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ABSTRACT

We used a description of a combustion simulation’s mathematical and computational
methods to develop a version for parallel execution. The result was a reasonable
performance improvement on small numbers of processors. We applied several impor-
tant programming techniques, which we describe, in optimizing the application. This
work has implications for programming languages, compiler design, and software

engineering. € 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

Numerical simulations of reactive flow are widely
used for problems such as controlling combus-
tion-generated pollutants. reducing knocking in
internal combustion engines. studving the envi-
ronmental impact of compounds emitted from
combustion. and disposing of toxic wastes [11.
These simulations require extensive computation.
Many can only be served by the advanced capa-
bilities of a parallel supercomputer. In this artcle
we describe an effort 1o optimize the parallel per-
formance of a reactive flow simulation written for
serial execution. Specifically. we examine PREMIX
(2], which simulates combustion. an important
subclass of reactive flow.
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Reactive flow modeling problems are governed
by equations conserving mass. energy. and mo-
mentum. They are coupled with a hvdrodvnamic
system driven by the energv released or absorbed
from the chemical reactions. Researchers seek to
understand the chemical kinetics behavior of large
chemical reaction svstems and the associated
convective and diffusive transport of mass. mo-
mentum, and energy.

Complicating the numerical simulation of reac-
tive flow is numerical stiffness. Sdff equations
have one or more rapidly decaving solutions and
usually require special treatment. In the context of
chemical kinetics Curtiss and Hirschfelder [3] first
identified the problem of stiffness in ordinary dif-
ferential equations in 1952. In reactive flow, stiff-
ness often arises as a result of the differing time
scales of the chemical kinetics and the hydrody-
namics [4]. Chemical reactions occur on the order
of picoseconds, while the convective flow occurs
on the order of seconds. Stiffness also results
where large temperature gradients occur. To over-
come these numerical difficulties researchers of-
ten employ time-implicit algorithms and adaptive
gridding schemes.

A group at Sandia National Laboratories has
developed a number of software tools that facili-
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tate simulation of reactive flow. Three basic pack-
ages lie at the heart of their effort. The CheykiN
library [5] is used to analvze gas-phase chemical
kinetics. The TraxsporT [6] library is used for
evaluating gas-phase multicomponent transport
properties. SURFKIN [7] is a package for analyzing
heterogeneous chemical kinetics at a solid-sur-
face—gas-phase interface. These three combus-

tion libraries undergo continual revision as part of

an ongoing effort to provide the numerical com-
bustion community with standardized sofiware.
This approach is successful because the governing
equations for each reactive flow application must
share a number of features. A general discussion
of this structured approach to simulating reactive
flow is provided by Kee and Miller [1].

Several codes have been built by Sandia to ex-
ploit CHEMKIN, TraxsporT. and Strrrin. One of
them is PREMIX, which is used 1o predict the
steady-state temperature and species concentra-
tions in one-dimensional burner-stabilized and
freely propagating premixed laminar flames. This
combustion is chemically interesting because the
large energy release associated with burning gives
rise to high temperatures and manv exotic chemi-
cal species. The high temperatures resulting from
the transfer of chemical energyv to heat lead to
rapid expansion of the gases which in turn affect
convective flow.

The goal of this article is to describe experi-
ences in an effort to improve the performance of
the Premix application. The machine architec-
tures we considered are shared memory multipro-
cessors with a modest number of CPUs. such as
the Alliant FX series, the Convex C2 series. and
the high ends of the Sun SPARCstation, HP
Apollo, IBM RS/6000, and Silicon Graphies Iris
series. Such machines are becoming less expen-
sive and more widely available.

Only one version of the Fortran 77 source for
Premix is distributed by Sandia. This code exe-
cutes without significant modification on all ma-
chines from a personal computer to a Cray. To
ensure the software can still be used by the large
established user base, modifications to the code
are strictly backward compatible, i.e., the subrou-
tine interfaces are fixed. Our main concern. then,
was with extracting parallelism from the chemical
and thermodynamic computations performed by
the CHEMKIN and TRANSPORT libraries.

We approached PREMIX with a simple goal: Re-
duce the actual time a program requires to pro-
duce a solution to a given problem through effi-
cient use of multiprocessing hardware. To

accomplish this. independence must be present in
the code so that different subproblems can be ex-
ecuted by separate processors concurrently. Often
the desired independence. if it exists, is apparent
from the mathematical description of the physical
problem. This conceptual independence may not.
however. be expressed in the acwual code. Two
factors contribute to the absence of conceptual
independence in the final program: (1) the com-
putational method chosen to approximate . the
mathematical problem may sequentialize formerly
independent tasks: (2) the specific implementa-
tion of the computational method adds unneces-
sary synchronizations.

We therefore make a reasonably sharp distine-
tion between the mathematical model of a prob-
lem, the computational method for its solution.
and the partcular implementation of the method.
We begin in the next section with a brief overview
of PrEMIX. In Section 3. we observe how well the
original version of PREMIX expresses parallelism
inherent to the mathematical model and compu-
tational method. In Section 4 we describe the pro-
gram transformation techniques applied 10 pro-
duce an optimized version of PREMIX. In Section 5
we exhibit the resulting performance improve-
ment, and in Section 6 we offer the conclusions
drawn from this work.

2 THE Premix APPLICATION

PREMIX is a tvpical example of a librarv-oriented
production Fortran code. It is a flexible program
developed to analvze general problems involving
combustion of premixed gases in a flame. PrEMIX
consists of a driver and four libraries: CHEMKIN [5].
used to analyze gas-phase chemical kinetics:
TRANSPORT [6], used to evaluate gas-phase multi-
component transport properties; TwopxT [8]. a
two-point boundary value problem solver: and
Lixpack [9]. a popular numerical linear algebra
package. Each is a standardized, extensible li-
brary intended for use on a wide variety of plat-
forms. The code. approximately 30.000 lines of
standard Fortran 77. is highly modular, robust,
and portable. The program can be stopped at any
of several checkpoints and restarted with a new
configuration.

Our testing environment was a shared memory
MIMD madnne an Alliant FX/80 [10] with elghl
processing units. The processors are register
based with chained functional units and memorv
port. The computational processors are con-
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FIGURE 1 Execution profile of sequential program. Times were obtained on an Al-
liant FX/80 with serial optimizations {compile command: fortran -0g -pg). Elapsed
times {in seconds) are superscripted and the number of events is subscripted. Procedure
times include time spent in called subprocedures. Total elapsed time is 9.305 seconds.

The two separate invocations of ~“fun”™

are pr

nected by a concurrency bus. which keeps the
overhead for concurrency small. A sequential pro-
file for an execution of the nitrogen combustion
simulation mentioned earlier appears in Figures 1
and 2. For the test problem the program wracks 34
chemical species and 151 chemical reactions
through three simulated burns. The one-dimen-
smndl grid beings with 19 grid points and is ulu-
mately rehned to 61 grid points.

The program spenda most of its execution time
in routines from the CHEMKIN and Traxspogt li-
braries. Approximately 65% of the sequential ex-

ofiled together in Figure 2.

ecution time is consumed performing chemical ki-
netics computations in CHEMKIN routines ckytx,
ckmmwy, ckwyp, ckrat, ckhml, ckcpbs,
ckrhoy, and ckepms. (These subprogram
names are defined in Table 1.) Another 20% of
the execution time is consumed by transport com-
putations in TRANSPORT routines mtrnpr, ckytx,
mcadif, mcedif, mceval, and mcacon. Solv-
ing systems of linear equations consumes most of
the remaining time. The TwoprNT library simply
controls the flow of the computations and thus
contributes little to the execution time.
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Table 1. Symbols Appearing in the Premixed Flame Equations 1-4.

Symbol Quantity Where Computed

r Spatial coordinate along flow direction —

T Temperature Subroutine fun

M Mass flow rate {independent of x) Subroutine fun

Ye Mass fraction of the kth species Subroutine fun

A Thermal conductivity of the mixture Subroutines memedt,

mcacon, mceval

Zy = ViV Mass fraction times diffusion velocity of the Subroutines mdifv,

kth species mcatdr, mtrnpr, mcadif,
_ mcedif, mceval, ckytx

p=pW/RT Mass density Subroutine ckrhoy

hy Specific enthalpy of the kth species Subroutine ckhml

Cok Constant pressure heat capacity of the
kth species Subroutine ckcpms

cp Constant pressure heat capacity of the Subroutines ckepbs,
mixture ckcpms

Wy Molar rate of production of the kth Subroutines ckwyp,

_ species per unit volume ckrat

w Mean molecular weight of the mixture Subroutine ckmmwy

Vi Diffusion velocity of the kth species Read from input

Wy Molecular weight of the kth species Read from input

A Cross-sectional area of the stream tube Subroutine area
encompassing the flame

P Pressure (constant) Read from input

u Velocity of the fluid mixture {constant) Read from input

R Universal gas constant Read from input

Note. More detail is available-from the Cuevkin and Traxsport documentation [5. 6.

3 DESCRIPTION OF THE ALGORITHM

We first give a description of the mathematical
model and the computational method, which as-
sisted us in discovering which level of outer loop
parallelism is best to obtain a granularity suffi-
cient to saturate available processors with reason-
ably sized parcels of independent work [11]. :
mathematical description of the general problem
appears in several references [2]. We review them
briefly here. We then consider the computational
methods emploved to solve the combustion prob-
lem and explore the potential for parallelism in
these methods. Finally, we describe the particular
implementation of these methods and explore the
remaining potential for parallelism in the actual
program.

3.1 Mathematical Model

PREMIX computes the steadv-state temperature
and species concentrations in one-dimensional
burner-stabilized and freelv propagating pre-
mixed laminar flames. The steady state is defined
by the following conservation equations [2]:

M = pud = constant (mass). (1)

AT 1 () 1 T
M dx ¢, dx A dx * cp ,2:1 pAZi)e, dx
4 & (2)
+ = oW =0 (energv),
C/) k=1 ’
1Y,
Mk i(puu — AWy = 0
dx d 2\
(3)
(k=1,. . ..K) (momentum),

where K is the number of chemical species. Thus,
K + 2 conservation equations govern the steady
state of the system. The symbols appearingin
these equations are defined in Table 1.

The chemical kinetics computations occur in
evaluating the molar rates of species production
wy, the specific form of which is determined by the
input data set according to the equation,

IS
d)/\' = Z; VA-.IC],' ("l)

where the v, are user-specified integer stoichio-
metric coefficients and the ¢; are the computed
reaction rates. Determining the value of g, is com-
putationally intensive, consisting of numerous ex-



ponentials, logarithms. and reductions, both mul-
tiplicative and additive.

The heat generated or absorbed by these reac-
tions strongly affects the gas flow. In Presix, the
chemical kinetics are computed first from the in-
put data: then the hvdrodynamic system governed
by conservation Equduons 1-3 is a()l\ed in the
presence of the chemical reactions.

Equations 2 and 3 are discretized using finite
difference approximations. A grid is numbered
from 1 at the cold (input) bounddr\ to J at the hot
(output) boundary. The convective terms, (M dT/
dx) from the energy equation and (M dV/dx)
from the momentum equation, are modeled by ei-
ther first order windward or central differences as
necessarv. The other derivatives are approxi-
mated by first and second order central differ-
ences. The diffusive term of the species conserva-
tion equation. d/ dx(pAZ;). is approximated in the
same manner. Appropriate boundary conditions
are implemented for both the cold and hot bound-
aries. vielding a two-point boundary value prob-
lem. (See Equations 10-21 in Kee et al. [2] and
discussion therein for a detailed description.) The
nitrogen combustion problem is solved first using
windward differences for the convective terms.
Then the initial solution is used as a starting con-
dition for a run using central differences for the
convective terms.

The finite difference approximations reduce
the stff two-point boundary value problem to a
system of nonlinear algebraic equations. The
boundary value problem is modeled first on a
coarse mesh. When necessary, new grid points are
added (nonuniformly) in regions where the solu-
tion or its gradients change rapidly. Assuming a
unique solution exists. this process ends when the
solution has been resolved to a specified degree.

The nonlinear svstem is solved using the modi-
fied Newton—Raphson algorithm. We seek a vec-
tor ¢ which satisfies

F(¢) = 0. (3)

We begin with a (usually poor) approximation o
¢: It is clear that F(@) is not zero. The quantity

= F($) (6)

is called the residual.

In order to obtain a block-tridiagonal structure
in the Jacobian, the mass flow rate, M, is treated
as an independent variable M; at each grid point,
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and the additional equation stating that they are
all equal,

dM; o ,
dxj_o G=1.....J) 7

is added with a suitable boundary condition. This
mass conservation equation, coupled with the en-
ergy conservation Equation 2 and the K equations
of momentum conservation (3) yield a total of K +
2 equations. The approximate solution vector ¢
has the form,

a A

(£=<¢;15¢'27' . '*¢./) {8)

where

= (T K bae o B M) )
Equation 9 corresponds to the independent vari-
ables for temperature, species concentration, and
mass flow rate for each grid point, /.

The modified Newton—Raphson algorithm pro-
duces a sequence {¢ "},

Gl =i — (T (), (10)

In the equation, u is a damping parameter and J is
a finite difference approximation to the Jacobian
matrix. The sequence converges to the solution of
the nonlinear equations F{¢) given a sufficiently
good starting estimate ¢, It is rejected if it does
not converge.

Should the Newton algorithm fail to converge, a
user-specified number of artificial time integra-
tions are performed to improve the conditioning of
the nonlinear system. The discretized time inte-
gration is again a system of nonlinear equations.
The modified Newton—Raphson method is em-
ploved to solve the nonlinear system, but in this
case it is much more likely to converge. See the
discussion in Kee et al. [2] for more details.

Independence Inherent to the
Computational Method

Each Newton or time-stepping iteration depends
directly on the result of the previous iteration, so
we will not discover independence necessary for
parallelization outside the computations within a
single iteration. We will show, however, that Jaco-
bian evaluation contains considerable indepen-
dence, in that all residual differences can be com-
puted simultaneously. Additionally, many of the
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properties evaluated for each species and reaction
within a single residual evaluation are indepen-
dent in principle. Others are not independent, but
many have the form of a reduction, a computation
amenable to partial parallel optimization.

Let ¢ represent the vector of independent
variables after Newton iteration n. Skinner [12]
has shown that y = F(¢"/) depends only on the
partial vectors,

O, B Bty B G G (1)

(The dependence on some previous evaluation
n — ng arises from the fact that the transport coeffi-
cients are not recomputed for each iteration.) It
follows that 3 depends only on solution vectors
¢ and ¢ "™ both of which are available at the
beginning of Newton iteration n + 1. That is, v =
F(¢ " )is a completely explicit computation. Thus.
the computations for each grid point sectioning of
y can be performed simultaneously. It follows that
all the residuals needed to approximate the Jaco-
bian can be computed concurrently.

We see that there exists the potential for several
levels of significant parallelism in PREMIX. Note.
however, the hierarchy is not strict. For efficiency.
the Jacobians are often reused. Thus. a significant
number of residual evaluations occur which are
not part of Jacobian evaluation. In the nitrogen
combustion simulation we used for testing. one
third of the residual evaluations occur indepen-
dent of Jacobian evaluation. This suggests that if a
single level of parallelism is to be exploited. it
should be done at the level of residual evaluation.

3.2 Specific Implementation

The control flow of PREMIX can be viewed as in
Figure 3. The CHEMKIN INTERPRETER [5] and Traxs-
PORT PROPERTY FITTING CODE [6] are each external
modules which access databases to create “link-
ing”” files to be read during execution. The
CHEMKIN and TRANSPORT libraries require access to
many problem-specific constants, such as the
molecular weights of the species. In addition, each
library requires some scratch space, or memory
locations, used to store values needed only tempo-
rarily. Tracking the use of these scratch arrays is
significant when analyzing for parallelism.
Because the libraries are general purpose and
used in a wide variety of applications, these work
arrays must be of arbitrary size. Thus, a “‘dy-
namic’’ memory allocation scheme is used. Both
CHEMKIN and  TRANSPORT implement dynamic

[ Chenbin tmerprerer | Transport Propees Finine Code |
1 1
F Tmitiahye J ‘
— |
! | |
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|

FIGURE 3 Flow diagram for Presux. The nonlinear
discretized system is solved using the modified New-
ton—Raphson algorithm. Should the Newton algorithm
fail 10 converge, a user-specified number of artificial
time integrations are performed to improve the condi-
tioning of the nonlinear system. The time stepping algo-
rithm also uses the Newton method.

memory allocation in a way common to scientilic
programs written in Fortran. For each data wvpe
emploved by one of the program libraries {charac-
ter. integer. double-precision floating point). a
single. large array is carved into sections by a se-
quence of integer offsets computed at run-time.
The indices are computed during initalization
and stored in COMMON blocks for future use. Thev
are never modified after initalization. The work
arrays for each of the libraries are passed as argu-
ments down the calling tree. A COMMON block for
each of the libraries encapsulates the pointers into
their respective integer and floating-point work ar-
ravs. It is important 10 note that the COMMON
blocks for a particular library are declared only in
procedures within that library.

Returning to Figure 3. we see that each tme the
outer control loop iterates. either the Newton
solver or time stepping is invoked. The Newton
solver is always invoked first: time stepping is only
performed when the Newton solution phase fails
to converge. A single Newton iteration consists of

the following steps [2]:

1. Calculate the residual (fun)

2. If necesssarv, evaluate (jacob) and factor
(dgbco) the Jacobian matrix

3. Backsolve (dgbsl)

Because chemical computations involve only a
grid block and its immediate neighbors (Equation



11), the chemistry is local. As the residual evalua-
tions are independent of one another. no concep-
tual reason exists that the residuals cannot be
computed efficiently in parallel.

Computing the residual requires numerous
chemical and thermodynamic property evalua-
tions at each grid point. The computation has
three distinct steps. First. the transport coeffi-
cients are evaluated, if necessaryv. Then the diffu-
sion velocities are computed. Finally, the chemi-
cal kinetics terms are evaluated and the residuals
of the governing Equations 2. 3. and 7 are deter-
mined.

However, the specific implementation of the
computational methods hides some of the poten-
tial for parallelism. Concurrent evaluation of the
residuals is hampered by the presence of shared
local variables and work arrays. The chemical and
thermodynamic computations for each grid point,
which we also identified as independent in princi-
ple, cannot be executed concurrently either. In
addition to shared local variables and work ar-
rays, the nearest-neighbor communication of
density and area data forces a sequentializing
synchronization. The next section describes tech-
niques to overcome some of these problems.

4 PROGRAMMING TECHNIQUES AND
OPTIMIZATION

In this section we describe the program transfor-
mation techniques we applied to the specific im-
plementation of PREMIX and the program analysis
that was necesssarv to do this. We compare these
techniques to those applied in other application
programs and discuss some implications on pro-
gramming languages, compiler design, and soft-
ware engineering issues.

4.1 Transformation and Analysis
Techniques

The basic program modification that enabled
multiple processors to participate in the parallel
execution of the program was to declare a number
of time-consuming loops to be executable concur-
rently. Simply speaking, in order to do this we first
had to recognize that the iterations of these loops
were potentially independent, then perform some
transformations to make them truly independent,
and finally insert a directive informing the com-
piler that the loops shall be executed in parallel.

By far the most important transformation in
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this process was the privatization of arrays (Fig. 4)
that are used as temporary work spaces within
loop iterations. In the original program all such
loop iterations use the same array(s) for storing
temporary results. In a parallel execution of the
unmodified program. every iteration would have
to wait before using this array until the previous
iteration is done using it, which effectively would
serialize the loop. However, by giving each itera-
tion a separate copy of the array, we can avoid
these dependences. The difficulty of this transfor-
mation is in making sure that it is a truly tempo-
rary array where no array element passes informa-
tion from one loop iteration to the next. This is
usually done by an array definition/use analysis
of the program.

An additional technique—the parallelization of
reduction operations—we have found to be appli-
cable in our program. However, we have not done
this because we exploited an outer level of paral-
lelism. The transformation will become important
on machine architectures that support the exploi-
tation of multiple levels of parallelism. e.g., ma-
chines that have cluster structure so that the outer
parallel loops can be spread across clusters while
the inner loops exploit the parallel resources
within the cluster.

For both the definition/use analysis and the

real temp(kk), c(jj)

do j =1, jj

do k = 1, kk
temp (k) = k * b(k)
end do
do k =1, kk
c(j) = c(j) + temp(k)
end do
end do

real temp (kk,jj), c(jj)

doall j =1, jj
do k = 1, kk
temp(k,j) = k * b(k)
end do

do k = 1, kk
c(j)y = c(j) + temp(k,j)
end do
end do

FIGURE 4 Privatization of arrays. In the second code
fragment, each iteration of the outer loop is provided a
separate copy of work array "temp".
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detection of independence of the loops we had 10
analyze the program interprocedurally. Often. ar-
ray sections were defined (i.e.. written) in one sub-
routine and used (i.e.. read) in another subrou-
tine. Even more difficuli was the analvsis of
accessed array sections that involved program in-
put data. Sometimes it was only knowledge of the
application that could ensure that. in all reason-
able executions of the program. input variables
would relate so that the defined arrav ranges
would alwavs cover the used ranges or that the
ranges accessed in different loop iterations would
never overlap.

The dyvnamic memory allocation scheme. men-
tioned in Section 3.2. {further complicated the sit-
uation. We had to wrack arrav subscripts which
were themselves subscripted array elements in or-
der 10 determine which sections of the original.
large arrayv are read or written. Since the subscrip
arrays are read-onlv after their initialization. it is
possible 1o determine temporary arravs and paral-
lel loops from the analysis of the program code.
However, this process is tedious and it makes the
interesting question of whether such techniques
could be automated in a compiler quite chal-
lenging.

4.2 Tools, Languages, and Programming
Methodology

A profile facility that identitied the most time-con-
suming loops in the program was the basic instru-
ment for our program analysis. In addition. the
most helpful tool was an arrav section analysis
facility that determined the array sections read
and written in each subroutine and loop. This in-
formaton was then propagated up the calling tree
so that the summary of all accessed arravs could
be seen at each loop.

The actual transformations were done in a con-
ventional text editor. Compared to the time con-
sumed by the program analvsis this task was not
overly expensive, although the mechanics of array
privatization could be somewhat tedious as de-
scribed below.

We restructured our program by explicily
specifving parallel activities, rather than changing
the program so that the compiler could recognize
the parallelism automatically. The language we
used is Fortran 77 plus directives. The only direc-
tive we used is CNCALL, which specifies that the
loop shall be executed in parallel. Private arrays
were specified in two forms. both using available
Fortran 77 constructs. One form is to declare the

array local to a subroutine that is called inside the
parallel loop and the other is to expand the array
by one dimension and index this dimension with
the loop variable. The second form is usually
called array expansion. Sometimes. subroutine
parameter lists had to be modified in order to pass
expanded arravs from calling 1o the called routine.

Common extensions to Fortran 77 are con-
structs for dvnamic array declaration. Arrays of
arbitrary size and dimension can be declared lo-
callv. within a subprogram. Had we used this ex-
tension. we would not have had to modifyv any of
the subprogram parameter lists. leaving the
CHEMKIN and Traxsport libraries hackward com-
patible.

The availability of a directive that declares vari-
ables private 10 a loop would have been very use-
ful for our purposes because it would have allowed
us 1o leave the existing program text unchanged.
Such a directive would also have 1o support the
privatization of a partal array. We encountered
situations where part of an array was read-only
and another part was used for temporary storage.
To handle this situation we split the arravs into
different parts and privatized the temporarily used
sections. The need for a PRIVATE directive is an
important conclusion of our work. and it corre-
sponds to findings of related work.

The method of program optimization we have
applied consists of identifving the time-consuming
loops in the program. analyzing array sections
that are read and written in these loops. and de-
riving privatizable and independent array sec-
tions. The parallel loops in our program could
then be determined from this information. The
actual transformations necessary 10 express the
parallelism were straighdorward. This program-
ming scheme seems generally applicable and may
be used as a programming methodology that can
be applied in a systematic way. Although we have
found this to be useful for optimizing other pro-
grams as well. we should note that there are time-
consuming optimization steps for which we don’t
know generally applicable methods. Such steps
are the gathering of knowledge about the applica-
tion that goes bevond the analysis of the program
text. We have found this to be important in some
cases for our program optimization.

4.3 Comparison to Findings of

Related Projects

In a related project of optimizing application pro-
grams for parallel computers similar results were



found. Such projects include the Cedar Fortran
project [13. 14, which was completed at our cen-
ter in 1992, and the follow-on Polaris project
[15]. Both projects studied transformation tech-
niques that are needed to speed up real programs.

This was done by hand parallelizing a suite of

codes. including the Perfect Benchmarks and
some applications of relevance o the users at the
National Center for Supercomputer Applications
at the University of Hlinois.

The most important transformations identified
were the same as in our project. Array privatiza-
tion was most effective. followed by the parallel-
ization of reduction operations. Interprocedural
definitdon/use analvsis was a crucial technique
determine the applicability of the transformations.
The transformations vielded fully parallel loops
whose iterations could be executed independently
on multiple processors.

Our application is relevant for these other proj-
ects in that it confirms the results and thus shows
that thev carry over from the sample benchmark
suite to new programs. One difference seems
worth noting. The ultimate goal of the above-re-
lated projects was to find techniques that can he
automated in a parallelizing compiler. and in fact
most of the transformations identified were re-
ported to be automatable. In our program we have
found that some crucial information for determin-
ing the applicability of the parallelization tech-
niques is known only from the input files and thus
is not available at compile time. Although there
are compilation techniques that are able to paral-
lelize such situations at run-time [16!. our find-
ings indicate that it will be at least difficult to
detect the parallelism automatically. A {ull discus-
sion of this point is bevond the scope of this article
and is the object of future projects.

A related approach to methodologies for paral-
lel programming is described by Eigenmann {17].
Our findings largely agree with his approach. One
difference is that he envisions a “"program-level”
optimization, in which all necessary information
for transforming the program can be gathered
from the program text. As we have mentioned, for
optimizing PREMIX there was sometimes a need to
use knowledge about the mathematical and physi-
cal properties of the problem that could not easily
be gathered from the specific implementation of
the. program.

Our findings can also be compared with the
parallel programming methodology that envisions
the design of application programs from opti-
mized libraries. The parallelism would be hidden
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in these libraries and the programming method for
the user of these libraries would be no different
from sequential programming. A further advan-
tage of this approach is that the libraries could be
optimized specifically for each machine and the
application program would be portable. Because
PreMIX uses standard libraries, it would be a natu-
ral candidate for such an approach. However, we
have found that exploiting parallelism within the
libraries does not lead to significant speedup. The
parallelism we exploited is at a higher loop level
and the libraries themselves execute on one pro-
cessor each.

5 RESULTS

We gathered performance data on the Alliant
FX/80 for four versions of PREMIX:

1. Original Sequential-the original PRreMX
code compiled with sequential optimiza-
tions (fortran -0g)

2. Original Parallel-the original code opti-
mized for parallel execution by the FX/
FORTRAN automatic compiler (fortran
_Ogc\

3. Optimized Parallel-Original Parallel with
explicit parallel constructs added. as de-
scribed in Section 4

4. Optimized Sequential-Optimized Parallel
compiled for sequential execution (for-
tran -0g)

The profiling option (-pg}) was disabled for these
experiments. We also excluded vectorization opti-
mizations from our performance tests because the
vectors were too short to be useful with the FX/80
architecture. Enabling vectorization consistently
resulted in greater execution times.

The performance improvement can be seen in
Figure 5. The third group of bars shows total exe-
cution times for the four versions of PreMix. We
see that the Optimized Parallel version of the code
executes approximately 4.4 times faster than
Original Sequential. The added overhead of the
manual parallelization. seen by comparing the ex-
ecution time of Optimized Sequentlal to Original
Sequential, is minimal (less than 0.3%). Auto-
matic compiler optimizations, isolated in the Orig-
inal Parallel version of the code, are responsible
for about half the performance improvement. This
result can also be seen in Figure 6, which exhibits
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FIGURE 5 Comparative performance of four versions of Previx. Times were obtained
using an eight-processor Alliant FX/80 with the FX/FORTRAN parallelizing compiler.
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FIGURE 6 Inverse execution times versus number of processors. Times for original
and optimized parallel versions of Preyix were obtained on an Alliant FX/80. An ideal

performance improvement line is included for comparison.
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Table 2. Elapsed Execution Times of Four Versions of Premix
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Original Original Optimized Optimized
Sequential Parallel Sequential Parallel p
erformance

Sec. % Sec. % Sec. % Sec. % Improvement

(a) (b) (c) (d) (c)/(d)
Residual
Evaluation loop 5,472 63.2 2.283 54.7 5,430 61.9 920 471 3.9
Transport loop 1.651 19.1 1,118 26.8 1.735 20.0 296 15.1 5.9
Diffusion loop 170 2.0 82 2.0 167 1.9 28 1.4 6.0
Other chemistry 57 0.0 42 0.0 77 0.0 40 0.0 1.9
Total chemistry ~ 7.350 84.9 3.525 84.5 7.409 4.4 1,284 65.8 5.8
Linear algebra 1.153 13.3 540 12.9 1.180 13.5 518 26.5 2.3
Two-point BVP
Solver 68 0.8 37 0.9 86 1.0 60 3.1 1.4
1/0 and OS 1.0 70 1.7 1.1 89 4.6 1.1 0.2
Total 8.658 100.0 4.172 100.0 8.773 100.0 1.951 100.0 4.5

Note. The parallel versions were executed using eight processors.

the inverse execution times of the parallel versions
of the code for varving numbers of processors.

We separated the lmedr algebra and chemistry
computations in Figure 5 to dem(mauate how the
nature of the Optimized Parallel version of the
program has changed from the original. While
performance of the chemical computations im-
proved significantly. by a factor of almost 6. the
gain for [he linear al"ebrd routines. which we were
()nl\ able to parallelue partially. was a more mod-
est 2.3. Linear algebra commanded only about
1 3% of the Orurlndl Sequential execution time. In
the Optimized Pdrdllel version linear algebra is re-
sponsible for about 27%. As the number of pro-
cessors grows. linear algebra computations will in-
creasingly dominate execution time.

Formerly the chemistry was so expensive that
the time spent in linear algebra could be easily
ignored. Now that the chemistry can be made rel-
atively cheap. the algorithmic
changed. Alternatives to the overall solution strat-
egy should be reviewed. Some discussion of paral-
lel methods for solving two—point boundary value
problems was provided by Wright [18]. The La-
pack effort [19] offers parallel versions of banded
system solvers. exploiting parallelism in multiple
right-hand sides and blocking algorithms. We did
not. however, obtain any performance improve-
ment when we replaced the Lixpack linear algebra
routines with their Lapack counterparts. Preyix
has no multple right-hand sides to exploit. but
blocking should have vielded some improvement.
The reason it did not do so is still under investiga-
tion.

Table 2 shows the execution times of the four

trade-offs have

versions of PreMix. The three loops we manually
parallelized constitute nearly all the significant
chemical computations in the code. As these loops
are explicitly parallel in the Optimized Parallel
version of the code, we have successfully modified
the implementation to express the parallelism in-
herent to the computational method. However,
the execution times of these loops exhibit only a
sixfold improvement on eight processors. We be-
lieve this is largely due to an imbalance in the work
load. The program spends much of its time work-
ing with a 19-point grid. If we assume each itera-
tion of the loop over the grid points executes in the
same amount of time, 19 iterations are completed
in the time that the eight processors could execute
24. This roughly 79% efficiency would reduce the
performance improvement factor to 6.3. A further
source of inefficiency is the limited memory band-
width of the FX/80 machine, which provides only
a four-way path between the eight processors and
the shared memory, and penalizes applications
with poor cache hit ratios. Factoring in these ineffi-
ciencies models the measured performance with
good accuracy, so that we can characterize the
scalability of our application as follows.

The PREMIX application runs with reasonable
efficiency on machines with small numbers of pro-
cessors. Itis potentially scalable to larger numbers
of processors for the solution of larger problems
with significantly more than 65 grid points. As the
chemistry component of the application speeds
up, the linear algebra part becomes speed limit-
ing. We have not investigated possible improve-
ments to this component of the application; how-
ever, it seems possible to resolve this limitation
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through appropriate changes in the used algo-
rithms.

6 CONCLUSIONS

We performed a detailed analysis of the mathe-
matical model used in Premix coupled with a
study of the computational methods to gain a pic-
ture of a hierarchy of parallelism inherent to the
problem being solved. A manual analysis of the
code followed, from which we determined 10 what
extent the parallelism inherent to the implementa-
tion was expressed in the original version. We then
chose an outer loop level appropriate to our target
machine and applied a handful of manual paral-
lelizations. In all, we modified less than 100 lines
of code. The result was a greater than fourfold
improvement in the simulation’s execution time
on an Alliant FX/80 with eight processors.

In this work we have found that the Premix
combustion chemistry application runs with rea-
sonable speed on small numbers of processors
and potentially scales up to more highly parallel
systems. The most important program transfor-
mation to achieve our performance improvement
was the privatization of arrays. To determine the
applicability of this transformation we had to do a
careful, interprocedural analysis of defined and
used array sections. The available language con-
structs were not alwavs adequate for expressing
dvnamically sized loop-private arravs. and we
suggest that such constructs be included in future
language designs. The method used for optimizing
our program seems generally applicable and. with
the provision of supporting 100ls. we believe they
represent a step toward the understanding and
improvement of the process of optimizing large
application codes for high-performance com-
puters.
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