and max values, along with a variety of simple 
arithmetic operations such as the addition of two 
FARRAYBOX's or multiplication by a scalar 
value. We stopped short of implementing a gen­
eral array language because it is difficult to imple­
ment a general array language efficiently. Our 
general philosophy in this area is that if efficiency 
is importanL it should be written in Fortran. FAR­
RAYBOX operations are used frequently so we 
took care to optimize the operations to take ad­
vantage of the target architecture. W~hen compil­
ing for a vector processor we unroll loops and vec­
torize over the longest index direction. When 
compiling for a cache architecture, the loops re­
spect the cache. Further, because all the FAR­
RAYBOX memory is allocated by C++ and the 
majority of the dynamic memory used by A.\1R is 
contained in FARRA YBOX objects, we have taken 
over memory management for this class. \Ve have 
implemented a compacting memory manager that 
eliminates fragmentation and have recently writ­
ten a swapping memory manager that efficiently 
uses the solid state disks available on the CRA Y 
YMP series as secondary memory. \Vith this fea­
ture, we are able to run problems that would ordi­
narily require over 100 megawords of main stor­
age in only 10-20 megawords of main memory. 
The overhead realized in the SSD version is less 
than 5% in the tests we have made to date. 

4 AMR IMPLEMENTATION CLASSES 

Each of the AMR-specific classes corresponds to a 
major component of the AMR algorithm. The In­
tegrator class corresponds to the finite difference 



I 
I 
I 
I 

I FArra:Box I 

' ' ' ' 

1 ~:ist 1 

ADAPTIYE ~1ESH REFI~EME!\iT ALGORITHMS 151 

' ' 

I BndryRegP 

' ' ' I Un:pliu I 

FIGURE 3 Derivation/ composition graph for the major A.\1R implementation classes. 
Dashed lines show class derivation and solid lines indicate class composition. Arrows 
point from larger, more composite class to smaller, more fundamental class. 

method that advances a grid by the time-step. The 
DataBox class contains the state variables for a 
single rectangular region of the index space at a 
specified time. Objects of the Grid class contain 
two DataBox's, representing the state of a rectan­
gular region in index space at two successive 
times. All the Grid objects at a given level of re­
finement are collected into objects of class 
GridList. A GridList object contains all the infor­
mation describing the problem solution on a given 
level of refinement at two successive times. At the 
highest level of abstraction are objects of class 
AmrSS. An object of this class contains all the 
data and member functions necessary to imple­
ment A.\1R for a hyperbolic system of conservation 
laws. Each AmrSS object contains one GridList 
for each level of refinement it uses. The set of 
GridList's represents all the state data contained 
in the system of hierarchically refined grids. Fig­
ure 3 shows the derivation and composition rela­
tionships between the major AMR implementation 
classes. Dashed lines show class derivation and 
solid lines indicate class composition. 

The Integrator class is a virtual base class [8, 
9]. I\o objects of class Integrator should ever exist. 
Vseful integrator classes are derived from the base 
class Integrator. Class Integrator merely defines a 
uniform interface to actual integrator classes. We 
have many subclasses derived from class Integra­
tor, corresponding to different finite difference 
methods and different PDEs, e.g., split Godunov 
integrator for in viscid gas dynamics [1 0-12], un­
split Godunov integrators for inviscid gas dy-

namics [131, fourth-order accurate Lax-Wendroff 
scheme for acoustics, etc. Objects derived from 
class Integrator implement finite difference 
schemes and often contain no data of their own. 
Such data-less objects are employed for their abil­
ities (to apply a finite difference method) not for 
their data. In our AMR implementations, an ob­
ject of base class Integrator is accessed through a 
pointer and the class's two virtual functions. 
When the upper levels of the AMR algorithm are 
compiled, the AMR algorithm has no way to know 
which class derived from class Integrator it will be 
used with. In fact, our implementation makes the 
choice of Integrator object a run-time decision. 
Class Integrator defines two virtual functions. One 
function applies a finite difference scheme to a 
rectangular array of numbers. A second function 
returns a set of integers that characterize the finite 
difference method and the physical system. The 
numbers include the number of variables required 
to define the state of the physical system in each 
grid celL the maximum allowable size of grid­
patches, the stencil width or number of extra 
zones of data required to apply the finite differ­
ence method, the coordinate system, etc. The 
higher levels of A:YIR access this function during 
initialization and take appropriate actions during 
the computation based on these numbers. 

An object of class DataBox contains the infor­
mation required to describe the state of the system 
on a rectangular region of index space at a single 
point in time. In the simplest cases, the state can 
be described with a rectangular array with a fixed 
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number of variables per each cell in the array, but 
more complex configurations are possible. For the 
case of inviscid gas dynamics, DataBox is derived 
from the library class F ARRAYBOX. Ylember 
functions, defined for class DataBox, correspond 
to reasonable actions that can be applied to the 
system state at a single point in time. For example, 
the state can be integrated forward in time, or in­
terpolated onto another DataBox of finer resolu­
tion, or copied into another DataBox, etc. Of all 
the AMR classes, only classes DataBox and Inte­
grator are dependent on the underlying PDE. The 
PDE dependence is encapsulated within these two 
classes, allowing the rest of AMR to be indepen­
dent of the PDE. In addition to being dependent 
upon the PDE, the DataBox class is also depen­
dent upon the problem being solved. For exam­
ple, the DataBox class has a function that initial­
izes a DataBox. Such an initialization function will 
frequently be changed as different problems are 
studied. The DataBox class calls user-defined 
routines written in Fortran that perform such 
problem-dependent functions. Fortran was cho­
sen for this purpose to make the AYIR algorithm 
more accessible to users. 

Objects of class Grid contain two DataBox's, 
representing the state of a logically rectangular re­
gion at two successive times. Some Grid's also 
contain Flux Registers, specialized DataBox's that 
are used to store fluxes at the edges of the Grid for 
later use in refluxing. In addition to performing 
operations upon its constituent DataBox's, the 
Grid class is able to perform operations that re­
quire two DataBox's. For example a Grid is able to 
fill a DataBox with interpolated data at any time­
level intermediate between the times of its constit­
uent DataBox's. A Grid is also able to make an 
error estimation upon the solution in its domain 
and determine where further refinement is re­
quired. A Grid also has responsibility for manag­
ing its memory consumption in order to reduce the 
memory consumption of the entire application. 
DataBox's that are no longer needed are released 
as soon as possible. Flux registers are only allo­
cated by the Grid object if the Grid will utilize 
them later. An object of class Grid can perform 
numerous operations required by the AYIR algo­
rithm upon the solution in a rectangular spatial 
region, for example, initialization, time-step ad­
vance, tagging cells requiring further refinement, 
various 110 functions, correcting the solution on a 
coarse grid to agree with an overlaying fine grid, 
etc. 

All the Grids at a given level of refinement are 
collected together in an object of class GridList. 

This collection class is implemented as a doubly 
linked list and provides iteration functions used to 
step over the members of the list. Class GridList 
also implements AYIR actions that are imple­
mented on an entire level of refinement, for exam­
ple, time-step advance or synchronization be­
tween levels. 

The AYIR implementation classes also contain 
two classes that are used to represent boundary 
conditions. The BndryReg class is a general repre­
sentation of a boundary condition. ~We implement 
a boundary condition as a function that provides 
values outside of the physical problem domain. A 
BndryReg object contains a BOX describing where 
the boundary condition may be applied and a rule 
for generating data in this region. The BndryReg 
rule may generate the data independent of the so­
lution in the interior (e.g., supersonic inflow 
boundary condition) or may be dependent upon 
the solution in some fashion (e.g., reflection 
boundary conditions). The "rule" function is pro­
vided to an object of class BndryReg when it is 
instantiated. We have also derived classes from 
BndryReg that handle specific types of boundary 
conditions, for example, periodic (BndryRegP) 
and reflecting (BndryRegR). Reflecting boundary 
conditions are used to represent walls and sym­
metry planes in the problem. These two derived 
classes do not require coding a rule function, and 
are consequently easier to use. 

Objects of class BndryReg are collected to­
gether in an object of class RegDecomp. The re­
gions associated with each BndryReg object must 
be disjoint and their union must cover all cell loca­
tions within one stencil width of the physical re­
gion. These conditions are checked by the RegDe­
comp object. A RegDecomp object can be asked 
to provide data from outside the physical domain. 
The RegDecomp object then requests each of its 
BndryReg objects that intersect the desired region 
to provide data in the intersection. The RegDe­
comp object orders the BndryReg objects inter­
nally so that the external data required by some 
RegDecomp objects is available before the object 
is invoked. The use of boundary condition objects 
has made it considerably easier to setup boundary 
conditions for applications than was our experi­
ence with the Fortran implementation. 

At the highest level of abstraction are objects of 
class AmrSS. An object of this class contains all 
the data and member functions necessarv to im­
plement AMR for a hyperbolic system of conserva­
tions laws. Each AmrSS object contains one 
GridList for each level of refinement it uses. An 
AmrSS object contains a RegDecomp object to de-



scribe the boundary conditions. An AmrSS object 
has member functions that implement actions af­
fecting multiple levels of refinement. For example, 
an AmrSS object can advance the solution by one 
coarse grid time-step. This requires multiple time­
steps at the finer levels and a synchronization be­
tween levels when two levels of refinement are ad­
vanced to the same point in time. The AmrSS 
object is also responsible for computing the size of 
the next time-step, based on the CFL numbers 
reported by each of the Grid objects as they are 
time-stepped. At specified intervals during the 
time-step advance, new grid positions are calcu­
lated. Fine grid levels are "regridded" more often 
than coarse grid levels. Individual Grid objects on 
each level are responsible for tagging cells requir­
ing refinement within their domain, but the 
AmrSS object assembles the tagged cells and finds 
an efficient grid structure that covers the tagged 
cells. During many phases of the A.\'IR algorithm 
(e.g., time-step advancing a Grid) it is necessary to 
fill a rectangular array with data values represent­
ing the solution at a specified time. The AmrSS 
class has a member function that is the publicly 
accessible interface to that information. In the 
general case, gathering this data may involve cop­
ying from grids of one level, interpolating data 
from a coarser level, and deriving data from a 
boundary condition. Because this is a multigrid, 
multilevel operation, it is appropriate that the 
AmrSS class implement it. 

Because the C++ objects we have implemented 
always pass computationally intensive parts of the 
calculation to Fortran subroutines. we expected 
that the overhead of C++ would not have a mea­
surable effect upon the A:YIR algorithm. To test 
this assumption, we performed a standard 2D cal­
culation of a shock wave hitting a cloud of denser 
gas with both the original Fortran calculation and 
the C++ implementation. The C++ implementa­
tion was actuallv about 1% faster. 'Ve cannot con­
clude that C++ is faster than Fortran from this 
experiment because the algorithms had changed 
slightly in the intervening year (due in some part to 
our ability to write better algorithms inC++). But 
we can eliminate the hypothesis that C++ is dras­
tically slower than Fortran in this application. 
This conclusion should be true in 3D as well. 

5 REUSE OF AMR-SPECIFIC CLASSES 

'Vith C++, we have the ability to define abstract 
data types and manipulate them as if they were 
part of the language. This has made it easier to 

ADAPTIVE ~ESH REFINEME.'\IT ALGORITH~S 153 

write and read complex adaptive algorithms. 
There is another notable contribution to our de­
velopment work that C++ has made. C++ en­
ables us to derive new algorithms from old algo­
rithms in analogy to the way classes are derived 
from base classes. 

In the previous section we described how we 
employed the "data-hiding" property of C++ to 
decouple the higher levels of A:yfR from the Data­
Box and Integrator classes, which are dependent 
on the underlying PDE. There are other logical 
cleavage lines in the algorithm that allow different 
portions of the algorithm to be treated indepen­
dently. A simple example of this is our variable­
ratio version of AMR for in viscid gas dynamics. 

In the original AMR implementation for hyper­
bolic systems, the ratio between time-steps at dif­
ferent levels of refinement is fixed to be the same 
as the ratio of spatial refinement. This is a reason­
able strategy when the variation between velocities 
in the problem domain is not too far from one. 
However, if the problem domain has regions of 
high velocity, the CFL time-step limit in these re­
gions will dominate the determination of the time­
step for the entire domain at all levels of resolu­
tion. Considerable improvement is possible if the 
high velocity region is for some reason not repre­
sented on the finest level of refinement. Then the 
size of the time-steps that the finest level can take 
should be limited by the highest velocity in the 
region covered by the finest level, not by the physi­
cal domain as a whole. However, this requires 
changing the ratio between time-steps at different 
levels of refinement. 

In the A:yfR C++ implementation, the determi­
nation of time-steps is localized to the AmrSS 
class. It is possible to replace the standard time­
step determination logic with an alternative logic 
that dynamically determines the optimum ratio of 
time-steps for the solution at each time-step. 
However, most of the AmrSS implementation is 
unrelated to time-step determinations, for exam­
ple, the regridding logic. We do not wish to simply 
copy this logic into a new class because this cre­
ates a second implementation of the regridding 
logic that must be constantly updated with im­
provements and corrections. Instead we use class 
derivation. 

We have derived a class AmrVR from the exist­
ing AmrSS class. The only code in the AmrVR 
class is an overloading of the AmrSS member 
functions that advance the solution by one time­
step. It differs from the AmrSS member function 
by choosing the time-step on each level of refine­
ment to be as large as the CFL restriction allows, 
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subject to the restriction that ratios between time­
steps must be integral. The class AmrYR other­
wise inherits the existing AmrSS functions for re­
gridding, user interface, etc. The AmrYR 
implementation involves approximately 200 lines 
of new code compared to the 2,000 lines of code 
in the AmrSS implementation. Because class 
AmrVR is derived from AmrSS, it can be used as a 
direct replacement in any program using AmrSS. 
We have used the AmrVR class in very large scale 
3D gas dynamic simulations with considerable 
time savings. 

A larger scale example of ·'algorithm deriva­
tion" is our development of an AYIR l"avier­
Stokes simulator for compressible gas flows. A 
~avier-Stokes simulator requires the addition of 
parabolic terms that model the diffusive transport 
of momentum and heat. \Ve use a higher order 
Godunov scheme for the advective portion of the 
equations. The viscous terms are integrated with a 
second -order accurate Crank -l"icolson scheme. 
The advective and viscous terms are coupled to­
gether in a predictor-corrector cycle. The implicit 
Crank-Nicolson step requires the solution of a lin­
ear system on the grids of a given level of refine­
ment. 

A number of new operations are required in the 
compressible ~avier-Stokes algorithm. Viscous 
terms must be calculated, linear systems must be 
solved, and viscous fluxes must be accumulated 
and refluxed to conserve energy and momentum. 
The cycle of time-steps must be modified to in­
clude the linear solve. The basic explicit time-step 
integrator for the advective terms is modified. 
However, much remains of the original hyperbolic 
AMR algorithm. The grid structure is the same; 
the advective time-step integrator is almost identi­
cal: the regriding algorithm is the same: the syn­
chronization operation between levels of refine­
ment is the same, with the caveat that the fluxes 
contain viscous fluxes as well as advective fluxes. 

Cnlike the case of variable-ratio AYIR. the 
compressible ~avier-Stokes AYIR cannot be im­
plemented with a single changed C++ class. The 
required changes extend from the highest levels of 
AMR down to the base advective time-step inte­
gration. We have derived five new classes from 
the standard hyperbolic A.\1R implementation 
classes. For the most part they differ from the 
standard hyperbolic A""IR classes by the addition 
of new capabilities related to the viscous terms. 
For example, the class DataBoxCl"S has the ca­
pability of computing the viscous fluxes from its 
state in its rectangular region. In a few places, the 
compressible l"avier-Stokes classes overload 

FIGURE 4 Derivation/ composition graph showing re­
lationship between compressible "Javier-Stokes A:VlR 
classes and the hyperbolic AMR classes. Dashed lines 
show class derivation and solid lines indicate class 
composition. Arrows point from larger, more composite 
class to smaller, more fundamental class. 

member functions of the hyperbolic classes, 
mainly in the time-step cycle which is modified to 
include the solution of the Crank-r-;icolson linear 
problem for the viscous terms. Figure 4 shows the 
inheritance and composition relationships. 

~With this derivation scheme we have been able 
to easily implement an AYIR algorithm for com­
pressible Navier-Stokes. We had to write approxi­
mately 1, 900 lines of additional code, mainly in 
Fortran to implement the calculation of viscous 
terms. The program retains all the improvements 
and corrections we have implemented over the 
years in the hyperbolic AYIR program because it is 
derived from it. It will continue to incorporate new 
improvements that we introduce into hyperbolic 
AMR except for improvements we make in the few 
member functions that are overloaded bv new 
functions in the AYIR compressible 1\"avier-Stokes 
class structure. For example, all the code we have 
introduced into the hyperbolic AYIR code to write 
graphics files in several different formats is 
present and working in the compressible :-\avier­
Stokes AMR program. In our opinion. the ability 
to transparently track improvements in the hyper­
bolic AYIR implementation is at least as important 
as the ability to write an important new applica­
tion with only 1,900 lines of new code. We have 
applied the compressible Navier-Stokes algorithm 
in 2D to important unsolved problems in viscous 
shock dvnamics [ 14]. 



We have also applied our methods for algo­
rithm derivation to an even more ambitious goal. 
We have developed AYIR algorithms for modeling 
geometrically complex boundaries in inviscid gas 
dynamics. We refer to these algorithms as using a 
Cartesian Grid representation of the boundary 
[ 15]. We differ from Berger and Leveque [ 15] by 
employing a tracked front [5, 16] representation 
of the interface. The Cartesian Grid AMR algo­
rithm has proved to be very successful in simulat­
ing inviscid gas dynamics in a geometrically com­
plex region [ 1 7]. This has required rather more 
extensive changes to the class hierarchy than did 
compressible 1\'avier-Stokes because many func­
tions must now be provided with extra arguments 
describing geometry. Seven new Cartesian Grid 
classes are derived from their counterparts in the 
hyperbolic AMR hierarchy: AmrCart, DataBox­
Cart, GridCart, GridListCart, ContourCarL Ras­
terCart, and Cartlnteg. In addition three new 
classes, RDData, SparseData, and SparsePencil 
were introduced to store the geometric description 
in sparse data structures. Approximately 16,000 
new lines of code were required for a combined 2D 
and 3D implementation, or about half of the total 
number of lines of code. 

6 CONCLUSIONS 

Since we first began implementing our codes in 
C++ in early 1991, we have accumulated many 
man-years of experience with implementing com­
plex adaptive algorithms in an object-oriented 
style. ln this section, we would like to recapitulate 
where we think C++ has reallv been a success for 
us, and where it has held us back. 

In terms of the greatest benefit for the smallest 
amount of work, our greatest object-oriented suc­
cess is our ability to write dimension-independent 
code in C++. Our geometrically based algorithms 
have the same expression in 1D, 2D. and 3D 
when we use a geometric language of intersections 
and unions of BOX's. Using the libraries and 
macros described in Section 3, we can do that in 
C++. ln Fortran, we were forced to maintain a 
different implementation of A~1R for each dimen­
sion. We find that if we test and debug a geometri­
cally complex algorithm in 2D, it will very often 
work immediately in 3D. ~When errors do occur, 
they are usually in the Fortran portion of our code. 
Given that debugging our algorithms in 3D is ex­
pensive, this is important to us. 

More generally, we certainly believe that we 
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have benefited from C++'s abilitv to define ab­
stract data types. This makes our algorithms 
much easier to express and to understand. The 
ease of writing complex algorithms in C++ has 
had the important effect of lowering the threshold 
for algorithm changes. For example, we have 
known for years that it was possible to reduce a 
"memory bulge" in the algorithm by getting rid of 
old time-level DataBox's on the finest level as 
soon as a Grid can guarantee that no other Grid 
needs its old time-level data. However, the diffi­
culty of keeping track of the data dependencies in 
Fortran was so daunting that it was never imple­
mented. Csing C++ the threshold of effort for im­
plementing the modification was low enough that 
we did implement the changes. The changes took 
a few hours. 

Another object-oriented benefit we can confirm 
is that data hiding is beneficial for increasing the 
modularity of our implementations. By localizing 
the physics dependence in DataBox and Integra­
tor, we made it much easier to introduce totally 
new physics packages without breaking the pro­
gram. 

Reuse of code through the use of object-ori­
ented libraries and inheritance has been another 
success. The preceding section described some of 
our work with algorithm derivation. \Ve have also 
greatly benefited from the generic object libraries, 
not only in the predominantly hyperbolic AYIR al­
gorithms described in this article, but also in our 
parallel development of AYIR methods for incom­
pressible fluid flow. We have not as yet been able 
to fit these AYIR algorithms into the class structure 
of hyperbolic AYIR in the same fashion that we did 
with compressible 1\"avier-Stokes. But our generic 
libraries have been useful and are an important 
part of that effort. 

Our dual language Fortran/C+ + implementa­
tion has been a success in terms of efficiencv and 
portability. lf we could not be assured of writing 
implementations at least as efficient as the original 
Fortran implementations, we could not have be­
gun this project. Of course, our ability to write an 
efficient Fortran/c++ implementation is depen­
dent upon our primary work objects, i.e .. Data­
Box's, being large objects that can easily hide the 
overhead of a call to a Fortran routine. Other algo­
rithms mav not have that luxurv. . . 

Despite its success, the necessity of writing part 
of our algorithm in Fortran is a major complaint 
for us. Although not intrinsically difficult, Fortran 
imposes an unwanted level of bureaucracy in our 
implementation with the necessity of making an 
extra call, rearranging the arguments into some-
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thing Fortran can understand, and writing macros 
to translate from the Fortran naming convention 
into C++'s naming convention. If C++ and C 
had good, reliable, robust, and highly vectorizing 
compilers, this effort would not be needed. Of 
course, this support would have to be universal 
across the machine architectures that we target 
before we could take advantage of it. In addition, 
we would need to have decent debugger support 
for C++. 

A C++ language problem we have encountered 
is the difficulty with using derivation on tightly 
coupled data structures. Consider the relationship 
between DataBox, DataBoxCJ\"S, Grid. and Grid­
Cl\"S shown in Figure 4. A Grid contains pointers 
to objects of type DataBox. GridCJ\"S is derived 
from Grid. We would like GridCNS to contain 
pointers to objects of type DataBoxCNS. but C++ 
rules of derivation force GridCNS to have pointers 
to type DataBox. We have overcome this problem 
with explicit casting in those portions of the 
GridCNS implementation that need to use mem­
ber functions of class DataBoxCJ\"S. This is inele­
gant and requires special care to document the 
relationships that cannot be expressed in the 
C++ language. 

Our use of C++ for AMR algorithms has 
proven so successful that we no longer perform 
any development in pure Fortran. Our mainstay 
AMR implementations have been converted to 
C++ /Fortran hybrid implementation. 1\"umerous 
new development projects in the LLNL's Applied 
Math Group are taking place using C++ and ob­
ject-oriented libraries. 
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