
AlPS+ + N-Dimensional Array Classes

A. G. WILLIS\ M.P. HEALEY1, AND B. E. GLENDENNING2

1Dominion Radio Astrophysical Observatory, Penticton, B.C., V2A 6K3, Canada
2National Radio Astronomy Observatory, Charlottesville, VA 22903

ABSTRACT

This article describes a set of C++ classes developed for the AlPS++ project. These
classes handle arrays having an arbitrary number of dimensions. We give an overview
of the methods available in these classes and show some simple examples of their use.
Finally we describe the use of these classes to develop a radio astronomy application
and discuss some of the performance issues that must be considered when these classes
are used. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Seven radio astronomy observatories that operate
aperture synthesis radio telescopes have joined
forces to develop an object-oriented data process­
ing system called AlPS++. The seven observato­
ries are the National Radio Astronomy Observa­
tory (NRAO), based in Charlottesville, VA, the
Netherlands Foundation for Research in Astron­
omy (NFRA), the Australia Telescope National
Facility (ATJ\"F), the Nuffield Radio Astronomy
Laboratory (NRAL) at Jodrell Bank, England, The
Giant Metre Wavelength Telescope in India
(GMRT), the Berkeley - Illinois - Maryland Array
(BIMA), and the Dominion Radio Astrophysical
Observatory (DRAO) in Canada. This is truly a
worldwide project!

AlPS++ is an acronvm for Astronomical Infor­
mation Processing System (incremented by one).
It is designed to be a replacement for the original

Received April 1993
Revised July 1993

DRAO is part of the Herzberg Institute of Astrophysics,
National Research Council of Canada
© 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 2, pp. 239-246 (1993)
CCC 1058-9244/94/040239-08

AlPS system developed by the NRAO in the early
1980s. The original AlPS was written in Fortran
66 so that it would be portable to almost any com­
puter with a Fortran compiler. Portability was im­
portant because a primary goal of AlPS was to
ensure that astronomers who observed at NRAO's
Very Large Array (VLA) radio telescope could
take data back to their home institutions and re­
duce the data on a local computer.

Although AlPS has proved to be a very success­
ful data reduction system installed at some 200
sites worldwide, it is showing its age. System
maintenance is difficult, and the development of
new algorithms is painful. About 2 years ago, the
decision was made to replace the original AlPS
with a modern object-oriented system written in
C++.

2 WHY DEVELOP A LIBRARY TO HANDLE
N-DIMENSIONAL ARRAYS?

Many data processing operations in aperture syn­
thesis radio astronomy involve the handling of
one-, two-, or three-dimensional arrays. An ex­
ample of a vector, or one-dimensional array,
would be a spectral line observation (intensity vs.
frequency at a single position on the sky). A pic-

239

240 WILLIS, HEALEY, AND GLE~DENNING

ture of a piece of sky would be stored as a two­
dimensional array, or matrix. A spectral line data
cube (a series of pictures, each made at a different
frequency) is an example of a three-dimensional
array.

For AlPS++ it was decided that rather than
develop specific classes to separately handle vec­
tors, matrices, and cubes, we would first develop a
class that can handle an !\'-dimensional array, the
actual number of dimensions being defined by the
application programmer. Because vectors, matri­
ces, and cubes are just arrays having specific di­
mensions we can then define Vector, ~atrix, and
Cube classes which inherit from the generic N­
dimensional array class. At the moment most op­
erations (arithmetic, logical operations, . . .) are
actually performed in the base array classes and
only obvious specializations such as indexing or
extracting the diagonal of a matrix, are imple­
mented in the inherited classes.

An additional advantage of this approach is
that we can create methods in other classes that
define the generic array class as an input or out­
put parameter, but then use these methods with
Vector, Matrix, or Cube objects, without having to
overload the method.

The AlPS++ array classes will implement the
mathematical functionality required for radio as­
tronomical applications (image processing and the
like). At the moment the classes are at a very early
stage of development; they are only a few man­
months old. Some of the discussion in this docu­
ment will change as the library matures and be­
comes more tuned.

The library is fully templated. Originally the
templates were based upon the Texas Instrument
"COOL" preprocessor [1], although the classes
are currently being converted to "ARM" [2] style
templates as they are now widely available. With
AR~ templates it is much easier to specialize op­
erations for certain types, and optimizations to
(e.g., BLAS) will be made more frequently in the
derived types.

The array classes use reference counting to im­
plement array sections ("slicing" in Rogue Wave)
and return by value. At the moment the copy con­
structor uses reference semantics although this
may change because it violates the "principle of
least astonishment." Copy-on-write semantics
are not supported.

Note that from the viewpoint of the applications
programmer array indexing in AlPS++ is done in
Fortran columnwise order. Also, we want it to be
possible to map F90 on to the AlPS++ arrays, so

that F90 machines can do the actual arithmetic. A
concrete example where this affected things was
that conformance rules were changed so that only
the shape, not the origin, was considered as in
F90.

At the time we started this project we were not
aware of any other !\'-dimensional array classes
that were implemented with templates. Our
understanding is that Rogue Wave's latest
math.h + + library has similar features. However,
the AlPS++ package will eventually be made
freelv available under the conditions of the GNC
General Public License to any astronomical insti­
tution (or any one else for that matter) that re­
quests a copy of the package. Because many small
astronomical institutions are unable to afford
commercial software, all components of AlPS++
must be self-contained and not relv on calls to
commercial software packages.

3 ARRAY EXAMPLES

The easiest wav to introduce the AlPS++ Array
classes is to give some examples.

3.1 Declaration of Arrays

The array classes are templated. So when you use
an array, you must specify what type of data it will
hold. To declare a floating point array, use Array
(float), to declare an array of integers, use Array
(Int), etc. There are four constructors for class Ar­
ray. Here are examples of each:

Array(float) a;

This example invokes the constructor

Array(T): :Array(T) ()

and produces an array with no elements (where T
in this case is float).

II An IPosition is a zero-based
11 vector used for indexing arrays of
II arbitrary dimension.
IPosition shape(2), origin(2);
shape (0) = 5;
shape(1) = 6;
origin(O) = 10;
origin(1) = 15;
Array(float) a (shape, origin);

Here we invoke the constructor

Array(T): :Array(T) (canst
!Position&, canst !Position&)

The first IPosi tion defines the shape of the
array, in this case it is two dimensional, with five
elements on its first axis and six on its second. The
second IPosi tion defines the origin of the array,
in this case (10, 15).

IPosi tion shape (2);
shape (0) = 5;
shape (1) = 6;
Array(float) a (shape);

This example invokes the constructor

Array(T): :Array(T) (canst !Position&)

This makes a two-dimensional array, with five
elements on its first axis and six on its second. By
default, its origin is (0,0).

!Position shape(1);
shape (0) = 10;
Array(Int) a (shape);
//one dimensional array with
//10 elements
Array(Int) b (a) ;
//Array(Int) b =a; is identical

This invokes the copy constructor

Array(T): :Array(T) (canst Array(T)&)

The array b, however, is not a copy of a; it is
actually a reference.

!Position shape(3);
shape(O) 1024;
shape(1) = 1024;
shape (2) = 8;
Array(float) a (shape);

AlPS++ N-DL\1E:"'SIONAL ARRAY CLASSES 241

3.2 Indexing

Indexing is achieved using operator() and
IPosi tion. For example, given a four-dimen­
sional array a, you could index a certain element
using a four-element !Position:

Array(Int) a(shape);
//assume shape is a
//4-element !Position

!Position index(4);
Index (0) 1;
Index (1) 2;
Index (2) 3;
Index (3) 4;

Int saved_value = a (index) ;
//save a (1,2,3,4)

a (index) = 0. 0;
//set a(1,2,3,4) to 0.

One advantage of the derived classes Vector,
Matrix, and Cube is that we may index them
using integers, without need of IPos it ions:

Matrix(float) m(5,5);

m(1, 2) = 5. 5; I /set element (1, 2) to 5. 5

41NQUIRY

Often it is necessary to ask an Array about its
properties. For example, a function may wish to
know how many elements there are in the array or
what its dimension is. There are several arrav
functions to provide this information. Examples:

Int dimension= a.ndim();
ulnt nurn_els = a.nelements();

//"dimension" gets 3.
//"num_els" is 8388608 (1024*1024*8)

!Position o, s, e;
0 a. origin() ; 1/"o" is (0,0,0)
s - a. shape(); //"s" is (1024, 1024, 8);
e - a. end(); //"e" is (1023, 1023, 7);

242 WILLIS, HEALEY, AND GLENDENNING

Another inquiry function is conform(), which
tells whether two arrays are identical in shape:

if(a.conform(b)) {
cout << "a and b are the same

shape. " << endl;
} else {

}

cout << "a and b are not the same
shape. " << endl;

Note that conform will return true for two arrays
that do not have the same origin, as along as they
have the same shape.

4. 1 Iteration

Special iterator classes are provided to allow itera­
tion of arrays by a certain dimension. This is most
useful when dealing with an object of the base
class Array of unknown dimension. For example,
given an array of dimension 2 or higher, you can
use a Vectorlterator to iterate it one Vector at
a time:

!Position shape(2);
shape(O) = 10; shape(1) = 8;
Array(float) m(shape);
Vectorlterator(float) iter(m);
I I Construct a Vectoriterator for "m".

while(!iter.pastEnd()) {

}

II iter.vector() returns a
//reference to a 10 element
//vector, actually a
II column of m.
iter.vector() (4) = 0.0;
iter. next();

Given a three (or more)-dimensional array, you
mav iterate it a matrix at a time:

!Position shape(3);
shape(O) = 5; shape(1) = 4;

shape (2)
Array(Int) c(shape);
Matrixiterator(Int) iter(c);

3· ,

II construct a Matrixiterator for "c"

while(!iter.pastEnd()) {

}

II iter.matrix() .row(1) = 5.0;
II set row 1 of each matrix to 5.0.

iter.next(); II advance the iterator.

Another way to iterate an object is using the
class IPos it ion Iter a tor. Instead of returning
a reference to a vector or matrix within the object
that is being iterated, this type of iterator returns
the index of an element of the object, in the form
of an IPosi tion. Here is an example to illus­
trate:

Matrix(float) m(20, 10);
m = 1.0; //set all elements to 1.0
ArrayPositioniterator
element_iter(m.shape(), m.origin(), 0);
ArrayPositioniterator
vector_iter(m.shape(), m.origin(), 1);

The last parameter of the previous two declara­
tions tells the iterator what dimension to iterate
by. The pos () function is used to get a reference
to the current IPosi tion of the iteration:

int sum = 0;
while(!element_iter.pastEnd() {

sum+= m(element_iter.pos());
element_iter.next();

}

The above code sums all the elements in the
matrix m. Another example:

int sum = 0;
while(!vector_iter.pastEnd() {

sum+= m(vector_iter.pos());
//use vector_iter instead of elem_iter

vector_iter.next();
}

This code sums all of the elements (0,0), (0,1),
(0,2), ... , (0,8), (0,9). Note that the ArrayPo­
si tionlterator is not actuallv associated with
the array it is iterating; It is essentially a server that
returns subsequent indices for any array of the
shape and origin provided in its constructor.

In the future, iterators will allow access in arbi­
trary order, not just "bottom to top."

5 A GENERAL PURPOSE METHOD
USING ARRAYS

To describe the use of Array methods in an actual
application we will discuss the development of the
function conv_correct () from the AlPS++
class Gr i dTool. Aperture synthesis radio tele­
scopes collect data in the Fourier domain; this
data must be convolved on to a regular grid before

AlPS++ "1/-DIMENSIOI\AL ARRAY CLASSES 243

a FFT to the real image domain can be done. This
convolution causes the resulting image to be at­
tenuated by a factor that increases with distance
from the image center and which must be cor­
rected for. Each element of the image must be
multiplied by a correction factor that varies over

the image. The image to be corrected might be a
matrix or a cube.

We start with two definitions of this (over­
loaded) function: one that operates on matrices,
and another that operates on cubes. Here is the
function that operates on matrices:

void
GridTool: :conv_correct(Matrix(float)& image)
II
II This function corrects an image for the attenuation
II caused by convolution in the fourier plane when the data were gridded.
II
II calling parameters:
//image -matrix of data containing the image to be corrected
II
{

}

int rows
int cols

image. nrow () ;
image. ncolumn ();

II get the number of rows in "image"
II get the number of columns in "image"

//"grid" is a two element vector that will hold the current values of
//loop counters i and j. This vector is passed as an argument to
1 /the function "gric:Lcorr () ", which returns the correct value associated
//with position (i, j) in "image".

Vector(Int) grid(dimension); //"dimension" is a GridTool private member
II which has value 2 for a Matrix

grid = 0;
for (int j=O; j<cols; j++) {

grid(l) = j;

//zero all elements of the vector "grid"
//i and j iterate all elements of "image"

}

for (int i = 0; i < rows; i++) {

}

grid(O) = i; //grid is now the vector(i, j)
//Now, perform the necessary transformation on location
;;of the matrix "image":
image(i, j) = image(i, j) * gric:Lcorr(grid);

(i' j)

Here is the same function that operates on cubes:

void
GridTool: :conv_correct(Cube(float) &image)
II
II image - cube of data describing the image to be corrected
II
{

int rows, cols, nz;
//Get the number of rows, columns, and planes from the cube "image"
image.shape(rows, cols, nz);

//"grid" is now a three element vector that will hold the current
//values of loop counters i, j, and k.

vector(Int) grid(dimension); //"dimension" has value 3 for a Cube

244 WILLIS, HEALEY, A:'IID GLENDEN;\II~G

grid = 0;
for (int k

II zero all elements of "grid"
0; k < nz; k++) { //i, j, and k iterate all

II elements of "image"
grid (2) k;
for (int j = 0; j < cols; j++) {

grid(l) = j;
for (int i = 0; i < rows; i++) {

grid(O) = i;
II "grid" is now the vector (i, j, k).
II Perform the transformation
II on location (i, j, k) of the cube "image":
image(i, j, k) = image(i, j, k) * grid_corr(grid);

}
}

}
}

Aside from the use of overloading, this is how
this problem would be coded in any imperative
programming language such as Cor Fortran. Can
we improve on this using object-oriented tech­
niques and the AlPS++ library? First, these two

void

However, how we go about doing this can have
a significant impact on performance. (Note: the
following discussion is based on the initial
AlPS++ library. As the library develops and is

GridTool: :conv_correct(Array(float) &image) {

}

functions are virtually identical. Also both the
class Matrix and the class Cube inherit from the
class Array. Therefore, we can merge the two
functions into the following one which uses the
generic Array class.

void

made more efficient, many of these details likely
will not apply.) Here is a first attempt at the func­
tion, which uses class ArrayPosi tionitera­
tor:

GridTool: :conv_correct(Array(float) &image)
{

}

//construct an ArrayPostioniterator to iterate "image":
ArrayPositioniterator position(image.shape(), image. origin(), 0);

!Position index;

int size = image. nelements (); I I "Size" is the number of elements
II in "image"

for(int i=O; i<size; i++) {

}

index= position.pos();
image(index *= grid_corr(index):
Position. next() ;

//get the current index values
//perform correction
//advance iterator

An ArrayPosi tioniterator is now used to
iterate each of the elements in the array image.

We have succeeded in replacing the two func­
tions conv_correct with a function that is
shorter, more elegant, and in fact more powerful,
because it can operate on arrays of any dimen­
sion. There is one problem though: let's say that
our original function for the class Matrix took X
seconds to process a 1024 X 1024 ~latrix, which
represents a fairly standard size of image we can
expect to handle in AlPS++. Cnfortunately our
new "generic" function will take roughly three
times as long! Clearly, this performance hit is not
acceptable.

Notice that the line index = position
. pos () ; is also executed over one million times
for our test array. Although pos () is an inlined
function, the compiler we have been using does
not seem to have given us the performance we
require. Is there some way around this? There is,
but it is a little tricky. First, the ArrayPosi­
tioniterator: : pos () function does not actu­
ally return on !Position object, but a constant ref­
erence to an !Position object. Its prototype is:

const !Position
&ArrayPositioniterator: :pos() const;

Note: An !Position is an n-element vector of

void

AIPS++ ~-DIME~SIO~AL ARRAY CLASSES 245

ence may not be used as an 1-value, I.e., this is
illegal:

IPosi tion I;
ArrayPositioniterator iterator(shape,

origin, step) ;

Iterator.pos() =I; //Error, can't
assign to const reference!

Without the const modifier, the above code
would be legal and correct (assuming that I is the
correct dimension). The second const keyword
simply says that the function pos() does not mod­
ify the ArrayPositionlterator with which it is asso­
ciated. In other words, if we make the declaration:

const ArrayPositioniterator iterator
(shape, origin, step) ;

then the call

i terator. pos ()

is legal and does not modify the constant object
i terator. A call to a nonconst function, such as
next () , is illegal for the const object. Armed with
this understanding of the function pos () , we can
make the following improvement to our code:

GridTool: :conv_correct(Array(float) &image)
{

int i, Size;
ArrayPositioniterator Position(image.shape(), image. origin(), 0);

Size= image.nelements();
const !Position& index= Position.pos();
for (i=O; i<Size; i++) {

}
}

image(index *= grid_corr(index);
Position. next() ;

positive numbers. If the IPosi tion index has
the value (0,0), and image is a matrix or two­
dimensional array, then image (index) returns
the value at image (0, 0) . This means that the
function pos () returns a reference to, or alias for,
some IPosi tion that is (in this case) a private
member of the class ArrayPosi tionlterator.
The first const keyword indicates that this refer-

//perform correction
//advance iterator

Now, what is happening is that the IPosi tion
object referenced by the return value of the call to

Position. pos () is also referenced by the
const IPosi tion& index. So, we can move the
call to the pos () function outside the while loop­
the calls to Position. next() update the
IPosi tion referred to by the call to Position­
. pos () , and hence also the IPosi tion referred

246 WILLIS, HEALEY, A:"'D GLENDENNING

to by index. So, next time around, image (in­
dex) is the next element of image. The above
code gets us down to about 2X seconds to process
a 1024 X 1024 array. Things are getting better
but ...

The next logical step is to try to reduce or
eliminate calls to ArrayPosi tioniterator::
next () . To do that let us use a Vector
Iter a tor. This is somewhat like an Array
Posi tionlterator, but it is associated with
a specific array object. Recall that the method
Vectoriterator: :vector() returns a const
reference to the current vector of the iteration.
Calls to Vectoriterator:: next() move on to
the next vector of the object being iterated. Let us
see if this can help us:

void

started with, and now equally efficient. This tech­
nique of reducing ann-dimensional problem to a
series of one- or two-dimensional problems using
iterators has proved useful in several places in the
AlPS++ library.

GridTool: :conv_correct(Array(float)& image)
{

}

Vectoriterator(float) image_iter(image);
Int start, end;
image_iter.vector().origin(start); //start and end refer to the

II starting index
image_iter.vector().end(end); //and last index of the vector

II "image_iter.vector()".
!Position index(image.ndim());

wile (! image_iter.pastEnd()) {

}

index= image_iter.pos(); //get the current !Position.
for(Int i=start; i <=end; i++) { //iterate the current vector.

image_iter.vector() (i) *= grict__corr(index);
index(O)++; //advance the index manually--avoid calls to next().

}
image_iter.net();

Because the i loop is counting the correct num­
ber of elements for a column, we do not need to
worrv about index (0) ++ giving us an illegal in­
dex .. This code finally gets us to about X seconds
to process a 1024 X 1 024 array. We have perhaps
lost some readability during this process of refine­
ment, but this code is still better than the code we

REFERENCES

[1] Texas Instruments Inc., C++ Object-Oriented Li­
brary User's Manual. Austin, TX: Information
Technology Group, 1990.

[2] M. A. Ellis and B. Stroustrup, The Annotated C++
Reference Manual. Reading, .\1A, Addison-Wesley,
1990.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

