
Parallel Performance of a Combustion
Chemistry Simulation

GREGG SKINNER AND RUDOLF EIGENMANN

Center for Supercomputing Researrh and DPI'Plopment, L'nin•rsitY of Illinois at L'rbana-Champai!(n, 1308 W. Main St.,

Urbana, IL 61801; e-mail: {skinnPr, eigPnmann}(il rsrd.uiui'.Pd11

ABSTRACT

We used a description of a combustion simulation's mathematical and computational
methods to develop a version for parallel execution. The result was a reasonable
performance improvement on small numbers of processors. We applied several impor­
tant programming techniques, which we describe, in optimizing the application. This
work has implications for programming languages, compiler design, and software
engtneenng. -~ 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

i\umerical sinwlation,:; of reactinc· flow are widelY
used for problems such a,; controllint!' combu,;­
tion-w~nerated pollutants. rt>ducint!' knockin~ in
internal combustion ent!'ines. studyint!' the envi­
ronmental impact of compounds emittf'd from
combustion. and disposin~ of toxic wa,:;tes [11.
These simulations require extensin,• computation.
~lany can only be served by the advanced capa­
bilities of a parallel supercomputer. In this article
we describe an effort to optimize tlw parallel per­
formance of a reactive flow simulation written for
serial execution. Specifically. we examine PHntL\

[2]. which simulates combustion. an important
subclass of reactive flow.

This work is not rtf"Cl'ssarily reprt>st•ntativP of thP positions
or policies of tht~ anny or tht~ ~ovt~rnnH·nt.

Received :\olav 1994
Accepted De;·ernber 1994

© 199S by John Wiley&. Sons. Inc.
Scientific Prograrnrnin/!. Vol. 4, pp. 127-1:39 !199.3)

CCC 1058-9244/9.5/0.30127-1.3

Reactive flow modelintr problem;;; are governed
by equations conserving nw;;;;;. ener~·· and mo­
mentum. They are coupled with a hydrodynamic
system driven by the ener~· released or ab;;;orbed
from the chemical reactions. Re;;;earchers seek to
understand the chemical kinetics behavior of large
chemical reaction svstems and the associated
convective and diffusive transport of mass. mo­
mentum, and energy.

Complicating the numerical simulation of reac­
tive flow is numerical stiffness. Stiff equations
have one or more rapidly decayin~ solutions and
usually require special treatment. In the context of
chemical kinetics Cu11iss and Hirschfelder [3j fir;;t
identified the problem of stiffness in ordinary dif­
ferential equations in 1952. In reactive flow, stiff­
ness often arises as a result of the differing time
scales of the chemical kinetics and the hydrody­
namics [4 J. Chemical reactions occur on the order
of picoseconds, while the convective flow occurs
on the order of seconds. Stiffness also results
where large temperature gradients occur. To over­
come these numerical difficulties researchers of­
ten employ time-implicit algorithms and adaptive
gridding schemes.

A group at Sandia l\'ational Laboratories has
developed a number of software tools that facili-

128 SKINNER AND EIGE:\"~1A:'\N

tate simulation of reactive flow. Three basic pack­
ages lie at the heart of their effort. The CIIE\IKI'\
library [5] is used to analyze gas-phase chemical
kinetics. The TRA'\SPORT [6 J library is used for
evaluating gas-phase multicomponent transport
properties. SL RFKL\ [7] is a package for analyzing
heterogeneous chemical kinetics at a solid-sur­
face-gas-phase interface. These three combus­
tion libraries undergo continual revision as part of
an ongoing effort to provide the numerical com­
bustion communitv with standardized software.
This approach is successful because the governing
equations for each reactive flow application must
share a number of features. A general discu,.;sion
of this structured approach to simulating reactive
flow is provided by Kee and ~Iiller [1].

Several codes have been built bv Sandia to ex­
ploit CHEMKI'\, TRA\SPURT. and SLHFKL\. One of
them is PRDIIX, which is used to predict the
steady-state temperature and species concentra­
tions in one-dimensional burner-stabilized and
freely propagating premixed laminar flames. This
combustion is chemically interesting because the
large energy release associated with burl!ing gives
rise to high temperatures and many exotic chemi­
cal species. The high temperatures resulting from
the transfer of chemical energy to heat lead to
rapid expansion of the gases which in turn affect
convective flow.

The goal of this article is to describe experi­
ences in an effort to improve the performance of
the PREMIX application. The machine architec­
tures we considered are shared memory multipro­
cessors with a modest number of CPCs, such as
the Alliant FX series, the Convex C2 series. and
the high ends of the Sun SP ARC station, HP
Apollo, IB.\1 RS/ 6000, and Silicon Graphics Iris
series. Such machines are becoming less expen­
sive and more widely available.

Only one version of the Fortran 77 source for
PRE.'-IIX is distributed by Sandia. This code exe­
cutes without significant modification on all ma­
chines from a personal computer to a Cray. To
ensure the software can still be used by the large
established user base, modifications to the code
are strictly backward compatible, i.e., the subrou­
tine interfaces are fixed. Our main concern .. then,
was with extracting parallelism from the chemical
and thermodynamic computations performed by
the CHEMKI'\ and TRA'\SPORT libraries.

We approached PRE!\tLX with a simple goal: Re­
duce the actual time a program requires to pro­
duce a solution to a given problem through effi­
cient use of multiprocessing hardware. To

accomplish this .. independence must be present in
the code so that different subproblems can be ex­
ecuted by separate processors concurrently. Often
the desired independence. if it exi;;ts, is apparent
from the mathematical description of the physical
problem. This conceptual independence may not.
however, be expressed in the actual code. Two
factors contribute to the absence of concep.tual
independence in the final program: (1) the com­
putational method chosen to approximate the
mathematical problem may sPquentialize formerly
independent tasks: !2) the specific implementa­
tion of the computational method adds unnece"­
san· svnchronizations.

"'e therefore make a reasonably ,;harp di,-tinc­
tion between the mathematical model of a prob­
lem, the computational method for its solution.
and the particular implementation of the method.
"'e begin in the next section with a brief 0\en·iew
of PRBIIX. In Section 3. we obsen·e how well the
original ,·ersion of PRE\IL\. expresses parallelism
inherent to the mathematical model and compu­
tational method. In Section -i we describe the pro­
gram transformation techniques applied to pro­
duce an optimized version of PRE\tL\.. In Section 5
we exhibit the resulting performance improve­
ment, and in Section 6 we offer the conclusions
drawn from this work.

2 THE PREMIX APPLICATION

PRE!\IIX is a typical example of a library-oriented
production Fortran code. It is a flexible prog-ram
developed to analyze general problems im·oh·ing
combustion of premixed gases in a flame. PHE\11\.

consists of a driver and four librarie:-;: CHE\IKI'\ [51.
used to analyze gas-phase chemical kinetics:
TRA'\SPORT [6], used to evaluate gas-phase multi­
component transport properties; T\\ OP'\T [8], a
two-point boundary value problem solwr: and
LIWACK [9], a popular numerical linear algebra
package. Each is a standardized, extensible li­
brary intended for use on a wide variety of plat­
forms. The code, approximately 30.000 lines of
standard Fortran 77. is highly modular, robusL
and portable. The program can be stopped at any
of several checkpoints and restarted with a new
configuration.

Our testing environment was a shared memory
MI~ID machine, an Alliant FX/80 [10] with eight
processing units. The processors are register
based with chained functional units and memon'
port. The computational processors are con-

CO.\IBLSTIO:\i CHDIISTRY SIMULATION 129

-{

ckinit ~

t
1 ckindx ~

po1n 1 . . 0 ac1n1t 1

of hers ...

driver rn
pre~ix inA

-f
newton ~61

l . 48 tvopnt 2'!I02 t1astp J',tt

others ...

d 20
jacob ~T.,~ ______s-- copy 21

~fun~~Jj.

~nevton3!lo!.7

others ...

{

dasum:.,.,

-f
ida•ax ~4 J 43

dgbfa ~~1 dscal iu-o
d b 6'>'• d 3 g co 21

0

axpy 12Ji466

dscal H 2

ddot ~HtJ
daxpy 1t·o7

dgbsl ;i}.:~ --daxpy ;~~ .. ~ 13
of hers .

FIGURE 1 LxPcution protile of sequential program. Times were obtained on an Al­
liant FX/80 with sPrial optimizations lcompilo· command: fortran -Og -pg). Elapsed
times (in sPconds) are superscript•~d and the number of evPnb is subscripted. Procedure
times include time spent in eallt>d subpron·dun•s. Total elapsed time is 9 .. 305 seconds.
The two separate invocation~ of ··fun·· are protiled together in Fi~o,'Ure 2.

nected by a concurrency bus. which keep,.; the
overhead for concurrency small. A ,.;equential pro­
file for an execution uf the nitro~en combustion
simulation mentioned earlier appears in Fi~ures 1
and 2. For the teiit problem the prowam tracks :3-t
chemical species and 1;) 1 chemical reaction,.;
throu~h three simulated burns. The one-dimen­
sional grid bein~s with 19 grid points and i;; ulti­
mately refined to 61 wid points.

The program ~pend,.; most of its execution time
in routine,.; from tlw CI!E\IJ-..:1:\ and TH \\sPOilT li­
braries. Approximately 6.)'l'o of tlw st>quentiul ex-

ecution time is consumed performing chemical ki­
netics computations in CHF:\IJ-..:1:\ routines ckytx,
ckmmwy, ckwyp, ckrat, ckhml, ckcpbs,
ckrhoy, and ckcpms. (These subprogram
name~ are defined in Table 1.) Another 20% of
the execution time is consumed by transport com­
putations in TRA:\SI'ORT routines mtrnpr, ckytx,
mcadif, mcedif, mceval, and mcacon. Soh·­
ing systems of linear equations consumes most of
the remaining time. The TwoP:\T library simply
controls the flow of the computations and thus
contributes little to the execution time.

_ · IUo) ·)t;<,4 -t
ckytx , .. .,,,

-mtrnpr :
1
]] n~cad1f 2'AJt. --mcedlf 2., 4Jt; --mceval =~ziH

me aeon~~ •o --mceval ;~lo

r- ckhml/.~~~0
r-- eke pbs 21~co -- ckcpms ~\~~t;o

~ ckcpms i.~~co
-temp i,",A

FIGURE 2 Execution profile for procedure fun.

130 SKIN~ER A:\'0 EIGEJ\;MA.'\L\'

Table 1. Symbols Appearing in the Premixed Flame Equations 1-4.

Symbol

X

T
M
Y,
A

p = pW/RT
h,

p
u
R

QuantitY

Spatial coonJinate along flow direction
Temperature
Mass flow rate (indt>pendent of~-)
Mass fraction of the kth species
Thennal conductivitY of the mixture

:'11ass fraction times diffusion velocity of the
kth species

Mass density
Specific enthalpy of the kth species
Constant pressure heat capacity of the
kth species
Constant pressure heat capacity of the
mixture
.\1olar rate of production of the kth
species per unit volume
.'vlean molecular weight of the mixture
Diffusion velocity of the kth species
Molecular weight of the kth species
Cross-sectional area of the stream tube
encompassing the flame
Pressure (constant)
Velocity of the fluid mixture (constant)
Cniver~al gas constant

Subroutine fun
Subroutine fun
SubroutinP fun
SubroutinPs mcmcdt,
mcacon, mceval
Subroutines mdifv,
mcatdr, mtrnpr, mead if,
mcedif, mceval, ckytx
Subroutine ckrhoy
Subroutine ckhml

Subroutine ckcpms
Subroutines ckcpbs,
ckcpms
Subroutines ckwyp,
ckrat
Subroutine ckmmwy
Read from input
Read from input
Subroutine area

Read from input
Read from input
Read from input

i\'ote. More detail is available-from the Cllf:\fJ.;J\ and TR\:\,PoRT documentation [.S. 6'.

3 DESCRIPTION OF THE ALGORITHM . dT 1 d (d8 1 A ' dT
Jf -d - - -d AA -d + - L (pAZk)c"" -d

X Cp X X Cp k=l X

We first give a description of the mathematical
model and the computational method, which as­
sisted us in discovering which level of outer loop
parallelism is best to obtain a granularity suffi­
cient to saturate available processors with reason­
ably sized parcels of independent work [11 J. A
mathematical description of the general fJroLlem
appears in several references [2]. ·we review them
briefly here. w·e then consider the computational
methods employed to solve the combustion prob­
lem and explore the potential for parallelism in
these methods. Finally, we describe the particular
implementation of these methods and explore the
remaining potential for parallelism in the actual
program.

3.1 Mathematical Model

PREMIX computes the steady-state temperature
and species concentrations in one-dimensional
burner-stabilized and freely propagating pre­
mixed laminar flames. The steadv state is defint>d
by the following conservation equations [2]:

~~1 = puA = constant (mass), (1)

(2)

(3)
(k = 1, K) (momentum).

where K is the number of chemical species. Thus,
K + 2 conservation equations govern the steady
state of the system. The symbols appearing' in
these equations are defined in Table 1.

The chemical kinetics computations occur in
evaluating the molar rates of species production
Wk, the specific form of which is determined by the
input data set according to the equation,

A.

2: llk,qi (...)
i=l

where the vk.i are user-specified inte~er stoichio­
metric coefficients and the q1 are the computed
reaction rates. Determining the value of q1 is com­
putationally intensive, consisting of numerous ex-

ponentials, logarithms. and reductions. both mul­
tiplicative and additive.

The heat generated or absorbed by these reac­
tions strongly affects the gas flow. In Ptu:wx., the
chemical kinetics are computed first from the in­
put data; then the hydrodynamic system governed
by conservation Equations 1-3 is solved in the
presence of the chemical reactions.

Equations 2 and 3 are discretized using finite
difference approximations. A grid is numbered
from 1 at the cold (input) boundary to J at d~e hot
(output) boundary. The convective ter~s. (.U dTI
dx) from the enere:,ry equation and (JI dl//dx)
from the momentum equation, are modeled by ei­
ther first order windward or central differences as
necessary. The other derivatives are approxi­
mated bv first and second order central differ­
ences. The diffusive term of the species conserva­
tion equation. dl dx(pAZk). is approximated in the
same manner. Appropriate boundary conditions
are implemented for both the cold and hot bound­
aries. yielding a two-point boundary value prob­
lem. (See Equations 10-21 in Kee eta!. [2j and
discussion therein for a detailed description.) The
nitrogen combustion problem is solved first using
windward differences for the convective terms.
Then the initial solution is used as a starting con­
dition for a run using central differences for the
convective terms.

The finite difference approximations reduce
the stiff two-point boundary value problem to a
system of nonlinear algebraic equations. The
boundary value problem is modeled first on a
coarse mesh. ~-hen necessary, new grid points are
added (nonuniformly) in regions where the solu­
tion or its gradients change rapidly. Assuming a
unique solution exists. this process ends when the
solution has been resolved to a specified degree.

The nonlinear system is solved using the modi­
fied 1\"ewton-Raphson algorithm. "-e seek avec­
tor ¢ which satisfies

F(¢) = 0. (5)

We begin with a (usuallv poor) approximation<$ to

¢: It is clear that F(<$) i.s not zero. The quantity

y= F(<$) (6)

is called the residual.
In order to obtain a block-tridiagonal structure

in the Jacobian, the mass flow rate, JI, is treated
as an independent variable JI1 at each grid point,

CO~IBCSTIO:\ CHEMISTRY SI~ILLATIO:\ 131

and the additional equation stating that they are
all equal,

() = 1' ... , J) (7)

is added with a suitable boundary condition. This
mass conservation equation, coupled with the en­
ergy conservation Equation 2 and the K equations
of momentum conservation (3) yield a total of K +
2 equations. The approximate solution vector cb
has the form,

(8)

where

Equation 9 corresponds to the independent vari­
ables for temperature, species concentration. and
mass flow rate for each grid point, j.

The modified 1\"ewton-Raphson algorithm pro­
duces a sequence {</> nJ,

In the equation, 11- is a damping parameter and J is
a finite difference approximation to the Jacobian
matrix-. The sequence converges to the solution of
the nonlinear equations F(<f>) given a sufficiently
good starting estimate ¢ 0 '. It is rejected if it does
not converge.

Should the 1\"ewton algorithm fail to converge, a
user-specified number of artificial time integra­
tions are performed to improve the conditioning of
the nonlinear system. The discretized time inte­
gration is again a system of nonlinear equations.
The modified 1\"ewton-Raphson method is em­
ployed to solve the nonlinear system, but in this
case it is much more likely to converge. See the
discussion in Kee et al. [2] for more details.

Independence Inherent to the
Computational Method

Each 1\"ewton or time-stepping iteration depends
directly on the result of the previous iteration, so
we will not discover independence necessary for
parallelization outside the computations within a
single iteration. We will show, however, that 1 aco­
bian evaluation contains considerable indepen­
dence, in that all residual differences can be com­
puted simultaneously. Additionally, many of the

132 SKINNER AND EIGE;\:MANN

properties evaluated for each species and reaction
within a single residual evaluation are indepen­
dent in principle. Others are not independent, but
many have the form of a reduction, a computation
amenable to partial parallel optimization.

Let cPin) represent the vector of independent
variables after Kewton iteration n. Skinner [12]
has shown that y = F(cP1"i) depends only on the
partial vectors,

A..(n) A..(nl A..l.n; A..:.n-nn) A..:,rl-no) A..'.n-no (11)
'1-';-1' 'I'; ''1-';+1' '1-';-1 ''I'; . '~-';+1 .

(The dependence on some previous evaluation
n- no arises from the fact that the transport coeffi­
cients are not recomputed for each iteration.) It
follows that y depends only on solution vectors
cP '" and cf> n-no. both of v.·hicl1 are available at the
beginning of l\"ev.1on iteration n + 1. That is. y =
F(cf> ")is a completely explicit computation. Thus.
the computations for each grid point sectioning of
y can be performed simultaneously. It follows that
all the residuals needed to approximate the Jaco­
bian can Le computed concurrently.

~T e see that there exists the potential for sen'ral
levels of significant parallelism in PR.E\11\. 1\"ote.
however, the hierarchy is not strict. For efficiency.
the Jacobians are often reused. Thus. a significant
number of residual evaluations occur which are
not part of Jacobian evaluation. In the nitrogen
combustion simulation we used for testing, one
third of the residual evaluations occur indepen­
dent of Jacobian evaluation. This suggests that if a
single level of parallelism is to be exploited. it
should be done at the level of residual evaluation.

3.2 Specific Implementation

The control flow of PHE\11.\ can be ,·iewed as in
Figure 3. The CHL\11\.J:\ hTERPHETEH [5 J and TR'-\!'­
PORT PROPERTY FITTJ:\G CoDE [6 J are each external
modules which access databases to create ··link­
ing" files to be read during execution. The
CHF:Ml\.1:\ and TRA:\SPORT libraries require access to
many problem-specific constants, such as the
molecular weights of the species. In addition, each
library requires some scratch space, or memory
locations, used to store values needed only tempo­
rarily. Tracking the use of these scratch arrays is
significant when analyzing for parallelism.

Because the libraries are general purpose and
used in a wide variety of applications, these work
arrays must be of arbitrary size. Thus, a ''dy­
namic" memory allocation .scheme is used. Both
CHEMKI:\ and TRA:\SPORT implement dynamic

I ('j,,n,I..Jn lu!orpr<ln I

I
L
l

I I'• rlo1111 tlloulilw<l \t·\\l<>lo-JI,!pli,<JII I L]!, l1111 ,oppru'\lllloll< '"IIJII(m I
l

I J
j

'-------i-''
I

lonl-lo ,,,jnli<!IIII•>T f,,,u,l

FIGL"RE :i Flow dial!ram for PHL\11\. The nonlinear
discretized sy:-;tem is iiohcd w;inl! the modifit>d ."\ew­
ton-Raphson algorithm. Should tlw :\e\\lon all!oritlun
fail to coiiYergc, a u~er-specilied llUIJIIwr of anificial
time integrations are perfornwd to impnm· tht· condi­
tioning of the nonlinear system. The time ~tq>pinl! alf!o­
rithrn also uses the .\"e\\1011 method.

memorv allocation in a wav common to scientific . .
programs written in Fortran. For t>ach data typt>
employed by one of the program libraries ,'charac­
ter. integer. double-prt>cision floating poinli. a
single. large array is can·ed into ,.;ections by a se­
quence of integer offsets computed at run-time.
The indices are computt-d during initialization
and stored in COMMON blocb for future u,.;e. Tht-v
are never modified after initialization. The work
arrays for each of the libraries are passed as argu­
ments down the calling tree. A COMMON block for
each of the libraries encapsulates the pointers into
their respective integer and floating-point work ar­
rays. It is important to nott:> that the COMMON
blocks for a particular library are declared only iu
procedures within that library.

Returning to Figure 3, we see that each time the
outer control loop iterates, either the l'\t>wton
solver or time stepping is invoked. The l'\t-wton
solver is always inn>ked first: time stepping is only
performed when the 1\"ewton solution phase fails
to converge. A single Kewton iteration consists of
the following steps [2]:

1. Calculate the residual (fun)
2. If necesssary, evaluate (jacob) and factor

(dgbco) the Jacobian matrix
3. Backsolve (dgbsl)

Because chemical computations involve only a
grid block and its immediate neighbors (Equation

11), the chemistry is local. As the residual evalua­
tions are independent of one another_ no concep­
tual reason exists that the residuals cannot be
computed efficiently in parallel.

Computin~ the residual requires numerous
chemical and thermodynamic property e\·alua­
tions at each grid point. The computation has
three distinct steps. First, the transport coeffi­
cients are evaluated, if necessarv. Then the diffu­
sion velocities are computed. Finally, the chemi­
cal kinetics terms are evaluated and the residuals
of the governing Equations 2. :3, and 7 are deter­
mined.

However, the specific implementation of the
computational methods hides some of the poten­
tial for parallelism. Concurrent evaluation of the
residuals is hampered by the presence of shared
local variables and work arravs. The chemical and
thermodynamic computations for each grid point,
which we also identified as independent in princi­
ple, cannot be executed concurrently either. In
addition to shared local variables and work ar­
rays, the nearest-neighbor communication of
density and area data forces a sequentializing
synchronization. The next section describes tech­
niques to overcome some of these problems.

4 PROGRAMMING TECHNIQUES AND
OPTIMIZATION

In this section we describe the program transfor­
mation techniques we applied to the specific im­
plementation of PRDIL'\ and the program analysis
that was necesssary to do this. \Ve compare these
techniques to those applied in other application
programs and discuss some implications on pro­
gramming languages, compiler design, and soft­
ware engineering issues.

4.1 Transformation and Analysis
Techniques

Tpe basic program modification that enabled
multiple processors to participate in the parallel
e~ecution of the program was to declare a number
of time-consuming loops to be executable concur­
rently. Simply speaking, in order to do this we first
had to recognize that the iterations of these loops
were potentially independent, then perform some
transformations to make them truly independent,
and finally insert a directive informing the com­
piler that the loops shall be executed in parallel.

By far the most important transformation in

CO~IBCSTIO:\" CHEMISTRY SI"'IULATION 133

this process was the privatization of arrays (Fig. 4)
that are used as temporary work spaces within
loop iterations. In the original program all such
loop iterations use the same array(s) for storing
temporary results. In a parallel execution of the
unmodified program, every iteration would have
to wait before using this array until the previous
iteration is done using it, which effectively would
serialize the loop. However, by giving each itera­
tion a separate copy of the array, we can avoid
these dependences. The difficulty of this transfor­
mation is in making sure that it is a truly tempo­
rary array where no array element passes informa­
tion from one loop iteration to the next. This is
usually done by an array definition/use analysis
of the program.

An additional technique-the parallelization of
reduction operations-we have found to be appli­
cable in our program. However, we have not done
this because we exploited an outer level of paral­
lelism. The transformation will become important
on machine architectures that support the exploi­
tation of multiple levels of parallelism, e.g., ma­
chines that have cluster structure so that the outer
parallel loops can be spread across clusters while
the inner loops exploit the parallel resources
·within the cluster.

For both the definition/ use analysis and the

real temp(kk), c(jjl

do j = 1, j j
do k = 1, kk

temp(k) k * b(k)
end do

do k = 1, kk
c (j J c (j) + temp (k)

end do
end do

real temp(kk,jj), c(jj)

doall j = 1, j j
do k = 1, kk

temp(k,j) k * b(k)
end do

do k = 1, kk
c (j) c (j) + temp (k, j l

end do
end do

FIGURE 4 Privatization of arrays. In the second code
fragment, each iteration of the outer loop is provided a
separate copy of work array 11 temp 11

•

134 SKJ:\":\"ER A:\"D EIGI:::\.\1:\Y'\

detection of independence of the loops we had to
analyze the program interprocedurally. Often. ar­
ray sections were defined (i.e .. written) in one sub­
routine and used (i.e .. read) in another subrou­
tine. Even more difficult was the analysis of
accessed array sections that in,·oln·d prowam in­
put data. Sometimes it was only knowledge of the
application that could ensure that. in all reason­
able executions of the program. input nuial .Ies
would relate so that the definPd array runges
would always cover the ust->d. rangt~s or that tlw
ranges accessed in differellt loop iteration" would
never overlap.

The dvnan1ic nwnwn· allocation ;.cheme. lllP!l-. .
tioned in Section .3.2. furtlwr complicated the "it-
uation. "~e had to track array ,.;uiJ,LTipb which
were themselves subscripted array elenwnts in or­
der w detennine which ;.ectiuu;. uf the original.
large array are read or written. Since the ,.;ubsnipt
arravs are read-onh· after their initialization. it i" . .
possible to determine temporary arrays and paral-
lel loops from the analysis of the program code.
However, this process is tedious and it makes the
interesting question of whether "uch techniques
could be automated in a compiler quite chal­
lenging.

4.2 Tools, Languages, and Programming
Methodology

A profile facility that identified the mo,.;t time-con­
suming loops in the program was the basic instru­
ment for our program analy,.;i,.;. In addition. the
most helpful tool was an array section analysis
facilitv that determined the mTm· sections read . .
and written in each subroutine and loop. This in­
formation was then propagated up the calling trPe
so that the summan· of all accessed arrm·s could . .
be seen at each loop.

The actual transformations were done in a con­
ventional text editor. Compared to the time con­
sumed by the program analysis this task was not
overly expensive, although the mechanics of array
privatization could be somewhat tedious as de­
scribed below.

w~ e restructured our program by explicitly
specifying parallel activities. rather than changing
the program so that the compiler could recognize
the parallelism automatically. The language we
used is Fortran 77 plus directives. The only direc­
tive we used is CNCALL, which specifies that the
loop shall be executed in parallel. Private arrays
were specified in two forms. both using available
Fortran 77 constructs. One form is to declare the

arrav local to a subroutine that is called iibidP the
parallel loop and tlw other is to Pxpand tlw array
bv one dimension and index this dimen,.;ion with
the loop variable. The second form is u,.;ually
called array expan,ion. Sonwtinws. ,.;ubroutiiw
parameter lists had to lw modilit->d in ordn to pa,;,.;
expanded arrays from calling to the called routi!H-'.

Common exten,.;ion,.; to Fortran ?? are coH­
structs for dynamic array dt->daration. Arrays of
arbitran· size and dimension can I w declarPd lo­
cally. within a ,.;ubprogram. Had we tbt'd thi,.; ex­
tension. we would not Inn e had to modify any of
the subprogram parametPr li,;ts. lea,·ing the
CHE\11-.:L'\ and TH \'\:-l'OHT librari<',.; J,achvanl com­
patible.

The availalJilitv of a dirPctin' that dedan·, \uri­
abies private to a loop \HHild haYe bet•n Yery u,;e­
ful for our purpo,es becau"e it would ha\ e allowt->d
us to lean' tlw existing program text unchanged.
Such a directive would al,.;o hm·e to "upport tlw
priYatization of a partial array. \\·e encountert->d
situations where part of an array was read-only
and another part was used for tt>mporary storage.
To handle this situation we split the array,.; into
different parts and prinHized the temporarily tbed
sections. The need for a PRIVATE dirPctiw is an
important conclusion of our work. and it corre­
sponds to findings of related work.

The method of program optimization we haYe
applied consists of idemifying the tinw-consuming
loops in the program. analyzing array section"
that are read and written in the"e loops. and de­
ri,·ing privatizahle and independent array ,.;ec­
tions. The parallel loops in our program could
then be determined from thi,.; information. The
actual transformations neces:oary to express the
parallelism were ,.;traightfm"\\·ard. Thi,;; program­
ming scheme seems generally applicable and may
be used as a programming methodolOf.'Y that can
be applied in a systematic way. Altlwul!h we haw
found this to be u;;eful for optimizing other pro­
grams as welL we should note that there are time­
consuming optimization steps for which we don"t
know generally applicable methods. Such steps
are the gathering of knowledge about the applica­
tion that goes beyond the analysis of the program
text. ~·e haYe found this to be important in some
cases for our program optimization.

4.3 Comparison to Findings of
Related Proiects

In a related project of optimizing application pro­
grams for parallel computers similar results were

found. Such projPct,; includt-> tlw Ct->dar Fortran
pnljPct [1:3. 1-i, which wa,; completf'd at our cen­
tf'r in 1 <JlJ:2. and the follow-on Polari;; projPct
[15~. Both projPct,; Hwlit>d tran,;;formation tPch­
niqut>,.; that arf' rweded to iipt'f'd up real pr·o;rrams.
This \\·a,;; dorw by hand parallt'lizin;.r a suitf' of
codes. indudin;.r the Pt'rfPct Benchmark,;; and
somP applications of rt'lenllH't' to the user,;; at tlw
1\"ational Center for Super('omplltt'r Applications
at dw CnivPrsit\ of Illinois.

Tlw most important transformation,; idt'ntifit·d
wert' tlw same as in our projt't'l. :\rray privatiza­
tion was most t'ffectivf'. followt->d hy the parallt->1-
ization of reduction operations. Inwrproeedural
definition/ usf' analy,;;i=- wa,.; a crucial techniqtw to
detf'rmirw tlw applicability of the transformations.
The transformations ~-it->ldt>d fully paralll-'1 loop,;
whosP iteration,; could be t:"xecutt'd indept-·ndt·rHiy
on multiplP proce,.;sor,.;.

Our application is relt'nlllt for thest' otlwr proj­
ects in that it confirms tlw rf'iittlh and thu;; show,;
that they carry over from tlw samplf' lwnclunark
suite to new prol!ram,;. Orw difff'renct' St't'm;;
worth notinl!. Tlw ultirnatt' l!oal of the aiH•\e-re­
lated projeeh was to lind tf'dmique,.; that can be
automated in a paraliPiizinl! compiler. and in fact
most of the transformation,; identified wert-> re­
ported to be automatable. In our pro;.rram we havP
found that somf' crucial information for determin­
ing the applicability of the parallt'lization tech­
niques is known only from the input files and thu,;
is not availablE' at compile tirnP. Althoul!h then'
are compilation technique=- that are ablt:' to paral­
lelize such situations at run-time [161. our find­
ings indicate that it will tw at lea,.;t difficult to
detect the paralleli,;m automatically. A full di,.;cu,;­
sion of this point is beyond the ,;cope of thi;; article
and is the object of future project;;.

A related approach to methodologit's for paral­
lel programmin;.r is described by Eil!ennumn [171.
Our findinl!,.; lar;.rPly al!ree with his approach. One
difference is that he envisions a '"program-level'"
optimization. in which all nf'ce,;sarv information
fL!r transforming the prol!ram can. be l!athered
from the program text. As we have mentioned. for
optimizing PRDIL'\ therf' was sometimes a need to
use knowledge about the mathematical and physi­
cal properties of the problem that could not easih·
be gathered from t~w spf'cific implementation o.f
the. program.

Our findings can also be compared with the
parallel programming methodology that envisions
the design of application programs from opti­
mized libraries. The parallelism would be hidden

CO\!Bl STIO:'\ CIIE\IISTRY SL\Il"L\ TIO:'\ 135

in thf'se libraries and the pro/!ramrninl! method for
the user of these libraries \\·otdd be no different
from sequential prol!nmuninl!. A further advan­
tage of this approach is that the libraries could be
optimized specifically for each machine and the
application program would be portable. Because
PRDII\ uses ;;tandard libraries. it would be a natu­
ral candidate for such an approach. However. we
have found that exploiting parallelism \\·ithin the
libraries does not lead to significant speedup. The
parallelism we exploitt'Cl is at a higher loop level
and the libraries them;;elves executt' on one pro­
cessor each.

5 RESULTS

"·e ;.rathered performance data on the Alliant
FX/80 for four version,; of PRL\11.\:

1. Original Sequential-the original PR[\11\
code compiled with ,;equential optimiza­
tions (fortran -og:l

2. Original Parallel-the oril!inal code opti­
mized for parallel execution by the FX/
FORTRAl\' automatic compiler (fortran
-Ogc)

3. Optimized Parallf'l-Oril!inal Parallel with
explicit parallel con,.;tmcts added. as de­
scribed in Section -i

4. Optimized Sequential-Optimized Parallel
compiled for sequential execution (for­
tran -Og)

The profilin§! option (-pgi was disabled for these
experiments. "·e also excluded vectorization opti­
mizations from our performance tests because the
vectors were too short to be usd'ul with the FX/80
architecture. Enabling vectorization consistently
resulted in greater execution times.

The performance improvement can be seen in
Figure 5. The third group of bars shows total exe­
cution times for the four versions of PRE\11\. "-e
see that the Optimized Parallel version of the code
executes approximately 4.4 times faster than
Original SequentiaL The added overhead of the
manual parallelization, seen by comparing the ex­
ecution time of Optimized Sequential to Original
Sequential, is minimal (less than 0.3%). Auto­
matic compiler optimizations, isolated in the Orig­
inal Parallel version of the code, are responsible
for about half the performance improvement. This
result can also be seen in Figure 6, which exhibits

136 SKI~:\'ER A:\'D EIGE~MA~:'I

"' "C:I c
8
Ji 10000

Linear Algebra Chemistry

':':'':':' Original Sequential

I Original Parallel
Optimiud Sequential
Optimized Parallel

....

Total

FIGURE 5 Comparative performance of four wrsions of PHE\IIX. Times were obtained
using an eight-processor Alliant F.X./80 with the FX/FORTRA:\' parallelizing compiler.

X 10-3

Ideal

~08
:::.
" E
i=
1l 0.6
"' a. .,

0 Optimized Parallel w 0

"
0

~
~04 0
.E

0

0

X X X X Original Parallel
0.2 0 X

X
X

0
0 2 4 5 6 10

Number of Processors

FIGURE 6 Inverse execution times versus numLer of processors. Times for oril!inal
and optimized parallel versions of PHE\11.\ were oLtained on an Alliant FX/80. An ideal
performance improvement line is included for comparison.

CO\IBUSTIO:\' CHE:\IISTRY SL\IULATIO"-" 137

Table 2. Elapsed Execution Times of Four Versions of PRE.~nx

Original Original Optimized Optimized
Sequential Para lid Sequential Parallel

Performance
Sec. % Sec. % Sec. % Sec. % Improvement
(a) (b) (c) (d) (c)/(d)

Residual
Evaluation loop 5,472 63.2 2.28::3 5-i. 7 5.-i30 61.9 920 47.1 5.9
Transport loop 1.651 19.1 1.118 26.8 1.7.1~ 20.0 296 1.5. 1 5.9
Diffusion loop 170 2.0 82 2.0 167 1.9 28 1.4 6.0
Other chemistrv ~"7 ::>. 0.0 -i2 0.0 "7"7 0.0 40 0.0 1.9
Total chemistry 7.350 8-i.9 .3.52.3 8-i.5 7.-i09 8-i. -i 1,28-i 65.8 5.8
Linear algebra 1.15:3 1:3.::3 .S-iO 12.9 1.180 1:3.5 518 26.5 2.3
Two-point BVP
Solver 68 0.8 .37 0.9 86 1.0 60 3.1 1.4
110 and OS 1.0 70 1.7 98 1.1 89 4.6 1.1 0.2
Total 8.6S8 100.0 '+.172 100.0 8.77:3 100.0 1.9.')1 100.0 4.5

.Yote. The parallt·l ver~ion:""o wen· t•xeciJtt-... d u:-;lrJf! t•i,!.dlt pnwt·~ . ..;or~.

the inver:-;e execution time,; uf the parallel ver:-;ions
of the code for varying numbers of proees:-;ors.

,,.e separated the linear algebra and chemi:-;try
computations in Figure .5 to demonstrate how the
nature of the Optimized Parallel version of the
program has changed from dw original. w-hile
performance of the chemical computations im­
proved significantly. by a factor of almost 6. dw
gain for the linear algebra routint>,;. which we wPre
only able to parallelize partially. was a more mod­
est 2.:3. Linear algebra commanded ouh· about
1~3% of the Original Sequential execution .time. In
the Optimized Parallel version linear algebra is re­
sponsible for about 27%. As the number of pro­
cessors grows. linear algebra computations will in­
creasingly dominate execution tinw.

Fornwrly the chemistry wa:-; so expensivP that
the time spellt in linear algebra could be ea:-;ily
i~mored. l\'ow that the clwmistry can be madt> rt:>l­
atively cheap. the algorithmic t radP-off,., havt'
changed. Alternativt:>;; to tllf' overall solution strat­
e~· should be reviewed. Some discussion of paral­
lel methods for solving two-point boundary vahH'
problems was provided by "right [18]. The L\­
P\CJ-.: effort [1 <} J offers parallel versions of banded
system solvers. exploiting parallelism in multiple
right-hand sides and blocking algorithms. "' e did
not. however, obtain any performance improve­
ment when we replaced the LL'\I'v:~-.: linear algebra
routines with their L\P,\<:1-.: counterparts. PHE.\11.\
has no multiple right-hand sides to exploiL but
blocking should have yielded some improvement.
The reason it did not do so is still under investiga­
tion.

Table 2 shows the execution times of the four

versions of PHE\11.\. The three loops we manually
parallelized constitute nearly all the significant
chemical computations in the code. As these loops
are explicitly parallel in the Optimized Parallel
version of the code, we have successfully modified
the implementation to express the parallelism in­
herent to the computational method. However,
the execution times of these loops exhibit only a
sixfold improvement on eight processors. "-e be­
lieve this is largely due to an imbalance in the work
load. The program spends much of its time work­
ing with a 19-point grid. If we assume each itera­
tion of the loop over the grid points executes in the
same amount of time, 19 iterations are completed
in the time that the eight processors could execute
2·L This roughly 79% efficiency would reduce the
performance improvement factor to 6.3. A further
source of inefficiencv is the limited memorv band-. .
width of the FX/80 machine, which provides only
a four-way path between the eight processors and
the shared memory, and penalizes applications
with poor cache hit ratios. Factoring in these ineffi­
ciencies models the measured performance with
good accuracy, so that we can characterize the
scalability of our application as follows.

The PHDIIX application runs with reasonable
efficiency on machines with small numbers of pro­
cessors. It is potentially scalable to larger numbers
of processors for the solution of larger problems
with significantly more than 65 grid points. As the
chemistry component of the application speeds
up, the linear algebra part becomes speed limit­
ing. We have not investigated possible improve­
ments to this component of the application; how­
ever, it seems possible to resolve this limitation

138 SKIN:\'ER A:\'D EIGEVviA.'\:~

through appropriate changes in the used algo­
rithms.

6 CONCLUSIONS

We performed a detailed analysis of the mathe­
matical model used in PRE!\IL\ coupled with a
study of the computational methods to gain a pic­
ture of a hierarchy of parallelism inherent to the
problem being solved. A manual analysis of the
code followed, from which we determined to what
extent the parallelism inherent to the implementa­
tion was expressed in the original version. \\"e then
chose an outer loop level appropriate to our target
machine and applied a handful of manual paral­
lelizations. In all, we modified less than 1 00 lines
of code. The result was a greater than fourfold
improvement in the simulation· s execution time
on an Alliant FX/80 with eight processors.

In this work we have found that the PRE\11.\

combustion chemistry application nms with rea­
sonable speed on small numbers of processors
and potentially scales up to more highly parallel
systems. The most important program transfor­
mation to achieve our performance improvement
was the privatization of arrays. To determine the
applicability of this transformation we had to do a
careful, interprocedural analysis of defined and
used array sections. The available language con­
structs were not always adequate for expressing
dynamically sized loop-private arrays. and we
suggest that such constructs be included in future
language designs. The method used for optimizing
our program seems generally applicable and. with
the provision of supporting tools. we beline they
represent a step toward the understanding and
improvement of the process of optimizing large
application codes for high-performance com­
puters.

ACKNOWLEDGMENTS

This work is supported by the 1\"ational Security Agency
and by Army contract #DABT63-92-C-003:3.

REFERENCES

[1] R. J. Kee and J. A. ~Iiller. ·'A structured approach
to the computational modeling of chemical kinet­
ics flowing systems," Springer Series in Chemical
Physics, vol. 47, p. 196. 1986.

[2] R. Kee. J. Grear . .\1. Smonke. ami .1. \Iiiier. ··.\
FORTH.-\:'\ program for modelinl! steady laminar
one-dimensional pwmixcd flanw~. ·· Technical
Report SA~D85-82-t0. Sandia :\ational Labora­
tories. 1985.

[:3] C. Curtiss and J. Hirschfelder. ··Jmqrration of stiff
equatiom."· Pruc . .\'at/. A cad. Sci. LS. L HIL 38.
pp. 235-2-t:3. 1952.

[-t J E. Oran and J. Boris . . \"wrzcrical Simulation ~~f
Reactive Flow. :\ew York: Else\·ier. 1987.

[5] R. Kee. F. Rupley. and J . .\Iiller. ··CJJE\IKI:\-11:
A FORTRA:\ chemical kinetics packaf!"C for the
analysis of gas-phase chemical kirwtics. ·· Techni­
cal Report S:\:\])89-8009. Sandia :\ational Lab­
oratories. 1989.

:6J R. Kee. G. Dixon-Lewis . .1. \\.arnatz. \1. Coltrin.
and J. .\Iiller. ·· .. \ FORTH.\:\ colllJHft!•r code
package for the evaluation of gas-pha~e. multi­
component tran~port pn>JWrties. ·· Techni('al Re­
port SA:\D86-8-t26. Sandia :\ational Laborato­
ries, 1986.

[7] \1. E. Coltrin. R. l Kt>e. and F. Rupley. ··Surface
Chemkin: A General Kinetic Formalism and Soft­
ware for Analyzing Hett>rogeneous Chemical Ki­
netics at a Gas-Surface Interface.·· Int.]. Chern.
Kinet .. vol. 23. p. 1111. 1991.

~8] l Grear. ··The Twopnt program for boundary
value problems."' Technical Report SA:\D91-
82:30. Sandia :\ational Laboratories. April 1992.

[9] l Donl!"arra, C. \loler. l Bunch. and G. SIPwart.
LI.\Pi.CK Lsers ·Guide. Philadelphia: Society of
Industrial and Applied .\lathematics. 1979.

[1 0 J Alliant Computer Systems Corporation (ACSA;:
F\/ FORTR·IS Programmer's I landvook. 1985.
Acton. \lA: ACSA, 1985.

[11] J. Tyler. A. Bourgoyne. D. Logan.]. Baron. T. Li.
and D. Schneider. ··A vector-parallel version of
BOAST II for the IB\1 3090." · Internal Report.
IBl\1 Kin{[ston. 1990.

[12] G. Skinner. ··Finding and exploitinl!" parallelism
in a production cmnbustion simulation pro­
gram." • .\laster· s thesis. Lniversity of Illinois at
Crbana-Champaign. Center for Supt>rcomputinl!"
Research & Development, December 199:3.

[13] R E:igenrnann.]. Iloeflinger. Z. Li. and D.
Padua, '·ExpPrience in the automatic paralleliza­
tion of four perfect Benchmarks programs,"' Lec­
ture /Votes in Computer Science 589. :\'ew York:
Springer VPrlag. 1992, pp. 65-83.

[14] W. Blume, R. E:igenmann, L Hoe/linger. D.
Padua, and G. Jaxon. ··The Cedar Fortran
Project,·· Technit:al Report 1262. Cniversity of
Illinois at Crbana-Champaign. Center for Su­
percomputing Research & Devdoprnerlt. April
1992.

[15] \"('. Blume. R. Eigenrnann, J. Hoc/linger. D.
Padua, P. Petersen, L. Rauchwerger. and P. Tu,
"Automatic detection of parallelism: A grand

challenge for high-performance computing.
IEEE Parallel and Distributed Technology. vol.
2, pp. 37-·P, 199-+.

[16] L. Rauchwerger and D. Padua, ·'The LRPD Test:
Speculative nrn-time parallelization of loops with
privatization and reduction parallelization, ''
Pror. SIGPLA:\''9.5 Con[on Programming Lang.
Design and Imp/., June 199:J.

[17] R. Eigenmann, "Toward a methodology of opti­
mizing programs for high-performance com­
puters," Proceedings of 1993 International Con-

CO\IBCSTION CHDHSTRY SI~fl!LATION 139

ference on Supercomputing, Tokyo, Japan.
Tokyo, Japan: ACM Press, 1993, pp. 19-23.

[18] S. Wright, "Stable parallel algorithms for two­
point boundary value problems," SIAM }. Sci.
Statistica!Comput.,vol.13,pp. 742-764,1992.

[19] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Ham­
marling, A. McKenney, S. Ostrouchov, and D.
Sorensen, LAPACK Users' Guide. Philadelphia:
Society for Industrial and Applied Mathematics,
1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

