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ABSTRACT 

This article considers the development of a reusable object-oriented array library, as 
well as the use of this library in the construction of finite difference and finite element 
codes. The classes in this array library are also generic enough to be used to construct 
other classes specific to finite difference and finite element methods. We demonstrate 
the usefulness of this library by inserting it into two existing object-oriented scientific 
codes developed at Sandia National Laboratories. One of these codes is based on finite 
difference methods, whereas the other is based on finite element methods. Previously, 
these codes were separately maintained across a variety of sequential and parallel 
computing platforms. The use of object-oriented programming allows both codes to 
make use of common base classes. This offers a number of advantages related to 
optimization and portability. Optimization efforts, particularly important in large scien­
tific codes, can be focused on a single library. Furthermore, by encapsulating machine 
dependencies within this library, the optimization of both codes on different architec­
tures will only involve modification to a single library. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

This research addresses the development of a 
general-purpose object-oriented class library for 
use in problems requiring operations across large 
arrays. Potential applications include finite differ­
ence or finite element approximations to differen­
tial equations as well as general matrix libraries. 
Large computational physics problems often 
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make use of either finite difference or finite ele­
ment methods. Although these numerical tech­
niques are quite different, they do share a similar 
set of underlying array computations. Further­
more, increasing the computational speed of the 
software developed for these methods has, until 
recently, focused on the use of vector supercom­
puters. The availability of a variety of powerful 
massively parallel computers must now also be 
considered in developing code. Thus, portability 
was one of the primary concerns addressed during 
the development of the array library. This array 
library takes advantage of the ease of access of­
fered by workstations, as well as the high perfor­
mance offered by vector and massively parallel ar­
chitectures. 

The porting of parallel codes to different plat­
forms is often a prohibitive task because it typi­
cally involves rethinking a problem entirely in or-
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Class 

Class Utility 
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G H Inheritance (new type) 

FIGURE 1 Relationships used in class diagrams. 

der to take advantage of a specific computing 
platform or programming environment. Encapsu­
lating machine-dependent portions of the code at 
the lowest class levels improves portability by lim­
iting the number of classes that must be modified 
when porting to new architectures. To achieve 
these goals a distributed object-oriented design 
was used to develop this class library. 

To capture both the functional and temporal 
characteristics of a software system at various lev­
els of abstraction, a number of object-oriented di­
agramming techniques can be used. The structure 
of the generic classes developed here will be de­
picted using Booch's graphical object-oriented di­
agramming techniques [ 1]. Booch introduced sev­
eral diagrams that can be used to represent these 
types of relationships. These include class, object, 
module, state transition, and process diagrams. 
The static structure of the classes developed in 
this article is represented using the class diagram 
relationships shown in Figure 1. A class utility, 
shown in Figure 1 as a shadowed blob, is defined 
as a collection of related subfunctions that are not 
contained within a class. In Figure 1, class A's 
implementation either uses one or more of class 
B's methods in its computations, or class A con­
tains class B within its data members. The next 
relationship in Figure 1 shows class C's interface 
using the resources of class D. By contrast, class E 
inherits all of its attributes and methods from class 
F. The addition of the line perpendicular to the 
inheritance line indicates that derived class G is 
not type compatible with base class H. 

In Section 2, we describe the hydrocode appli-

cations that use the array library. Although these 
applications motivated the development of the ar­
ray library, they are by no means the only applica­
tions that can make use of this package. Section 3 
discusses the design of classes in the array library, 
demonstrates their use in two existing scientific 
codes, and then compares them to the original 
field classes used in one of these codes. 

2 HYDROCODES 

Simulation codes that model phenomena such as 
the impact of solid bodies at high velocities or the 
effect of high explosive detonation are commonly 
termed hydrocodes [2]. Sandia National Labora­
tories has developed two hydrocode packages 
called PCTH and RHALE + +. PCTH is based on 
a finite difference method, whereas RHALE+ +is 
based on a finite element method. Because the 
class library discussed here was developed to sup­
port these existing codes, this section will briefly 
consider these codes and point out their differ­
ences. 

2.1 Existing Hydrocodes 

Finite difference methods involve converting par­
tial differential equations into algebraic equa­
tions. PCTH is a parallel hydrocode based on a 
finite difference methodology to approximate the 
equations of mass, momentum, and energy con­
servation. PCTH is based on a three-dimensional 
fixed-mesh finite difference method in which the 
material flows through the mesh. A two-step ex­
plicit solution scheme is used to integrate the 
equations of motion forward in time. The first step 
is a Lagrangian step in which material motion is 
calculated. Conservation of mass, momentum, 
and energy must be satisfied across this step. The 
second step is a remap step in which the Lagran­
gian state quantities are mapped back to the fixed 
mesh. This two-step approach makes it easier to 
handle multiple materials in the simulation [3 J. 

Finite element methods are also used to ap­
proximate the solution of partial differential equa­
tions. In finite element methods, each region of 
interest is subdivided into finite sets of elements 
connected together at a set of points called nodes. 
In these methods, the solution is defined every­
where using a piecewise-polynomial approxima­
tion [ 4 J. RHALE + + is a hydrocode that uses a 
finite element method coupled with an arbitrary 
Lagrangian-Eulerian mesh motion. RHALE++ 



solves the equations of motion on an unstructured 
finite element mesh. This approach allows the 
simulation of odd-shaped structures. 

Sequential codes for shock wave physics simu­
lation have been separately developed for both of 
these numerical approaches using the object-ori­
ented programming language C++. These codes 
are currently in use at Sandia National Laborato­
ries [ 5]. Although these two numerical ap­
proaches are quite different, software modules 
that are capable of representing scalar, vector, 
and tensor fields are fundamental components in 
both approaches. Our design captures the com­
monality of these fields and encapsulates machine 
dependencies. The advantage offered by this ap­
proach is that the implementations of both nu­
merical techniques can share a common set of un­
derlying software classes, and the specific 
numerical class libraries can then be built on top 
of these base classes through the use of inheri­
tance. The time spent on future low-level effi­
ciency improvements and machine optimizations 
can then be shared immediatelv bv all derived 
classes and thus all codes (PCTH and 
RHALE + +) that use these base class libraries. 
This approach greatly simplifies the porting of 
both codes to different computers because only a 
single library of base classes needs to be modified. 

2.2 Parallel Object-Oriented 
Hydrocode Simulations 

Hydrocode simulations are typically compute in­
tensive and also require large amounts of memory. 
To decrease execution time, these programs are 
often run on parallel or vector machines. For par­
allel computers, memory and processing time are 
divided among the processors. The simulation 
must be designed in such a manner as to allow 
parallel processing. Hydrocodes are well suited for 
the data parallel programming model because 
their algorithms typically make use of large arrays. 

Parallelism in the data parallel model is ex­
ploited by performing simultaneous operations 
across large sets of data, rather than by having 
multiple threads of control [ 6]. For example, a 
single program statement may simultaneously add 
all of the elements of two large data sets. This style 
of programming is well suited for fine-grained sin­
gle instruction multiple data (SL\1D) machines. In 
a SIMD computer, the processors operate in lock­
step using a global clock. In addition, data parallel 
algorithms have been successfully used on me­
dium-grained multiple instruction multiple data 
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(MIMD machines). Data parallel algorithms in­
tended for MIMD computers are often referred to 
as single program multiple data (SPMD) [7]. On 
an MIMD computer, data parallel operations are 
performed by synchronizing all processors after 
each step or several small steps. Synchronization 
and communication must be explicitly performed 
by the programmer but overall communication 
costs decrease because several operations may be 
executed between communication events. 

PCTH is implemented using an SPMD coding 
style. Using this approach, PCTH decomposes the 
problem domain into rectangular blocks. Addi­
tional cells on each block edge, called ghost cells, 
are created to allow data from neighboring blocks 
to be stored. As shown in Figure 2, these blocks 
are called hydroblocks. Each processor is allo­
cated one or more hydroblocks. Each hydroblock 
contains vector, scalar field, and vector field ob­
jects. Single dimensional quantities such as initial 
momentum and gravity are stored as VECTORs. 
Multidimensional values such as cell temperature, 
volume, and pressure are stored as cell-centered 
fields in a class called CC_FIELD. In a cell-cen­
tered field, the grid is fixed in space and the values 
at the center of each cell are mapped to the indices 
of the array variables. In contrast, in a face-cen­
tered field the values on the face of each cell are 
mapped to the indices of the arrays. Velocity is 
stored as an instance of the class FCV_FIELD 
(face-centered vector field), which is an array or 
vector of face-centered fields. The state of the ma­
terials used in the simulation is contained in ob­
jects of the class MATERIAL. Each hydro block ob­
ject also contains information concerning required 
output. When RHALE+ + is parallelized a similar 
SPMD programming style will be used. 

3 GENERIC FIELD CLASS DESIGN 

As stated previously, large physics simulations 
rely heavily on the use of a basic set of mathemati­
cal operations. At the lowest levels of calculations, 
element-by-element operations are performed on 
ordered sets of values. 1\;o topology or calculus is 
included at this level. These operations are encap­
sulated into a FIELD class for full precision float­
ing point numbers and an !FIELD class for inte­
ger data elements. It should be noted that the 
usage of field as our class name is not strictly cor­
rect, because the concept of a field implies topol­
ogy and calculus, and our generic classes have 
neither. However, the names ORDERED_SE-
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FIGURE 2 PCTH hydroblock class structure. 

T_OF_DOUBLE and ORDERED_SET_OF_INT are 
awkward and the use of ARRAY seemed likelv to 
lead to name clashes with existing programs. In 
this article, the terms FIELD and IFIELD will refer 
specifically to the individual classes. We will also 
use the term field to refer generically to both the 
FIELD and IFIELD classes. 

In developing scalar, vector, and tensor field 
classes, there are two approaches for selecting the 
structure of the data: arrays of objects or objects 
of arrays. In the arrays of objects approach the 
vector or tensor object is laid out sequentially in 
memory whereas in the objects of arrays approach 
each of the components of the vector or tensor 
objects is laid out sequentially in memory. In this 
approach, an array of data elements (or a pointer 
to an array) is selected as the object attribute. 
RHALE+ +originally used an array of objects ap­
proach but difficulties in porting and optimizing 
became apparent. PCTH always utilized the ob­
ject of arrays approach in order to leave open the 
possibility of porting to SL\1D architectures. 

Therefore, the objects of arrays approach was 
adopted for RHALE ++,which led to the develop­
ment of a new field class. This field class has now 
been adopted by the PCTH project. 

3.1 Original PCTH Field Class 

Figure 3 shows the class diagram for the original 
PCTH field class library. In this library, the field 
classes contain all the mathematical operations 
and memory management functions required for 
their respective classes. The FIELD class contains 
a dynamic array of floating point data elements, 
an integer pointer to a reference counter, and a 
pointer to the topology class SIZE. The IFIELD 
class uses a dynamic integer array instead of a 
floating point array. The SIZE class contains data 
that specifies the dimension of the field class and 
the size of the array in each axis. Both field classes 
have a HAS-A relationship with the SIZE class. 
That is, one of the members of the class is a 
pointer to a SIZE object. A USES-A relationship 
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FIGURE 3 Original PCTH field class library class dia­
gram. 

exists between the field classes and the FILE_IQ 
class. The field classes both call FILE_ IO mem­
ber functions when it is necessary to perform file­
based 1/0. 

3.2 New Field Class 

Figure 4 depicts the new field class library struc­
ture developed for RHALE + + and PCTH. As 
with PCTH, the floating point FIELD and integer 
!FIELD classes are used as the base classes for 
classes that contain topological information. 
These field classes have a HAS-A relationship 
with either the SNL_FIELDNODE class or the 
SNL_IFIELDNODE class, which are discussed in 
more detail below. That is, one of the data mem­
bers in the field classes is a pointer to the appro­
priate SNL.....FIELDNODE or SNL_IFIELDNODE 
class. The term node will be used to generically 
refer to the SNL.....FIELDNODE and SNL_ 
IFIELDNODE classes. The data members of the 
node classes consist of a reference counter, a 
length value, and a dynamic array of either integer 
or floating point numbers. 

For efficiency reasons, the field class uses dy­
namically allocated memory and the reference 
counting memory management technique in order 

DEYELOP~fE!\T OF GE~ERIC FIELD CLASSES 231 

to decrease the number of heap accesses. This is 
especially important on certain computers, such 
as the Cray, where heap accesses are very expen­
sive. This leads to the use of an envelope/letter 
class idiom [8]. In this idiom, the envelope class 
handles all message requests from the external 
world. The letter class is completely encapsulated 
within the envelope class. In this project, the field 
class acts as the envelope class and the node class 
acts as the letter class. The advantage of this id­
iom is in the division of memory management and 
mathematical operations. Specifically, the enve­
lope class handles all mathematical operations 
and reference counting. The letter class is respon­
sible for memory management functions. These 
node classes then interface with the memory man­
ager to perform dynamic memory allocation and 
deallocation. 

As shown in Figure 4, the field classes have a 
USES-A relationship with two class utilities: 
GENFUN and FAST. The GENFUN class utility con­
tains generic procedures that perform a few simple 
integer and floating point operations, as well as 
some file read and write operations. The FAST 
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class utilitv contains vectorizable functions used 
to perform mathematical and logical operations 
on the field class members. This allows mathe­
matical operations to be easily ported to many 
new machines and optimized without affecting the 
field classes. The field classes call the required 
vector functions from the appropriate overloaded 
operators or methods. 

The new field class differs from the original 
PCTH class in several significant ways: 

1. An envelope/letter class idiom is used. As 
discussed above, this leads to a better divi­
sion between memory management and 
mathematical operations. 

2. The field class contains no topological in­
formation about memory layout. This infor­
mation is contained in derived classes, pro­
viding a more general and reusable set of 
base classes. 

3. Memory allocation functions are contained 
in a separate class, thus allowing different 
memory management schemes to be imple­
mented without affecting the field class de­
sign. 

4. Vectorizable mathematical operations are 
contained in a separate class utility file that 
allows optimization of these operations in a 
different language, and also allows ma­
chine-dependent functions to be moved to a 
separate file from the field classes. The field 
classes then become machine independent. 

5. A complete set of operations (not just those 
required by PCTH and RHALE + +) have 
been implemented in these classes to en­
hance reusability in other applications. 

In general, the PCTH field classes were simpler 
and easier to implement, but also more applica­
tion specific and less complete, making them 
harder to reuse in other applications. Several im­
portant but potentially conflicting criteria were 
weighted when developing the new field classes: 
reusability, memory usage, execution time, and 
portability. 

3.2. 7 Reusability 

The methods developed for the field class library 
are intended to be complete and extendable so 
that the library can be used in many different ap­
plications. Care was taken to create the minimum 
number offunctions necessary, to avoid having an 
unmanageable class library. These classes per-

form array-scalar and array-array operations for 
both integers and floating point numbers. C++ 
allows the use of both functions and overloaded 
operators in its classes. There are 33 overloadable 
arithmetic operators defined inC++ [9]. Of these 
only the increment and decrement operators were 
not implemented because their functionality can 
be achieved using the binary plus and minus op­
erators. The other functions required for the field 
classes can be divided into several categories: trig­
onometric, other transcendental functions, gen­
eral purpose, and Fortran-like functions. There 
are also some specialized functions that either 
simulate hardware commands found on certain 
machines or are widely used in both finite element 
and matrix applications. All of the functions used 
by these field classes are detailed in [ 10 ]. Other 
application-specific functions are implemented in 
derived classes. For example in PCTH, the 
FC_FIELD and CC_FIELD classes, which are de­
rived from fields, implement various mean, differ­
ence, and product functions required for this ap­
plication. A mechanism to implement these 
additional functions has been provided through a 
protected method that returns a pointer to the 
start of the data element arrav. 

3.2.2 Memory Usage 

In general, hydrocodes use large amounts of mem­
ory that must be managed effectively to provide an 
efficient simulation. The type of computer being 
used to perform the simulation will affect the 
memory management requirements. Both the pro­
gram executable size and the amount of program 
data used can affect performance. On computers 
with virtual memory capability, program data and 
executable segments may be swapped out to disk 
and large problems can (at least in principle) be 
run. However, the amount of dynamic memory 
used will significantly affect the speed of the simu­
lation because more operations are being per­
formed and more virtual memory accesses will oc­
cur. The processing nodes of many parallel 
computers have a fixed memory size that requires 
minimal executable size in order to maximize user 
memory for efficient scaling. 

Dynamic memory allocation is performed by 
the field class and for efficiency reasons memory 
management is not relegated to the operating sys­
tem. The memory manager functions, which are 
called by the field class, limit heap accesses by 
creating a free store pool of pointers to unused but 
allocated memory. Because these functions are 



not strictly part of the field class, they will not be 
discussed any further in this article. Refer to 
Verner [10] for a discussion of the memorv man­
ager. There are several techniques that can be 
used by the field classes to reduce the amount of 
dynamic memory used. Cnfortunately, these re­
quire that the user be aware of what is happening 
in the field class in terms of memory in the over­
loaded operators. Overloaded operators cause the 
creation of several unnecessary temporary vari­
ables [5]. For example, the expression A = B + 
C * D creates four temporary variables, two per 
operation, when no memory management tech­
niques are applied. There are two techniques that 
can be applied by the application programmer to 
decrease the number of temporary variables that 
exist at any particular time. The first technique 
involves rewriting the above expression as: 

A= C * D 
A +=B 

This method eliminates two of the temporary vari­
ables, and if used in conjunction with reference 
counting will eliminate a third temporary. Unfor­
tunately, this method forces an unnatural pro­
gramming style. The application programmer 
must also force temporary objects to go out of 
scope so they can be deallocated. This can be 
done in the application code by adding scope de­
limiters "{ }" around code segments. 

3.2.3 Minimizing Execution Time 

There are many techniques used to improve time 
efficiency inC++ programs, such as inline func­
tions, reference counting, and machine optimized 
code. lnline functions can be used to reduce func­
tion call overhead by expanding the inline func­
tion code at the location of the function call but 
generally at the expense of increased code size. 
Therefore, inline functions were only used on 
small functions that are called often. Array opera­
tions are optimized by writing vectorizable or as­
sembly language functions. These techniques lead 
to machine and compiler dependent code, and are 
supported by the modular development used 
here. 

Compared to the previous PCTH implementa­
tion, the new field classes have yielded similar ex­
ecution times but a slightly larger executable size. 
The increased executable size is due to the larger 
number of functions that have been implemented 
in order to develop the complete set of base 
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classes necessary for reusability. This penalty can 
be mitigated somewhat by splitting the field class 
and their FAST class utility functions into sepa­
rately compiled files, and then creating a library 
that contains these files. 

Reference counting is another method, used by 
the field classes, for minimizing unnecessary 
copying of data and thus greatly improving effi­
ciency. A nice feature of this approach is that it is 
completely hidden from the user. Reference 
counting is a technique where several items point 
to one memory location rather than creating a new 
item for each reference [8]. 

3.2.4 Portability 

As mentioned previously, one of the primary goals 
of PCTH and RHALE+ + is ease of portability. 
Specifically, these simulations must be easily por­
table to many different architectures including 
single processor workstations and workstation 
networks, MIMD massively parallel processors, 
vector computers, and potentially even SIMD 
computers. Portability can be enhanced by isolat­
ing machine-dependent portions of the code from 
machine-independent portions. This is not to say 
that all the code will run efficiently on all com­
puters. Instead, the subset of the code that bene­
fits from optimization, such as the vector math 
libraries, is stored in routines at the lowest level in 
the hierarchy to hide the details behind underlying 
generic objects [2]. This machine-dependent 
code is compiled according to preprocessor state­
ments that specify the specific code for that ma­
chine. This effectively separates the physics por­
tions of the code from the architectural details. In 
the new generic field class, the FAST class utility 
provides this machine-dependent code. It is being 
ported to and optimized on the nCCBE2, Intel 
Gamma, and the Intel Paragon massively parallel 
computers, as well as the CRA Y vector computers 
and SUN workstations. Future machine-specific 
optimization for these individual machines can fo­
cus on the FAST class utility. 

4 CONCLUSIONS 

In this research we have successfully developed a 
reusable field class structure that is being used in 
two different computational physics codes; one 
code uses a finite difference method whereas the 
other code uses a finite element method. This is of 
critical importance to the PCTH and RHALE+ + 
development teams as all future development of 
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the field libraries will be synergistic to both 
projects. Great care has been taken to make these 
classes extendable (to aid in adding new function­
ality), and easily portable to new architectures. It 
is also worth noting that a modification of these 
classes has been proposed for inclusion in the 
Al\"SI C++ standard library [ 11]. 
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