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ABSTRACT 

We used a description of a combustion simulation's mathematical and computational 
methods to develop a version for parallel execution. The result was a reasonable 
performance improvement on small numbers of processors. We applied several impor­
tant programming techniques, which we describe, in optimizing the application. This 
work has implications for programming languages, compiler design, and software 
engtneenng. -~ 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

i\umerical sinwlation,:; of reactinc· flow are widelY 
used for problems such a,; controllint!' combu,;­
tion-w~nerated pollutants. rt>ducint!' knockin~ in 
internal combustion ent!'ines. studyint!' the envi­
ronmental impact of compounds emittf'd from 
combustion. and disposin~ of toxic wa,:;tes [ 11. 
These simulations require extensin,• computation. 
~lany can only be served by the advanced capa­
bilities of a parallel supercomputer. In this article 
we describe an effort to optimize tlw parallel per­
formance of a reactive flow simulation written for 
serial execution. Specifically. we examine PHntL\ 

[2]. which simulates combustion. an important 
subclass of reactive flow. 
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Reactive flow modelintr problem;;; are governed 
by equations conserving nw;;;;;. ener~·· and mo­
mentum. They are coupled with a hydrodynamic 
system driven by the ener~· released or ab;;;orbed 
from the chemical reactions. Re;;;earchers seek to 
understand the chemical kinetics behavior of large 
chemical reaction svstems and the associated 
convective and diffusive transport of mass. mo­
mentum, and energy. 

Complicating the numerical simulation of reac­
tive flow is numerical stiffness. Stiff equations 
have one or more rapidly decayin~ solutions and 
usually require special treatment. In the context of 
chemical kinetics Cu11iss and Hirschfelder [3j fir;;t 
identified the problem of stiffness in ordinary dif­
ferential equations in 1952. In reactive flow, stiff­
ness often arises as a result of the differing time 
scales of the chemical kinetics and the hydrody­
namics [ 4 J. Chemical reactions occur on the order 
of picoseconds, while the convective flow occurs 
on the order of seconds. Stiffness also results 
where large temperature gradients occur. To over­
come these numerical difficulties researchers of­
ten employ time-implicit algorithms and adaptive 
gridding schemes. 

A group at Sandia l\'ational Laboratories has 
developed a number of software tools that facili-
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tate simulation of reactive flow. Three basic pack­
ages lie at the heart of their effort. The CIIE\IKI'\ 
library [5] is used to analyze gas-phase chemical 
kinetics. The TRA'\SPORT [ 6 J library is used for 
evaluating gas-phase multicomponent transport 
properties. SL RFKL\ [7] is a package for analyzing 
heterogeneous chemical kinetics at a solid-sur­
face-gas-phase interface. These three combus­
tion libraries undergo continual revision as part of 
an ongoing effort to provide the numerical com­
bustion communitv with standardized software. 
This approach is successful because the governing 
equations for each reactive flow application must 
share a number of features. A general discu,.;sion 
of this structured approach to simulating reactive 
flow is provided by Kee and ~Iiller [ 1]. 

Several codes have been built bv Sandia to ex­
ploit CHEMKI'\, TRA\SPURT. and SLHFKL\. One of 
them is PRDIIX, which is used to predict the 
steady-state temperature and species concentra­
tions in one-dimensional burner-stabilized and 
freely propagating premixed laminar flames. This 
combustion is chemically interesting because the 
large energy release associated with burl!ing gives 
rise to high temperatures and many exotic chemi­
cal species. The high temperatures resulting from 
the transfer of chemical energy to heat lead to 
rapid expansion of the gases which in turn affect 
convective flow. 

The goal of this article is to describe experi­
ences in an effort to improve the performance of 
the PREMIX application. The machine architec­
tures we considered are shared memory multipro­
cessors with a modest number of CPCs, such as 
the Alliant FX series, the Convex C2 series. and 
the high ends of the Sun SP ARC station, HP 
Apollo, IB.\1 RS/ 6000, and Silicon Graphics Iris 
series. Such machines are becoming less expen­
sive and more widely available. 

Only one version of the Fortran 77 source for 
PRE.'-IIX is distributed by Sandia. This code exe­
cutes without significant modification on all ma­
chines from a personal computer to a Cray. To 
ensure the software can still be used by the large 
established user base, modifications to the code 
are strictly backward compatible, i.e., the subrou­
tine interfaces are fixed. Our main concern .. then, 
was with extracting parallelism from the chemical 
and thermodynamic computations performed by 
the CHEMKI'\ and TRA'\SPORT libraries. 

We approached PRE!\tLX with a simple goal: Re­
duce the actual time a program requires to pro­
duce a solution to a given problem through effi­
cient use of multiprocessing hardware. To 

accomplish this .. independence must be present in 
the code so that different subproblems can be ex­
ecuted by separate processors concurrently. Often 
the desired independence. if it exi;;ts, is apparent 
from the mathematical description of the physical 
problem. This conceptual independence may not. 
however, be expressed in the actual code. Two 
factors contribute to the absence of concep.tual 
independence in the final program: (1) the com­
putational method chosen to approximate the 
mathematical problem may sPquentialize formerly 
independent tasks: !2) the specific implementa­
tion of the computational method adds unnece"­
san· svnchronizations. 

"'e therefore make a reasonably ,;harp di,-tinc­
tion between the mathematical model of a prob­
lem, the computational method for its solution. 
and the particular implementation of the method. 
"'e begin in the next section with a brief 0\en·iew 
of PRBIIX. In Section 3. we obsen·e how well the 
original ,·ersion of PRE\IL\. expresses parallelism 
inherent to the mathematical model and compu­
tational method. In Section -i we describe the pro­
gram transformation techniques applied to pro­
duce an optimized version of PRE\tL\.. In Section 5 
we exhibit the resulting performance improve­
ment, and in Section 6 we offer the conclusions 
drawn from this work. 

2 THE PREMIX APPLICATION 

PRE!\IIX is a typical example of a library-oriented 
production Fortran code. It is a flexible prog-ram 
developed to analyze general problems im·oh·ing 
combustion of premixed gases in a flame. PHE\11\. 

consists of a driver and four librarie:-;: CHE\IKI'\ [51. 
used to analyze gas-phase chemical kinetics: 
TRA'\SPORT [ 6], used to evaluate gas-phase multi­
component transport properties; T\\ OP'\T [ 8], a 
two-point boundary value problem solwr: and 
LIWACK [9], a popular numerical linear algebra 
package. Each is a standardized, extensible li­
brary intended for use on a wide variety of plat­
forms. The code, approximately 30.000 lines of 
standard Fortran 77. is highly modular, robusL 
and portable. The program can be stopped at any 
of several checkpoints and restarted with a new 
configuration. 

Our testing environment was a shared memory 
MI~ID machine, an Alliant FX/80 [10] with eight 
processing units. The processors are register 
based with chained functional units and memon' 
port. The computational processors are con-
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FIGURE 1 LxPcution protile of sequential program. Times were obtained on an Al­
liant FX/80 with sPrial optimizations lcompilo· command: fortran -Og -pg). Elapsed 
times (in sPconds) are superscript•~d and the number of evPnb is subscripted. Procedure 
times include time spent in eallt>d subpron·dun•s. Total elapsed time is 9 .. 305 seconds. 
The two separate invocation~ of ··fun·· are protiled together in Fi~o,'Ure 2. 

nected by a concurrency bus. which keep,.; the 
overhead for concurrency small. A ,.;equential pro­
file for an execution uf the nitro~en combustion 
simulation mentioned earlier appears in Fi~ures 1 
and 2. For the teiit problem the prowam tracks :3-t 
chemical species and 1;) 1 chemical reaction,.; 
throu~h three simulated burns. The one-dimen­
sional grid bein~s with 19 grid points and i;; ulti­
mately refined to 61 wid points. 

The program ~pend,.; most of its execution time 
in routine,.; from tlw CI!E\IJ-..:1:\ and TH \\sPOilT li­
braries. Approximately 6.)'l'o of tlw st>quentiul ex-

ecution time is consumed performing chemical ki­
netics computations in CHF:\IJ-..:1:\ routines ckytx, 
ckmmwy, ckwyp, ckrat, ckhml, ckcpbs, 
ckrhoy, and ckcpms. (These subprogram 
name~ are defined in Table 1.) Another 20% of 
the execution time is consumed by transport com­
putations in TRA:\SI'ORT routines mtrnpr, ckytx, 
mcadif, mcedif, mceval, and mcacon. Soh·­
ing systems of linear equations consumes most of 
the remaining time. The TwoP:\T library simply 
controls the flow of the computations and thus 
contributes little to the execution time. 

_ · IUo) · )t;<,4 -t 
ckytx , .. .,,, 

-mtrnpr :
1
]] n~cad1f 2'AJt. --mcedlf 2., 4Jt; --mceval =~ziH 

me aeon~~ •o --mceval ;~lo 

r- ckhml/.~~~0 
r-- eke pbs 21~co -- ckcpms ~\~~t;o 

~ ckcpms i.~~co 
-temp i,",A 

FIGURE 2 Execution profile for procedure fun. 
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Table 1. Symbols Appearing in the Premixed Flame Equations 1-4. 

Symbol 

X 

T 
M 
Y, 
A 

p = pW/RT 
h, 

p 
u 
R 

QuantitY 

Spatial coonJinate along flow direction 
Temperature 
Mass flow rate (indt>pendent of~-) 
Mass fraction of the kth species 
Thennal conductivitY of the mixture 

:'11ass fraction times diffusion velocity of the 
kth species 

Mass density 
Specific enthalpy of the kth species 
Constant pressure heat capacity of the 
kth species 
Constant pressure heat capacity of the 
mixture 
.\1olar rate of production of the kth 
species per unit volume 
.'vlean molecular weight of the mixture 
Diffusion velocity of the kth species 
Molecular weight of the kth species 
Cross-sectional area of the stream tube 
encompassing the flame 
Pressure (constant) 
Velocity of the fluid mixture (constant) 
Cniver~al gas constant 

Subroutine fun 
Subroutine fun 
SubroutinP fun 
SubroutinPs mcmcdt, 
mcacon, mceval 
Subroutines mdifv, 
mcatdr, mtrnpr, mead if, 
mcedif, mceval, ckytx 
Subroutine ckrhoy 
Subroutine ckhml 

Subroutine ckcpms 
Subroutines ckcpbs, 
ckcpms 
Subroutines ckwyp, 
ckrat 
Subroutine ckmmwy 
Read from input 
Read from input 
Subroutine area 

Read from input 
Read from input 
Read from input 

i\'ote. More detail is available-from the Cllf:\fJ.;J\ and TR\:\,PoRT documentation [.S. 6'. 

3 DESCRIPTION OF THE ALGORITHM . dT 1 d ( d8 1 A ' dT 
Jf -d - - -d AA -d + - L (pAZk )c"" -d 

X Cp X X Cp k=l X 

We first give a description of the mathematical 
model and the computational method, which as­
sisted us in discovering which level of outer loop 
parallelism is best to obtain a granularity suffi­
cient to saturate available processors with reason­
ably sized parcels of independent work [ 11 J. A 
mathematical description of the general fJroLlem 
appears in several references [2]. ·we review them 
briefly here. w·e then consider the computational 
methods employed to solve the combustion prob­
lem and explore the potential for parallelism in 
these methods. Finally, we describe the particular 
implementation of these methods and explore the 
remaining potential for parallelism in the actual 
program. 

3.1 Mathematical Model 

PREMIX computes the steady-state temperature 
and species concentrations in one-dimensional 
burner-stabilized and freely propagating pre­
mixed laminar flames. The steadv state is defint>d 
by the following conservation equations [2]: 

~~1 = puA = constant (mass), (1) 

(2) 

(3) 
(k = 1, . . .. K) (momentum). 

where K is the number of chemical species. Thus, 
K + 2 conservation equations govern the steady 
state of the system. The symbols appearing' in 
these equations are defined in Table 1. 

The chemical kinetics computations occur in 
evaluating the molar rates of species production 
Wk, the specific form of which is determined by the 
input data set according to the equation, 

A. 

2: llk,qi ( ... ) 
i=l 

where the vk.i are user-specified inte~er stoichio­
metric coefficients and the q1 are the computed 
reaction rates. Determining the value of q1 is com­
putationally intensive, consisting of numerous ex-



ponentials, logarithms. and reductions. both mul­
tiplicative and additive. 

The heat generated or absorbed by these reac­
tions strongly affects the gas flow. In Ptu:wx., the 
chemical kinetics are computed first from the in­
put data; then the hydrodynamic system governed 
by conservation Equations 1-3 is solved in the 
presence of the chemical reactions. 

Equations 2 and 3 are discretized using finite 
difference approximations. A grid is numbered 
from 1 at the cold (input) boundary to J at d~e hot 
(output) boundary. The convective ter~s. (.U dTI 
dx) from the enere:,ry equation and (JI dl//dx) 
from the momentum equation, are modeled by ei­
ther first order windward or central differences as 
necessary. The other derivatives are approxi­
mated bv first and second order central differ­
ences. The diffusive term of the species conserva­
tion equation. dl dx(pAZk ). is approximated in the 
same manner. Appropriate boundary conditions 
are implemented for both the cold and hot bound­
aries. yielding a two-point boundary value prob­
lem. (See Equations 10-21 in Kee eta!. [2j and 
discussion therein for a detailed description.) The 
nitrogen combustion problem is solved first using 
windward differences for the convective terms. 
Then the initial solution is used as a starting con­
dition for a run using central differences for the 
convective terms. 

The finite difference approximations reduce 
the stiff two-point boundary value problem to a 
system of nonlinear algebraic equations. The 
boundary value problem is modeled first on a 
coarse mesh. ~-hen necessary, new grid points are 
added (nonuniformly) in regions where the solu­
tion or its gradients change rapidly. Assuming a 
unique solution exists. this process ends when the 
solution has been resolved to a specified degree. 

The nonlinear system is solved using the modi­
fied 1\"ewton-Raphson algorithm. "-e seek avec­
tor ¢ which satisfies 

F(¢) = 0. (5) 

We begin with a (usuallv poor) approximation<$ to 

¢: It is clear that F(<$) i.s not zero. The quantity 

y= F(<$) (6) 

is called the residual. 
In order to obtain a block-tridiagonal structure 

in the Jacobian, the mass flow rate, JI, is treated 
as an independent variable JI1 at each grid point, 
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and the additional equation stating that they are 
all equal, 

() = 1' ... , J) (7) 

is added with a suitable boundary condition. This 
mass conservation equation, coupled with the en­
ergy conservation Equation 2 and the K equations 
of momentum conservation (3) yield a total of K + 
2 equations. The approximate solution vector cb 
has the form, 

(8) 

where 

Equation 9 corresponds to the independent vari­
ables for temperature, species concentration. and 
mass flow rate for each grid point, j. 

The modified 1\"ewton-Raphson algorithm pro­
duces a sequence {</> nJ, 

In the equation, 11- is a damping parameter and J is 
a finite difference approximation to the Jacobian 
matrix-. The sequence converges to the solution of 
the nonlinear equations F(<f>) given a sufficiently 
good starting estimate ¢ 0 '. It is rejected if it does 
not converge. 

Should the 1\"ewton algorithm fail to converge, a 
user-specified number of artificial time integra­
tions are performed to improve the conditioning of 
the nonlinear system. The discretized time inte­
gration is again a system of nonlinear equations. 
The modified 1\"ewton-Raphson method is em­
ployed to solve the nonlinear system, but in this 
case it is much more likely to converge. See the 
discussion in Kee et al. [2] for more details. 

Independence Inherent to the 
Computational Method 

Each 1\"ewton or time-stepping iteration depends 
directly on the result of the previous iteration, so 
we will not discover independence necessary for 
parallelization outside the computations within a 
single iteration. We will show, however, that 1 aco­
bian evaluation contains considerable indepen­
dence, in that all residual differences can be com­
puted simultaneously. Additionally, many of the 
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properties evaluated for each species and reaction 
within a single residual evaluation are indepen­
dent in principle. Others are not independent, but 
many have the form of a reduction, a computation 
amenable to partial parallel optimization. 

Let cPin) represent the vector of independent 
variables after Kewton iteration n. Skinner [12] 
has shown that y = F(cP1"i) depends only on the 
partial vectors, 

A..(n) A..(nl A..l.n; A..:.n-nn) A..:,rl-no) A..'.n-no (11) 
'1-';-1' 'I'; ''1-';+1' '1-';-1 ''I'; . '~-';+1 . 

(The dependence on some previous evaluation 
n- no arises from the fact that the transport coeffi­
cients are not recomputed for each iteration.) It 
follows that y depends only on solution vectors 
cP '" and cf> n-no. both of v.·hicl1 are available at the 
beginning of l\"ev.1on iteration n + 1. That is. y = 
F(cf> ")is a completely explicit computation. Thus. 
the computations for each grid point sectioning of 
y can be performed simultaneously. It follows that 
all the residuals needed to approximate the Jaco­
bian can Le computed concurrently. 

~T e see that there exists the potential for sen'ral 
levels of significant parallelism in PR.E\11\. 1\"ote. 
however, the hierarchy is not strict. For efficiency. 
the Jacobians are often reused. Thus. a significant 
number of residual evaluations occur which are 
not part of Jacobian evaluation. In the nitrogen 
combustion simulation we used for testing, one 
third of the residual evaluations occur indepen­
dent of Jacobian evaluation. This suggests that if a 
single level of parallelism is to be exploited. it 
should be done at the level of residual evaluation. 

3.2 Specific Implementation 

The control flow of PHE\11.\ can be ,·iewed as in 
Figure 3. The CHL\11\.J:\ hTERPHETEH [5 J and TR'-\!'­
PORT PROPERTY FITTJ:\G CoDE [ 6 J are each external 
modules which access databases to create ··link­
ing" files to be read during execution. The 
CHF:Ml\.1:\ and TRA:\SPORT libraries require access to 
many problem-specific constants, such as the 
molecular weights of the species. In addition, each 
library requires some scratch space, or memory 
locations, used to store values needed only tempo­
rarily. Tracking the use of these scratch arrays is 
significant when analyzing for parallelism. 

Because the libraries are general purpose and 
used in a wide variety of applications, these work 
arrays must be of arbitrary size. Thus, a ''dy­
namic" memory allocation .scheme is used. Both 
CHEMKI:\ and TRA:\SPORT implement dynamic 

I ('j,,n,I..Jn lu!orpr<ln I 

I 
L 
l 

I I'• rlo1111 tlloulilw<l \t·\\l<>lo-JI,!pli,<JII I L ]!, l1111 ,oppru'\lllloll< '"IIJII(m I 
l 

I J 
j 

'-------i-'' 
I 

lonl-lo ,,,jnli<!IIII•>T f,,,u,l 

FIGL"RE :i Flow dial!ram for PHL\11\. The nonlinear 
discretized sy:-;tem is iiohcd w;inl! the modifit>d ."\ew­
ton-Raphson algorithm. Should tlw :\e\\lon all!oritlun 
fail to coiiYergc, a u~er-specilied llUIJIIwr of anificial 
time integrations are perfornwd to impnm· tht· condi­
tioning of the nonlinear system. The time ~tq>pinl! alf!o­
rithrn also uses the .\"e\\1011 method. 

memorv allocation in a wav common to scientific . . 
programs written in Fortran. For t>ach data typt> 
employed by one of the program libraries ,'charac­
ter. integer. double-prt>cision floating poinli. a 
single. large array is can·ed into ,.;ections by a se­
quence of integer offsets computed at run-time. 
The indices are computt-d during initialization 
and stored in COMMON blocb for future u,.;e. Tht-v 
are never modified after initialization. The work 
arrays for each of the libraries are passed as argu­
ments down the calling tree. A COMMON block for 
each of the libraries encapsulates the pointers into 
their respective integer and floating-point work ar­
rays. It is important to nott:> that the COMMON 
blocks for a particular library are declared only iu 
procedures within that library. 

Returning to Figure 3, we see that each time the 
outer control loop iterates, either the l'\t>wton 
solver or time stepping is invoked. The l'\t-wton 
solver is always inn>ked first: time stepping is only 
performed when the 1\"ewton solution phase fails 
to converge. A single Kewton iteration consists of 
the following steps [2]: 

1. Calculate the residual (fun) 
2. If necesssary, evaluate (jacob) and factor 

(dgbco) the Jacobian matrix 
3. Backsolve (dgbsl) 

Because chemical computations involve only a 
grid block and its immediate neighbors (Equation 



11 ), the chemistry is local. As the residual evalua­
tions are independent of one another_ no concep­
tual reason exists that the residuals cannot be 
computed efficiently in parallel. 

Computin~ the residual requires numerous 
chemical and thermodynamic property e\·alua­
tions at each grid point. The computation has 
three distinct steps. First, the transport coeffi­
cients are evaluated, if necessarv. Then the diffu­
sion velocities are computed. Finally, the chemi­
cal kinetics terms are evaluated and the residuals 
of the governing Equations 2. :3, and 7 are deter­
mined. 

However, the specific implementation of the 
computational methods hides some of the poten­
tial for parallelism. Concurrent evaluation of the 
residuals is hampered by the presence of shared 
local variables and work arravs. The chemical and 
thermodynamic computations for each grid point, 
which we also identified as independent in princi­
ple, cannot be executed concurrently either. In 
addition to shared local variables and work ar­
rays, the nearest-neighbor communication of 
density and area data forces a sequentializing 
synchronization. The next section describes tech­
niques to overcome some of these problems. 

4 PROGRAMMING TECHNIQUES AND 
OPTIMIZATION 

In this section we describe the program transfor­
mation techniques we applied to the specific im­
plementation of PRDIL'\ and the program analysis 
that was necesssary to do this. \Ve compare these 
techniques to those applied in other application 
programs and discuss some implications on pro­
gramming languages, compiler design, and soft­
ware engineering issues. 

4.1 Transformation and Analysis 
Techniques 

Tpe basic program modification that enabled 
multiple processors to participate in the parallel 
e~ecution of the program was to declare a number 
of time-consuming loops to be executable concur­
rently. Simply speaking, in order to do this we first 
had to recognize that the iterations of these loops 
were potentially independent, then perform some 
transformations to make them truly independent, 
and finally insert a directive informing the com­
piler that the loops shall be executed in parallel. 

By far the most important transformation in 
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this process was the privatization of arrays (Fig. 4) 
that are used as temporary work spaces within 
loop iterations. In the original program all such 
loop iterations use the same array(s) for storing 
temporary results. In a parallel execution of the 
unmodified program, every iteration would have 
to wait before using this array until the previous 
iteration is done using it, which effectively would 
serialize the loop. However, by giving each itera­
tion a separate copy of the array, we can avoid 
these dependences. The difficulty of this transfor­
mation is in making sure that it is a truly tempo­
rary array where no array element passes informa­
tion from one loop iteration to the next. This is 
usually done by an array definition/use analysis 
of the program. 

An additional technique-the parallelization of 
reduction operations-we have found to be appli­
cable in our program. However, we have not done 
this because we exploited an outer level of paral­
lelism. The transformation will become important 
on machine architectures that support the exploi­
tation of multiple levels of parallelism, e.g., ma­
chines that have cluster structure so that the outer 
parallel loops can be spread across clusters while 
the inner loops exploit the parallel resources 
·within the cluster. 

For both the definition/ use analysis and the 

real temp(kk), c(jjl 

do j = 1, j j 
do k = 1, kk 

temp(k) k * b(k) 
end do 

do k = 1, kk 
c (j J c (j ) + temp (k) 

end do 
end do 

real temp(kk,jj), c(jj) 

doall j = 1, j j 
do k = 1, kk 

temp(k,j) k * b(k) 
end do 

do k = 1, kk 
c (j) c (j) + temp (k, j l 

end do 
end do 

FIGURE 4 Privatization of arrays. In the second code 
fragment, each iteration of the outer loop is provided a 
separate copy of work array 11 temp 11

• 
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detection of independence of the loops we had to 
analyze the program interprocedurally. Often. ar­
ray sections were defined (i.e .. written) in one sub­
routine and used (i.e .. read) in another subrou­
tine. Even more difficult was the analysis of 
accessed array sections that in,·oln·d prowam in­
put data. Sometimes it was only knowledge of the 
application that could ensure that. in all reason­
able executions of the program. input nuial .Ies 
would relate so that the definPd array runges 
would always cover the ust->d. rangt~s or that tlw 
ranges accessed in differellt loop iteration" would 
never overlap. 

The dvnan1ic nwnwn· allocation ;.cheme. lllP!l-. . 
tioned in Section .3.2. furtlwr complicated the "it-
uation. "~e had to track array ,.;uiJ,LTipb which 
were themselves subscripted array elenwnts in or­
der w detennine which ;.ectiuu;. uf the original. 
large array are read or written. Since the ,.;ubsnipt 
arravs are read-onh· after their initialization. it i" . . 
possible to determine temporary arrays and paral-
lel loops from the analysis of the program code. 
However, this process is tedious and it makes the 
interesting question of whether "uch techniques 
could be automated in a compiler quite chal­
lenging. 

4.2 Tools, Languages, and Programming 
Methodology 

A profile facility that identified the mo,.;t time-con­
suming loops in the program was the basic instru­
ment for our program analy,.;i,.;. In addition. the 
most helpful tool was an array section analysis 
facilitv that determined the mTm· sections read . . 
and written in each subroutine and loop. This in­
formation was then propagated up the calling trPe 
so that the summan· of all accessed arrm·s could . . 
be seen at each loop. 

The actual transformations were done in a con­
ventional text editor. Compared to the time con­
sumed by the program analysis this task was not 
overly expensive, although the mechanics of array 
privatization could be somewhat tedious as de­
scribed below. 

w~ e restructured our program by explicitly 
specifying parallel activities. rather than changing 
the program so that the compiler could recognize 
the parallelism automatically. The language we 
used is Fortran 77 plus directives. The only direc­
tive we used is CNCALL, which specifies that the 
loop shall be executed in parallel. Private arrays 
were specified in two forms. both using available 
Fortran 77 constructs. One form is to declare the 

arrav local to a subroutine that is called iibidP the 
parallel loop and tlw other is to Pxpand tlw array 
bv one dimension and index this dimen,.;ion with 
the loop variable. The second form is u,.;ually 
called array expan,ion. Sonwtinws. ,.;ubroutiiw 
parameter lists had to lw modilit->d in ordn to pa,;,.; 
expanded arrays from calling to the called routi!H-'. 

Common exten,.;ion,.; to Fortran ?? are coH­
structs for dynamic array dt->daration. Arrays of 
arbitran· size and dimension can I w declarPd lo­
cally. within a ,.;ubprogram. Had we tbt'd thi,.; ex­
tension. we would not Inn e had to modify any of 
the subprogram parametPr li,;ts. lea,·ing the 
CHE\11-.:L'\ and TH \'\:-l'OHT librari<',.; J,achvanl com­
patible. 

The availalJilitv of a dirPctin' that dedan·, \uri­
abies private to a loop \HHild haYe bet•n Yery u,;e­
ful for our purpo,es becau"e it would ha\ e allowt->d 
us to lean' tlw existing program text unchanged. 
Such a directive would al,.;o hm·e to "upport tlw 
priYatization of a partial array. \\·e encountert->d 
situations where part of an array was read-only 
and another part was used for tt>mporary storage. 
To handle this situation we split the array,.; into 
different parts and prinHized the temporarily tbed 
sections. The need for a PRIVATE dirPctiw is an 
important conclusion of our work. and it corre­
sponds to findings of related work. 

The method of program optimization we haYe 
applied consists of idemifying the tinw-consuming 
loops in the program. analyzing array section" 
that are read and written in the"e loops. and de­
ri,·ing privatizahle and independent array ,.;ec­
tions. The parallel loops in our program could 
then be determined from thi,.; information. The 
actual transformations neces:oary to express the 
parallelism were ,.;traightfm"\\·ard. Thi,;; program­
ming scheme seems generally applicable and may 
be used as a programming methodolOf.'Y that can 
be applied in a systematic way. Altlwul!h we haw 
found this to be u;;eful for optimizing other pro­
grams as welL we should note that there are time­
consuming optimization steps for which we don"t 
know generally applicable methods. Such steps 
are the gathering of knowledge about the applica­
tion that goes beyond the analysis of the program 
text. ~·e haYe found this to be important in some 
cases for our program optimization. 

4.3 Comparison to Findings of 
Related Proiects 

In a related project of optimizing application pro­
grams for parallel computers similar results were 



found. Such projPct,; includt-> tlw Ct->dar Fortran 
pnljPct [1:3. 1-i, which wa,; completf'd at our cen­
tf'r in 1 <JlJ:2. and the follow-on Polari;; projPct 
[15~. Both projPct,; Hwlit>d tran,;;formation tPch­
niqut>,.; that arf' rweded to iipt'f'd up real pr·o;rrams. 
This \\·a,;; dorw by hand parallt'lizin;.r a suitf' of 
codes. indudin;.r the Pt'rfPct Benchmark,;; and 
somP applications of rt'lenllH't' to the user,;; at tlw 
1\"ational Center for Super('omplltt'r Applications 
at dw CnivPrsit\ of Illinois. 

Tlw most important transformation,; idt'ntifit·d 
wert' tlw same as in our projt't'l. :\rray privatiza­
tion was most t'ffectivf'. followt->d hy the parallt->1-
ization of reduction operations. Inwrproeedural 
definition/ usf' analy,;;i=- wa,.; a crucial techniqtw to 
detf'rmirw tlw applicability of the transformations. 
The transformations ~-it->ldt>d fully paralll-'1 loop,; 
whosP iteration,; could be t:"xecutt'd indept-·ndt·rHiy 
on multiplP proce,.;sor,.;. 

Our application is relt'nlllt for thest' otlwr proj­
ects in that it confirms tlw rf'iittlh and thu;; show,; 
that they carry over from tlw samplf' lwnclunark 
suite to new prol!ram,;. Orw difff'renct' St't'm;; 
worth notinl!. Tlw ultirnatt' l!oal of the aiH•\e-re­
lated projeeh was to lind tf'dmique,.; that can be 
automated in a paraliPiizinl! compiler. and in fact 
most of the transformation,; identified wert-> re­
ported to be automatable. In our pro;.rram we havP 
found that somf' crucial information for determin­
ing the applicability of the parallt'lization tech­
niques is known only from the input files and thu,; 
is not availablE' at compile tirnP. Althoul!h then' 
are compilation technique=- that are ablt:' to paral­
lelize such situations at run-time [161. our find­
ings indicate that it will tw at lea,.;t difficult to 
detect the paralleli,;m automatically. A full di,.;cu,;­
sion of this point is beyond the ,;cope of thi;; article 
and is the object of future project;;. 

A related approach to methodologit's for paral­
lel programmin;.r is described by Eil!ennumn [ 171. 
Our findinl!,.; lar;.rPly al!ree with his approach. One 
difference is that he envisions a '"program-level'" 
optimization. in which all nf'ce,;sarv information 
fL!r transforming the prol!ram can. be l!athered 
from the program text. As we have mentioned. for 
optimizing PRDIL'\ therf' was sometimes a need to 
use knowledge about the mathematical and physi­
cal properties of the problem that could not easih· 
be gathered from t~w spf'cific implementation o.f 
the. program. 

Our findings can also be compared with the 
parallel programming methodology that envisions 
the design of application programs from opti­
mized libraries. The parallelism would be hidden 
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in thf'se libraries and the pro/!ramrninl! method for 
the user of these libraries \\·otdd be no different 
from sequential prol!nmuninl!. A further advan­
tage of this approach is that the libraries could be 
optimized specifically for each machine and the 
application program would be portable. Because 
PRDII\ uses ;;tandard libraries. it would be a natu­
ral candidate for such an approach. However. we 
have found that exploiting parallelism \\·ithin the 
libraries does not lead to significant speedup. The 
parallelism we exploitt'Cl is at a higher loop level 
and the libraries them;;elves executt' on one pro­
cessor each. 

5 RESULTS 

"·e ;.rathered performance data on the Alliant 
FX/80 for four version,; of PRL\11.\: 

1. Original Sequential-the original PR[\11\ 
code compiled with ,;equential optimiza­
tions (fortran -og:l 

2. Original Parallel-the oril!inal code opti­
mized for parallel execution by the FX/ 
FORTRAl\' automatic compiler (fortran 
-Ogc) 

3. Optimized Parallf'l-Oril!inal Parallel with 
explicit parallel con,.;tmcts added. as de­
scribed in Section -i 

4. Optimized Sequential-Optimized Parallel 
compiled for sequential execution (for­
tran -Og) 

The profilin§! option (-pgi was disabled for these 
experiments. "·e also excluded vectorization opti­
mizations from our performance tests because the 
vectors were too short to be usd'ul with the FX/80 
architecture. Enabling vectorization consistently 
resulted in greater execution times. 

The performance improvement can be seen in 
Figure 5. The third group of bars shows total exe­
cution times for the four versions of PRE\11\. "-e 
see that the Optimized Parallel version of the code 
executes approximately 4.4 times faster than 
Original SequentiaL The added overhead of the 
manual parallelization, seen by comparing the ex­
ecution time of Optimized Sequential to Original 
Sequential, is minimal (less than 0.3%). Auto­
matic compiler optimizations, isolated in the Orig­
inal Parallel version of the code, are responsible 
for about half the performance improvement. This 
result can also be seen in Figure 6, which exhibits 
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FIGURE 5 Comparative performance of four wrsions of PHE\IIX. Times were obtained 
using an eight-processor Alliant F.X./80 with the FX/FORTRA:\' parallelizing compiler. 

X 10-3 

Ideal 

~08 
:::. 
" E 
i= 
1l 0.6 
"' a. ., 

0 Optimized Parallel w 0 

" 
0 

~ 
~04 0 
.E 

0 

0 

X X X X Original Parallel 
0.2 0 X 

X 
X 

0 
0 2 4 5 6 10 

Number of Processors 

FIGURE 6 Inverse execution times versus numLer of processors. Times for oril!inal 
and optimized parallel versions of PHE\11.\ were oLtained on an Alliant FX/80. An ideal 
performance improvement line is included for comparison. 
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Table 2. Elapsed Execution Times of Four Versions of PRE.~nx 

Original Original Optimized Optimized 
Sequential Para lid Sequential Parallel 

Performance 
Sec. % Sec. % Sec. % Sec. % Improvement 
(a) (b) (c) (d) (c)/(d) 

Residual 
Evaluation loop 5,472 63.2 2.28::3 5-i. 7 5.-i30 61.9 920 47.1 5.9 
Transport loop 1.651 19.1 1.118 26.8 1.7.1~ 20.0 296 1.5. 1 5.9 
Diffusion loop 170 2.0 82 2.0 167 1.9 28 1.4 6.0 
Other chemistrv ~"7 ::>. 0.0 -i2 0.0 "7"7 0.0 40 0.0 1.9 
Total chemistry 7.350 8-i.9 .3.52.3 8-i.5 7.-i09 8-i. -i 1,28-i 65.8 5.8 
Linear algebra 1.15:3 1:3.::3 .S-iO 12.9 1.180 1:3.5 518 26.5 2.3 
Two-point BVP 
Solver 68 0.8 .37 0.9 86 1.0 60 3.1 1.4 
110 and OS 1.0 70 1.7 98 1.1 89 4.6 1.1 0.2 
Total 8.6S8 100.0 '+.172 100.0 8.77:3 100.0 1.9.')1 100.0 4.5 

.Yote. The parallt·l ver~ion:""o wen· t•xeciJtt-... d u:-;lrJf! t•i,!.dlt pnwt·~ . ..;or~. 

the inver:-;e execution time,; uf the parallel ver:-;ions 
of the code for varying numbers of proees:-;ors. 

,,.e separated the linear algebra and chemi:-;try 
computations in Figure .5 to demonstrate how the 
nature of the Optimized Parallel version of the 
program has changed from dw original. w-hile 
performance of the chemical computations im­
proved significantly. by a factor of almost 6. dw 
gain for the linear algebra routint>,;. which we wPre 
only able to parallelize partially. was a more mod­
est 2.:3. Linear algebra commanded ouh· about 
1~3% of the Original Sequential execution .time. In 
the Optimized Parallel version linear algebra is re­
sponsible for about 27%. As the number of pro­
cessors grows. linear algebra computations will in­
creasingly dominate execution tinw. 

Fornwrly the chemistry wa:-; so expensivP that 
the time spellt in linear algebra could be ea:-;ily 
i~mored. l\'ow that the clwmistry can be madt> rt:>l­
atively cheap. the algorithmic t radP-off,., havt' 
changed. Alternativt:>;; to tllf' overall solution strat­
e~· should be reviewed. Some discussion of paral­
lel methods for solving two-point boundary vahH' 
problems was provided by "right [18]. The L\­
P\CJ-.: effort [ 1 <} J offers parallel versions of banded 
system solvers. exploiting parallelism in multiple 
right-hand sides and blocking algorithms. "' e did 
not. however, obtain any performance improve­
ment when we replaced the LL'\I'v:~-.: linear algebra 
routines with their L\P,\<:1-.: counterparts. PHE.\11.\ 
has no multiple right-hand sides to exploiL but 
blocking should have yielded some improvement. 
The reason it did not do so is still under investiga­
tion. 

Table 2 shows the execution times of the four 

versions of PHE\11.\. The three loops we manually 
parallelized constitute nearly all the significant 
chemical computations in the code. As these loops 
are explicitly parallel in the Optimized Parallel 
version of the code, we have successfully modified 
the implementation to express the parallelism in­
herent to the computational method. However, 
the execution times of these loops exhibit only a 
sixfold improvement on eight processors. "-e be­
lieve this is largely due to an imbalance in the work 
load. The program spends much of its time work­
ing with a 19-point grid. If we assume each itera­
tion of the loop over the grid points executes in the 
same amount of time, 19 iterations are completed 
in the time that the eight processors could execute 
2·L This roughly 79% efficiency would reduce the 
performance improvement factor to 6.3. A further 
source of inefficiencv is the limited memorv band-. . 
width of the FX/80 machine, which provides only 
a four-way path between the eight processors and 
the shared memory, and penalizes applications 
with poor cache hit ratios. Factoring in these ineffi­
ciencies models the measured performance with 
good accuracy, so that we can characterize the 
scalability of our application as follows. 

The PHDIIX application runs with reasonable 
efficiency on machines with small numbers of pro­
cessors. It is potentially scalable to larger numbers 
of processors for the solution of larger problems 
with significantly more than 65 grid points. As the 
chemistry component of the application speeds 
up, the linear algebra part becomes speed limit­
ing. We have not investigated possible improve­
ments to this component of the application; how­
ever, it seems possible to resolve this limitation 
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through appropriate changes in the used algo­
rithms. 

6 CONCLUSIONS 

We performed a detailed analysis of the mathe­
matical model used in PRE!\IL\ coupled with a 
study of the computational methods to gain a pic­
ture of a hierarchy of parallelism inherent to the 
problem being solved. A manual analysis of the 
code followed, from which we determined to what 
extent the parallelism inherent to the implementa­
tion was expressed in the original version. \\"e then 
chose an outer loop level appropriate to our target 
machine and applied a handful of manual paral­
lelizations. In all, we modified less than 1 00 lines 
of code. The result was a greater than fourfold 
improvement in the simulation· s execution time 
on an Alliant FX/80 with eight processors. 

In this work we have found that the PRE\11.\ 

combustion chemistry application nms with rea­
sonable speed on small numbers of processors 
and potentially scales up to more highly parallel 
systems. The most important program transfor­
mation to achieve our performance improvement 
was the privatization of arrays. To determine the 
applicability of this transformation we had to do a 
careful, interprocedural analysis of defined and 
used array sections. The available language con­
structs were not always adequate for expressing 
dynamically sized loop-private arrays. and we 
suggest that such constructs be included in future 
language designs. The method used for optimizing 
our program seems generally applicable and. with 
the provision of supporting tools. we beline they 
represent a step toward the understanding and 
improvement of the process of optimizing large 
application codes for high-performance com­
puters. 
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