
Development of Generic Field Classes for
Finite Element and Finite Difference Problems

DIANE A. VERNER1 , GREGORY L. HEILEMAN!, KENT G. BUDGE2 , AND ALLEN C. ROBINSON2

'Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131
2Computational Physics Research and Development (1431), Sandia National Laboratories, Albuquerque, NM 87185-5800

ABSTRACT

This article considers the development of a reusable object-oriented array library, as
well as the use of this library in the construction of finite difference and finite element
codes. The classes in this array library are also generic enough to be used to construct
other classes specific to finite difference and finite element methods. We demonstrate
the usefulness of this library by inserting it into two existing object-oriented scientific
codes developed at Sandia National Laboratories. One of these codes is based on finite
difference methods, whereas the other is based on finite element methods. Previously,
these codes were separately maintained across a variety of sequential and parallel
computing platforms. The use of object-oriented programming allows both codes to
make use of common base classes. This offers a number of advantages related to
optimization and portability. Optimization efforts, particularly important in large scien­
tific codes, can be focused on a single library. Furthermore, by encapsulating machine
dependencies within this library, the optimization of both codes on different architec­
tures will only involve modification to a single library. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

This research addresses the development of a
general-purpose object-oriented class library for
use in problems requiring operations across large
arrays. Potential applications include finite differ­
ence or finite element approximations to differen­
tial equations as well as general matrix libraries.
Large computational physics problems often

Received April 1993
Revised June 199.3

This research was performed in part at the l'niversity of
New Mexico under a grant from Sandia National Laboratories
(contract number AE-1518) and in part at Sandia National
Laboratories supported by the U.S. Department of Energy un­
der contract number DE-AC04-76DP00789.

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 227-234 (1993)

CCC 1058-9244/94/040227-08

make use of either finite difference or finite ele­
ment methods. Although these numerical tech­
niques are quite different, they do share a similar
set of underlying array computations. Further­
more, increasing the computational speed of the
software developed for these methods has, until
recently, focused on the use of vector supercom­
puters. The availability of a variety of powerful
massively parallel computers must now also be
considered in developing code. Thus, portability
was one of the primary concerns addressed during
the development of the array library. This array
library takes advantage of the ease of access of­
fered by workstations, as well as the high perfor­
mance offered by vector and massively parallel ar­
chitectures.

The porting of parallel codes to different plat­
forms is often a prohibitive task because it typi­
cally involves rethinking a problem entirely in or-

227

228 VERNER ET AL.

Class

Class Utility

A_ ___ B Uses/Has-A (implementation)

c ('""'") ___ o Uses/Has-A (interface)

r.: F Inheritance (compatible type)

G H Inheritance (new type)

FIGURE 1 Relationships used in class diagrams.

der to take advantage of a specific computing
platform or programming environment. Encapsu­
lating machine-dependent portions of the code at
the lowest class levels improves portability by lim­
iting the number of classes that must be modified
when porting to new architectures. To achieve
these goals a distributed object-oriented design
was used to develop this class library.

To capture both the functional and temporal
characteristics of a software system at various lev­
els of abstraction, a number of object-oriented di­
agramming techniques can be used. The structure
of the generic classes developed here will be de­
picted using Booch's graphical object-oriented di­
agramming techniques [1]. Booch introduced sev­
eral diagrams that can be used to represent these
types of relationships. These include class, object,
module, state transition, and process diagrams.
The static structure of the classes developed in
this article is represented using the class diagram
relationships shown in Figure 1. A class utility,
shown in Figure 1 as a shadowed blob, is defined
as a collection of related subfunctions that are not
contained within a class. In Figure 1, class A's
implementation either uses one or more of class
B's methods in its computations, or class A con­
tains class B within its data members. The next
relationship in Figure 1 shows class C's interface
using the resources of class D. By contrast, class E
inherits all of its attributes and methods from class
F. The addition of the line perpendicular to the
inheritance line indicates that derived class G is
not type compatible with base class H.

In Section 2, we describe the hydrocode appli-

cations that use the array library. Although these
applications motivated the development of the ar­
ray library, they are by no means the only applica­
tions that can make use of this package. Section 3
discusses the design of classes in the array library,
demonstrates their use in two existing scientific
codes, and then compares them to the original
field classes used in one of these codes.

2 HYDROCODES

Simulation codes that model phenomena such as
the impact of solid bodies at high velocities or the
effect of high explosive detonation are commonly
termed hydrocodes [2]. Sandia National Labora­
tories has developed two hydrocode packages
called PCTH and RHALE + +. PCTH is based on
a finite difference method, whereas RHALE+ +is
based on a finite element method. Because the
class library discussed here was developed to sup­
port these existing codes, this section will briefly
consider these codes and point out their differ­
ences.

2.1 Existing Hydrocodes

Finite difference methods involve converting par­
tial differential equations into algebraic equa­
tions. PCTH is a parallel hydrocode based on a
finite difference methodology to approximate the
equations of mass, momentum, and energy con­
servation. PCTH is based on a three-dimensional
fixed-mesh finite difference method in which the
material flows through the mesh. A two-step ex­
plicit solution scheme is used to integrate the
equations of motion forward in time. The first step
is a Lagrangian step in which material motion is
calculated. Conservation of mass, momentum,
and energy must be satisfied across this step. The
second step is a remap step in which the Lagran­
gian state quantities are mapped back to the fixed
mesh. This two-step approach makes it easier to
handle multiple materials in the simulation [3 J.

Finite element methods are also used to ap­
proximate the solution of partial differential equa­
tions. In finite element methods, each region of
interest is subdivided into finite sets of elements
connected together at a set of points called nodes.
In these methods, the solution is defined every­
where using a piecewise-polynomial approxima­
tion [4 J. RHALE + + is a hydrocode that uses a
finite element method coupled with an arbitrary
Lagrangian-Eulerian mesh motion. RHALE++

solves the equations of motion on an unstructured
finite element mesh. This approach allows the
simulation of odd-shaped structures.

Sequential codes for shock wave physics simu­
lation have been separately developed for both of
these numerical approaches using the object-ori­
ented programming language C++. These codes
are currently in use at Sandia National Laborato­
ries [5]. Although these two numerical ap­
proaches are quite different, software modules
that are capable of representing scalar, vector,
and tensor fields are fundamental components in
both approaches. Our design captures the com­
monality of these fields and encapsulates machine
dependencies. The advantage offered by this ap­
proach is that the implementations of both nu­
merical techniques can share a common set of un­
derlying software classes, and the specific
numerical class libraries can then be built on top
of these base classes through the use of inheri­
tance. The time spent on future low-level effi­
ciency improvements and machine optimizations
can then be shared immediatelv bv all derived
classes and thus all codes (PCTH and
RHALE + +) that use these base class libraries.
This approach greatly simplifies the porting of
both codes to different computers because only a
single library of base classes needs to be modified.

2.2 Parallel Object-Oriented
Hydrocode Simulations

Hydrocode simulations are typically compute in­
tensive and also require large amounts of memory.
To decrease execution time, these programs are
often run on parallel or vector machines. For par­
allel computers, memory and processing time are
divided among the processors. The simulation
must be designed in such a manner as to allow
parallel processing. Hydrocodes are well suited for
the data parallel programming model because
their algorithms typically make use of large arrays.

Parallelism in the data parallel model is ex­
ploited by performing simultaneous operations
across large sets of data, rather than by having
multiple threads of control [6]. For example, a
single program statement may simultaneously add
all of the elements of two large data sets. This style
of programming is well suited for fine-grained sin­
gle instruction multiple data (SL\1D) machines. In
a SIMD computer, the processors operate in lock­
step using a global clock. In addition, data parallel
algorithms have been successfully used on me­
dium-grained multiple instruction multiple data

DEVELOP.\1EYf OF GE:\IERIC FIELD CLASSES 229

(MIMD machines). Data parallel algorithms in­
tended for MIMD computers are often referred to
as single program multiple data (SPMD) [7]. On
an MIMD computer, data parallel operations are
performed by synchronizing all processors after
each step or several small steps. Synchronization
and communication must be explicitly performed
by the programmer but overall communication
costs decrease because several operations may be
executed between communication events.

PCTH is implemented using an SPMD coding
style. Using this approach, PCTH decomposes the
problem domain into rectangular blocks. Addi­
tional cells on each block edge, called ghost cells,
are created to allow data from neighboring blocks
to be stored. As shown in Figure 2, these blocks
are called hydroblocks. Each processor is allo­
cated one or more hydroblocks. Each hydroblock
contains vector, scalar field, and vector field ob­
jects. Single dimensional quantities such as initial
momentum and gravity are stored as VECTORs.
Multidimensional values such as cell temperature,
volume, and pressure are stored as cell-centered
fields in a class called CC_FIELD. In a cell-cen­
tered field, the grid is fixed in space and the values
at the center of each cell are mapped to the indices
of the array variables. In contrast, in a face-cen­
tered field the values on the face of each cell are
mapped to the indices of the arrays. Velocity is
stored as an instance of the class FCV_FIELD
(face-centered vector field), which is an array or
vector of face-centered fields. The state of the ma­
terials used in the simulation is contained in ob­
jects of the class MATERIAL. Each hydro block ob­
ject also contains information concerning required
output. When RHALE+ + is parallelized a similar
SPMD programming style will be used.

3 GENERIC FIELD CLASS DESIGN

As stated previously, large physics simulations
rely heavily on the use of a basic set of mathemati­
cal operations. At the lowest levels of calculations,
element-by-element operations are performed on
ordered sets of values. 1\;o topology or calculus is
included at this level. These operations are encap­
sulated into a FIELD class for full precision float­
ing point numbers and an !FIELD class for inte­
ger data elements. It should be noted that the
usage of field as our class name is not strictly cor­
rect, because the concept of a field implies topol­
ogy and calculus, and our generic classes have
neither. However, the names ORDERED_SE-

230 VERNER ET AL.

.....................
I '·· (I "")

,, -.. ,_

(/··-··· :
.... ...,\ Frame /

:. J
......,
'· ... Out put Manaqe r/ ·-· - ,

• PertTUtat.or .• ···.1 :
········-···-·

··\ .. -........ i .. ·· ···:
'... Plotfile (

I • :

.... /·····
··.... Mllterial •••

····: ;' 1

···--·········

•• //'""··-·-.. o::; ... ;;:::=========:i
'.. ccv_rield l:

"j l
····-······--·J

/········-····· ••• 4

(
• , Vector

: :

.......................
l .. ,

.-t----------r·~ Block ·-..')

······.. r
l r-···-J

.. ······-~·-· l · < ... si.. ;:
"• I
i.J

.....................
.... .. ·

'····~. cc_F1eld .l I ,

)···········-...
"·· •••• {c_riold (

··-····-·····" l J :·····-......... .
.. · '··· ("l

••• ~cv_rield :/
..
............ ·

............. ,... .
.. ··
'·· rev vector /

l J
··..... cc Irield / "•: - i ···\ .. ~J

:.. :

FIGURE 2 PCTH hydroblock class structure.

T_OF_DOUBLE and ORDERED_SET_OF_INT are
awkward and the use of ARRAY seemed likelv to
lead to name clashes with existing programs. In
this article, the terms FIELD and IFIELD will refer
specifically to the individual classes. We will also
use the term field to refer generically to both the
FIELD and IFIELD classes.

In developing scalar, vector, and tensor field
classes, there are two approaches for selecting the
structure of the data: arrays of objects or objects
of arrays. In the arrays of objects approach the
vector or tensor object is laid out sequentially in
memory whereas in the objects of arrays approach
each of the components of the vector or tensor
objects is laid out sequentially in memory. In this
approach, an array of data elements (or a pointer
to an array) is selected as the object attribute.
RHALE+ +originally used an array of objects ap­
proach but difficulties in porting and optimizing
became apparent. PCTH always utilized the ob­
ject of arrays approach in order to leave open the
possibility of porting to SL\1D architectures.

Therefore, the objects of arrays approach was
adopted for RHALE ++,which led to the develop­
ment of a new field class. This field class has now
been adopted by the PCTH project.

3.1 Original PCTH Field Class

Figure 3 shows the class diagram for the original
PCTH field class library. In this library, the field
classes contain all the mathematical operations
and memory management functions required for
their respective classes. The FIELD class contains
a dynamic array of floating point data elements,
an integer pointer to a reference counter, and a
pointer to the topology class SIZE. The IFIELD
class uses a dynamic integer array instead of a
floating point array. The SIZE class contains data
that specifies the dimension of the field class and
the size of the array in each axis. Both field classes
have a HAS-A relationship with the SIZE class.
That is, one of the members of the class is a
pointer to a SIZE object. A USES-A relationship

, ·····················~
••••• •• , !Field /

: :

•' .::·.·.: (•••••• : File_IO

: '

FIGURE 3 Original PCTH field class library class dia­
gram.

exists between the field classes and the FILE_IQ
class. The field classes both call FILE_ IO mem­
ber functions when it is necessary to perform file­
based 1/0.

3.2 New Field Class

Figure 4 depicts the new field class library struc­
ture developed for RHALE + + and PCTH. As
with PCTH, the floating point FIELD and integer
!FIELD classes are used as the base classes for
classes that contain topological information.
These field classes have a HAS-A relationship
with either the SNL_FIELDNODE class or the
SNL_IFIELDNODE class, which are discussed in
more detail below. That is, one of the data mem­
bers in the field classes is a pointer to the appro­
priate SNL.....FIELDNODE or SNL_IFIELDNODE
class. The term node will be used to generically
refer to the SNL.....FIELDNODE and SNL_
IFIELDNODE classes. The data members of the
node classes consist of a reference counter, a
length value, and a dynamic array of either integer
or floating point numbers.

For efficiency reasons, the field class uses dy­
namically allocated memory and the reference
counting memory management technique in order

DEYELOP~fE!\T OF GE~ERIC FIELD CLASSES 231

to decrease the number of heap accesses. This is
especially important on certain computers, such
as the Cray, where heap accesses are very expen­
sive. This leads to the use of an envelope/letter
class idiom [8]. In this idiom, the envelope class
handles all message requests from the external
world. The letter class is completely encapsulated
within the envelope class. In this project, the field
class acts as the envelope class and the node class
acts as the letter class. The advantage of this id­
iom is in the division of memory management and
mathematical operations. Specifically, the enve­
lope class handles all mathematical operations
and reference counting. The letter class is respon­
sible for memory management functions. These
node classes then interface with the memory man­
ager to perform dynamic memory allocation and
deallocation.

As shown in Figure 4, the field classes have a
USES-A relationship with two class utilities:
GENFUN and FAST. The GENFUN class utility con­
tains generic procedures that perform a few simple
integer and floating point operations, as well as
some file read and write operations. The FAST

. ······ ,, __

'· Field /

........... J

......... ..····-......... ······· ·····.. ... ···-...
. l ·

(~L_IFieldNode/ ~ Fast / <~.~L_FieldNoae)

L~ ,_j ;r-j
"··"·· /

< 1 .. ~~:~~~:?
FIGURE 4 New generic field class library class dia­
gram.

232 VERNER ET AL.

class utilitv contains vectorizable functions used
to perform mathematical and logical operations
on the field class members. This allows mathe­
matical operations to be easily ported to many
new machines and optimized without affecting the
field classes. The field classes call the required
vector functions from the appropriate overloaded
operators or methods.

The new field class differs from the original
PCTH class in several significant ways:

1. An envelope/letter class idiom is used. As
discussed above, this leads to a better divi­
sion between memory management and
mathematical operations.

2. The field class contains no topological in­
formation about memory layout. This infor­
mation is contained in derived classes, pro­
viding a more general and reusable set of
base classes.

3. Memory allocation functions are contained
in a separate class, thus allowing different
memory management schemes to be imple­
mented without affecting the field class de­
sign.

4. Vectorizable mathematical operations are
contained in a separate class utility file that
allows optimization of these operations in a
different language, and also allows ma­
chine-dependent functions to be moved to a
separate file from the field classes. The field
classes then become machine independent.

5. A complete set of operations (not just those
required by PCTH and RHALE + +) have
been implemented in these classes to en­
hance reusability in other applications.

In general, the PCTH field classes were simpler
and easier to implement, but also more applica­
tion specific and less complete, making them
harder to reuse in other applications. Several im­
portant but potentially conflicting criteria were
weighted when developing the new field classes:
reusability, memory usage, execution time, and
portability.

3.2. 7 Reusability

The methods developed for the field class library
are intended to be complete and extendable so
that the library can be used in many different ap­
plications. Care was taken to create the minimum
number offunctions necessary, to avoid having an
unmanageable class library. These classes per-

form array-scalar and array-array operations for
both integers and floating point numbers. C++
allows the use of both functions and overloaded
operators in its classes. There are 33 overloadable
arithmetic operators defined inC++ [9]. Of these
only the increment and decrement operators were
not implemented because their functionality can
be achieved using the binary plus and minus op­
erators. The other functions required for the field
classes can be divided into several categories: trig­
onometric, other transcendental functions, gen­
eral purpose, and Fortran-like functions. There
are also some specialized functions that either
simulate hardware commands found on certain
machines or are widely used in both finite element
and matrix applications. All of the functions used
by these field classes are detailed in [10]. Other
application-specific functions are implemented in
derived classes. For example in PCTH, the
FC_FIELD and CC_FIELD classes, which are de­
rived from fields, implement various mean, differ­
ence, and product functions required for this ap­
plication. A mechanism to implement these
additional functions has been provided through a
protected method that returns a pointer to the
start of the data element arrav.

3.2.2 Memory Usage

In general, hydrocodes use large amounts of mem­
ory that must be managed effectively to provide an
efficient simulation. The type of computer being
used to perform the simulation will affect the
memory management requirements. Both the pro­
gram executable size and the amount of program
data used can affect performance. On computers
with virtual memory capability, program data and
executable segments may be swapped out to disk
and large problems can (at least in principle) be
run. However, the amount of dynamic memory
used will significantly affect the speed of the simu­
lation because more operations are being per­
formed and more virtual memory accesses will oc­
cur. The processing nodes of many parallel
computers have a fixed memory size that requires
minimal executable size in order to maximize user
memory for efficient scaling.

Dynamic memory allocation is performed by
the field class and for efficiency reasons memory
management is not relegated to the operating sys­
tem. The memory manager functions, which are
called by the field class, limit heap accesses by
creating a free store pool of pointers to unused but
allocated memory. Because these functions are

not strictly part of the field class, they will not be
discussed any further in this article. Refer to
Verner [10] for a discussion of the memorv man­
ager. There are several techniques that can be
used by the field classes to reduce the amount of
dynamic memory used. Cnfortunately, these re­
quire that the user be aware of what is happening
in the field class in terms of memory in the over­
loaded operators. Overloaded operators cause the
creation of several unnecessary temporary vari­
ables [5]. For example, the expression A = B +
C * D creates four temporary variables, two per
operation, when no memory management tech­
niques are applied. There are two techniques that
can be applied by the application programmer to
decrease the number of temporary variables that
exist at any particular time. The first technique
involves rewriting the above expression as:

A= C * D
A +=B

This method eliminates two of the temporary vari­
ables, and if used in conjunction with reference
counting will eliminate a third temporary. Unfor­
tunately, this method forces an unnatural pro­
gramming style. The application programmer
must also force temporary objects to go out of
scope so they can be deallocated. This can be
done in the application code by adding scope de­
limiters "{ }" around code segments.

3.2.3 Minimizing Execution Time

There are many techniques used to improve time
efficiency inC++ programs, such as inline func­
tions, reference counting, and machine optimized
code. lnline functions can be used to reduce func­
tion call overhead by expanding the inline func­
tion code at the location of the function call but
generally at the expense of increased code size.
Therefore, inline functions were only used on
small functions that are called often. Array opera­
tions are optimized by writing vectorizable or as­
sembly language functions. These techniques lead
to machine and compiler dependent code, and are
supported by the modular development used
here.

Compared to the previous PCTH implementa­
tion, the new field classes have yielded similar ex­
ecution times but a slightly larger executable size.
The increased executable size is due to the larger
number of functions that have been implemented
in order to develop the complete set of base

DEVELOPME:'\T OF GENERIC FIELD CLASSES 233

classes necessary for reusability. This penalty can
be mitigated somewhat by splitting the field class
and their FAST class utility functions into sepa­
rately compiled files, and then creating a library
that contains these files.

Reference counting is another method, used by
the field classes, for minimizing unnecessary
copying of data and thus greatly improving effi­
ciency. A nice feature of this approach is that it is
completely hidden from the user. Reference
counting is a technique where several items point
to one memory location rather than creating a new
item for each reference [8].

3.2.4 Portability

As mentioned previously, one of the primary goals
of PCTH and RHALE+ + is ease of portability.
Specifically, these simulations must be easily por­
table to many different architectures including
single processor workstations and workstation
networks, MIMD massively parallel processors,
vector computers, and potentially even SIMD
computers. Portability can be enhanced by isolat­
ing machine-dependent portions of the code from
machine-independent portions. This is not to say
that all the code will run efficiently on all com­
puters. Instead, the subset of the code that bene­
fits from optimization, such as the vector math
libraries, is stored in routines at the lowest level in
the hierarchy to hide the details behind underlying
generic objects [2]. This machine-dependent
code is compiled according to preprocessor state­
ments that specify the specific code for that ma­
chine. This effectively separates the physics por­
tions of the code from the architectural details. In
the new generic field class, the FAST class utility
provides this machine-dependent code. It is being
ported to and optimized on the nCCBE2, Intel
Gamma, and the Intel Paragon massively parallel
computers, as well as the CRA Y vector computers
and SUN workstations. Future machine-specific
optimization for these individual machines can fo­
cus on the FAST class utility.

4 CONCLUSIONS

In this research we have successfully developed a
reusable field class structure that is being used in
two different computational physics codes; one
code uses a finite difference method whereas the
other code uses a finite element method. This is of
critical importance to the PCTH and RHALE+ +
development teams as all future development of

234 VERNER ET AL.

the field libraries will be synergistic to both
projects. Great care has been taken to make these
classes extendable (to aid in adding new function­
ality), and easily portable to new architectures. It
is also worth noting that a modification of these
classes has been proposed for inclusion in the
Al\"SI C++ standard library [11].

ACKNOWLEDGMENTS

We would like to extend our appreciation to James
Peerv for his technical efforts.

REFERENCES

[1 J G. Booch, Object Oriented Design: With Applica­
tions. Redwood City, CA: Benjamin/Cummings,
1991.

[2] A. C. Robinson, A. Ames, H. E. Fang, D. Pavla­
kos, C. T. Vaughan, and P. Campbell, "Massively
parallel computing, C++ and hydrocode algo­
rithms," Comput. Civil Eng., pp. 519-526,
1992.

[3] J. M. McGlaun and S. L. Thompson, "CTH: A
three-dimensional shock wave physics code, Int.
]. Impact Eng., vol. 10, pp. 351-360, 1990.

[4 J A. Davies, The Finite Element Method: A First
Approach. New York: Oxford Cniversity Press,
1980.

[5] K. G. Budge, J. S. Peery, and A. C. Robinson,
US£WJX C++ Technical Conference Proceed­
ings. Portland, Oregon: USENIX Association.

[6] W. D. Hillis and G. L. Steele, Jr., "Data parallel
algorithms," Communications ACM, vol. 29, pp.
1170-1183, 1986.

[7] M. J. Quinn and P. J. Hatcher, "Data-parallel
programming on multicomputers," IEEE Soft­
ware, vol. 7, pp. 69-76, 1990.

[8] I. Coplien, Advanced C++ Programming Styles
and Idioms. Reading, MA: Addison-Wesley,
1992.

[9] B. Stroustrup, The C++ Programming Language
(2nd ed.). Reading, :\1A: Addison-Wesley, 1991.

[1 0 J D. Verner, "Developing generic classes for finite
element and finite difference problems." ~1aster· s
thesis, Department of Electrical and Computer
Engineering, University of New Mexico. Albu­
querque, :'-lew Mexico, 1993.

[11] K. G. Budge, Proposal for a Numerical Array Li­
brwy, ANSI X3J16-93-0042/WG21-N0249,
1993.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

