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ABSTRACT 

EEG analysis has played a key role in the modeling of the brain's cortical dynamics, but 
relatively little effort has been devoted to developing EEG as a limited means of com­
munication. If several mental states can be reliably distinguished by recognizing pat­
terns in EEG, then a paralyzed person could communicate to a device such as a wheel­
chair by composing sequences of these mental states. EEG pattern recognition is a 
difficult problem and hinges on the success of finding representations of the EEG signals 
in which the patterns can be distinguished. In this article, we report on a study compar­
ing three EEG representations, the unprocessed signals, a reduced-dimensional repre­
sentation using the Karhunen-Loewe transform, and airequency-based representation. 
Classification is performed with a two-layer neural network implemented on a CNAPS 
server (128 processor, SIMD architecture) by Adaptive Solutions, Inc. Execution time 
comparisons show over a hundred-fold speed up over a Sun Spare 10. The best classifi­
cation accuracy on untrained samples is 73% using the frequency-based representa­
tion. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Physically disabled people who have no control 
over their motor responses have no means of com­
municating to the outside world. Is there a wav for 
such people to use their mental capabilities t<; af­
fe.ct their environment? This question drives the 
search for patterns in EEG signals that are related 
to.a person's mental state. A device that can reli­
ably and quickly discriminate between several 
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mental states could be used, for example, to gen­
erate commands to control a wheelchair. 

Computerized analysis of EEG signals has 
evolved over the past three decades [ 6], with 
much of the effort directed towards a better un­
derstanding of the functioning of the brain. The 
work reported here has a different goal, to extract 
information from EEG signals with which we can 
discriminate mental states. Primarily two ap­
proaches have been taken towards this goal. 

The first approach is based on the discovery 
that a characteristic signal appears in the EEG 
approximately 300 ms following the occurrence of 
a relatively rare, but expected, stimulus. Such sig­
nals are referred to as event-related potentials 
(ERPs ). An example of how ERPs can be used to 
communicate with a computer is the work of 
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Farwell and Donchin [4], who used ERP's to de­
tect which letter of the alphabet a human subject 
wished to select. The letters of the alphabet were 
displayed in a matrix form on the visual display of 
a computer. The subject selected a row and 
column by observing a marker step through the 
rows and columns. ~chen the correct row and 
column were marked the subject's EEG contained 
a recognizable ERP. 

This kind of interaction between a person and 
stimulus device would be too cumbersome and 
probably too slow to be useful in a real-time con­
trol application. Much more practical would Le a 
system for detecting patterns in normal EEG with­
out the aid of an external stimulus de,·ice. 

Thi,; is the second approach. often rt>ferred to 
as spatial analysis, because patterns are sought in 
EEG signals simultaneously recordt>cl from multi­
ple electrodes. A number of studies hm·e found 
differences in the power of the alpha hand (8-13 
Hz) in signals recorded from left and right hemi­
spheres, depending on the tasks [2, 5. 13]. Asym­
metries were most reliably found for motor ta;;ks. 
Ehrlichman and ~-iener [3] found verbal tasks 
produced greater hemispheric differences than 
did visual tasks. 

The detection of patterns in EEG produced 
from normal mental states is a wry difficult prob­
lem. EEG signals are recorded by surface elec­
trodes and can contain noise as a result of electri­
cal interference and movement of the electrodes 
on the scalp. Another problem is that EEG signals 
can be corrupted by eye blinks and other muscu­
lar activity that produce signals of greater magni­
tude than produced by cortical activity. Other 
problems are more cognitive in nature. For exam­
ple, the concentration of a person can vary while 
the person is supposedly performing a single men­
tal task. 

The work described in this article is ba,.ed on 
previous work by Keirn and Aunon [9, 10]. Keirn 
and Aunon recorded EEG from seven subjects 
while the subjects performed each of five mental 
tasks. A simple Bayesian classifier was applied to 
data collected from pairs of tasks. A frequency­
based representation was found to result in 70% 
to 100% correct classification. 

This is an encouraging result, but the study was 
limited in several ways. A single quarter-second or 
2-second segment was selected from each 1 0-sec­
ond recording session. The segment was chosen to 

be devoid of eye blinks and near the middle of the 
session, assuming during that period the subject 
was most likely concentrating on the requested 

mental task. Another limitation is the use of a 
quadratic Bayesian classifier. which assumes the 
classes have a Gaussian distribution and thus 
would not be able to represent complex. nonlinear 
relation:;hips. Also, in the previous study c:lassifi­
ers were constructed and tested on data from sin­
gle subjects and pairs of tasks. Questions remain 
regarding generalization across subjects and more 
than pair-wise discriminations. This i:; not ad­
dressed here. 

These questions led us to extend the pre\·iou:-; 
studv in three wavs. . . 

1. \\"e replaced tht> Baye,-ian cla,-~ilier with a 
neural network and ntriPd the n umlwr of 
hidden units. thu,., tht> complexity of tht> 
classifier; 

2. \\·e extracted ovt>rlappin;r quarter ;,ecnnd 
,.,egments that to!!etlwr cover the 10 ,;ec­
ond period of every rt>cordin;r session (no 
artifacts were removed): 

3. \\·e compared the classification accuracy 
of the neural network using different rep­
resentations of the EEG signals. 

The objective of these experiments was to deter­
mine which of the three representations results in 
the best classification accuracv. If the information 
needed to discriminate mental state can be ex­
tracted from the unprocessed EEG signals. or at 
most preprocessed by projecting to a relati,·ely 
small number of principal components. then we 
can dispense with other forms of preprocessin!!. 
such as the frequency analysis used by Keim and 
Aunon [10]. 

In one other study. by Lin. Tsai, and Liou [ L) J. 
neural networks were applied to classify EEG sig­
nals collected in a paradigm similar to that of 
[10]. Lin et al. used Kohonen·,- algorithm [12] to 
train a matrix of units to identify clusters of :-;imilar 
patterns and associate each cluster with a particu­
lar mental task. Thev trained their classifier on 
data for all tasks performed by one subject in one 
recording session and tested the resulting classi­
fier on data from other sessions and other sub­
jects. "1ost tests showed very poor classification 
accuracy, though the accuracy tended to be 
higher for some tasks, particularly the mental 
arithmetic task (see Section 2.1 ). 

The remaining sections are organized as fol­
lows. In Section 2, we describe the methods and 
algorithms used to collect, process, and classify 
the data. The implementations of the processing 
and classification algorithms are described in Sec-
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tion 3. Results of da:;;sification experiments are 
discu:osed in Section -f. and conclusion:-; are pre­
sented in Section 5. 

2 DATA COLLECTION, PREPROCESSING, 
AND NEURAL NETWORK ALGORITHM 

2.1 Mental Tasks 

All data used in this study were recorded previ­
ouslv by Keirn and Aunon. Their selection of the 
set of mental tasks was l!uided by Galin and Om­
stein [5]. whose results showed detectable hemi­
spheric differences in some tasks. The followin~ 
tasks were studied in [10]: 

Baseline-Alpha Wave Production The 
subject is asked to open and close their eyes at 
approximately .5-second intervals. \\"ith their 
eyes clo:oed the subject is to relax a:-; much as 
possible. This is considered the baseline ses­
sion for alpha wave production. and other 
asymmetries. 1'\ontask associated leYels of 
alpha wave production and asymmetries pro­
duced across different electrodes and across 
EEG bands are thus obtained. 
Mental Arithmetic The subject is giYen a non­
trivial multiplication problem to solve and. as in 
all of the tasks, is instructed not to vocalize or 
make overt movements while solving the prob­
lem. An example of such a task is to multiply 
the numbers 49 and 78. The problems are 
nonrepeating and are designed so that an im­
mediate answer will not be apparent. The sub­
ject verifies at the end of the task whether or not 
thev arrived at a solution. 
Geometric Figure Rotation The subject is 
given 30 seconds to study a drawing of a com­
plex 3-dimensional block figure after which the 
drawing is removed and the subject is in­
structed to visualize the object being rotated 
about an axis . 

. Mental Letter Composing The subject is in­
structed to compose a letter to a friend or rela-

. tive mentally without vocalizing. Since the task 
is repeated several times, the subject will be 
told to try to pick up where he or she left off in 
the previous task. 
Visual Counting The subject is asked to 
imagine a blackboard and to visualize numbers 
being written on the board sequentially, with 
the previous number being erased before the 
next number is written. The subject is further 

instructed not to verbally read the numbers but 
to visualize them, and to pick up counting from 
the previous task rather than to start over each 
time. 

The experiments reported here used only the data 
recorded from a single subject performing the 
baseline task and the mental arithmetic task. 

2.2 Recording of EEG Signals 

Subjects were seated in a sound-proof dimly lit 
room. As shown in Figure 1, electrodes were 
placed at 0 1 , 02, P:i, P-+, C:3 , and C-+, standard 
electrode locations in the 10-20 System [8]. The 
electrodes were connected to Grass 7P511 amplifi­
ers that bandpass filtered the signals at 0.1-100 
Hz. The EEG signals were sampled at 2.50 sam­
ples per second and digitized with 12 bits of accu­
racy. Data were recorded from each subject for a 
duration of 10 seconds while the subjects were 
performing a single task with their eyes open. 
Each session resulted in 250 samples/ second X 

10 seconds X 6 channels, or 15,000 values. 

2.3 Unprocessed Data Representation 

Keirn and Aunon found that quarter-second seg­
ments of the 10-second data resulted in classifica­
tion accuracy approximately the same as that ob­
tained from 2-second segments. Therefore, for the 
experiments reported here, we divided the data 
into quarter-second segments. Segments were ac­
tually 62 samples long, slightly less than one 
quarter second. Ideally, we would like to use all 
quarter-second segments to train the classifier. 
This would result in 2,-t38 (i.e., 2,500-62) over-

FIGURE 1 Location of the six surface electrodes used 
to record EEG signals. 
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FIGURE 3 EEG signals recorded from ;;ix channels as subject peformed the ba;-;eline 
or mental arithmetic tasks. 
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2.4 K-L Representation 

It i,.; po,;,.;iblt· that the larw· numlwr of componPnts 
in each pattern i,; many more than actually 
rwPded. OftPtL whPn da,.;,.;ifyinl! high-dinwn,;;ional 
data. equiYalPnt accuracy can lw achit•Yt>d by 
cla,;;,;ifyinl! data obtained by projectinl! the oril!inal 
data onto the fir,.;t 11 eil!en\ector,.;. wht•re n i,.; much 
smallPr than the dimetbiouality of tlw oril!inal 
data. Thi,.; i,.; u,.;ually rPfPrn·d to a,.; the Karhunen­
Loe\·e decompo,;ition. called tlw K-L repre,;enta­
tion hen~. 

To perform the K-L dPt'omprhition. the coYar­
iance matrix of tlw mean-,;ubtracted ,.;et uf L-580 
T:":Z-dimeH,.;io!lal pattern,.; wa,; calculated. The ei­
genvalue,; and eil!ellYPctor,.; of the contriance ma­
trix wen· calculated u,;illl! tlw Jacol1i method. Thi,.; 
invoh·e,; performinl! a O'it'qtwnce of ,.,imilarity traJl,.;­
formations in order to redw·p rlw oiT-dial!onal ele­
ment:-; to ZPro .. -\ ,.;erip,; of plane rotation:-. are 
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FIGURE 4 First four eigenvectors of mean-subtracted data for baseline and mental 
arithmetic tasks. 
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FIGURE 5 First 50 eigenvalues for mean-suLtracted 
data from subject 3 for baseline and math tasks. 

50 eigenvalues normalized by the total sum of the 
372 eigenvalues. 

The K-L representation was formed by pro­
jecting each 372-dimensional pattern onto the 
first ,'jQ eigenvalues. Examples of patterns in this 
representation that correspond to the raw patterns 
in Figure 3 are shown in Figure 6. 
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2.5 Frequency-Band Representation 

In [10] features were extracted from spectral den­
sity estimates using asymmetry ratios given by 
(R - L )I (R + L ), where R is the area under the 
spectral density curve of a right hemisphere chan­
nel for a specific frequency band and L is defined 
similarly for the corresponding left hemisphere 
channel. These asymmetry ratios were calculated 
for each possible right-to-left combination of 
channels and for each of four frequency bands: 
delta (0-3 Hz), theta (4-7Hz), alpha (8-13Hz), 
and beta (14-20 Hz). This resulted in 36 asym­
metry ratios. In addition the 24 power values 
themselves (R and L) were added for a total of 60 
features. 

In the current study, the spectral density was 
estimated from autoregressive (AR) parameters 
calculated using the Burg method [ 1 9]. This 
method is based on the minimization of forward 
and backward linear prediction errors, subject to 
satisfying the Levinson-Durbin recursions. The 
spectral density is given by 
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FIGURE 6 K-L representations of the first and last quarter second of data from the 
baseline task (top graphs) and the mental arithmetic task (bottom graph). 
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FIGURE 7 Frequency-based representations of th~ first and last quarter second of 
data from the baseline task (top l!raph~l and the mental arithmetic task (bottom graph). 

I [ 
\I ]2 

P(f) = 2a- 2 1 - '.2: a"e-J2rr"r 
n=l 

where a,. are the estimated AR coefficients. An AR 
model of order 6 ( M = 6) was used here since it 
yielded good results in [ 10 ]. 

Example patterns in the frequency-based rep­
resentation are shown in Figure 7. These were de­
rived from the same data as the graphs in Figures 
3 ·and 6. 

2.6 Neural Network 
Classification Algorithm 

In their previous work, Keirn and Aunon used a 
quadratic Bayesian classifier. This Bayesian clas-

sifier assumes a Gaussian shape to the probability 
densitv function of data from each class and a 
linear .discrimination between these density func­
tions is determined. 

l\"eural networks have the capability of finding a 
nonlinear transformation of the pattern in order to 
classify with greater accuracy. However, the in­
creased complexity of a neural network can result 
in large computation times to train the network. 
The quantity of data involved in our experiments 
prompted our implementation of the neural net­
works on a SIMD parallel computer, described in 
the next section. 

The network architecture used for our experi­
ments is shown in Figure 8. The circles represent 
the computational units of the network. The inter­
connections represent scalar values passed as in­
put to each unit. Each unit has a unique vector of 
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FIGURE 8 Two-layered neural network u;,ed in all experinwnh n·p1111ed lwre. Only 
the number of hidden units and the input representation were ntried. 

weights corresponding to its input vector. The 
computation performed by the units is a weighted 
sum of their inputs and a nonlinear squashing 
function that restricts the range of the output to be 
between 0 and 1. We used the typic;Il sigmoid 
squashing function. Let the inputs to a unit be .r1• 

the weights be W;, and the output of the unit bey. 
The weighted sum and sigmoid function are com­
bined to produce the unit's output: 

1 
y = 1 + e-I,.r,u·, 

The network consists of two lavers of units. The 
units in the first laver are called hidden units. be­
cause the outputs of these units are used internal 
to the network to transform the input into another 
representation for the output unit. The output of 
the output unit is taken as the classification of the 
current input pattern. 

To train the network, a set of training patterns 
and corresponding correct outputs is repetitively 
presented to the network. After each pass through 
the training data, called an epoch, the weights are 
adjusted to reduce the error between the correct 
output and the actual output of the network. To 
determine how to adjust each weight, we applied 
the error backpropagation algorithm [21 J. This 
algorithm calculates the gradient of an error func­
tion with respect to each weight, then adjusts the 
weights in the negative gradient direction to re­
duce the error. The error function is the squared 
error summed over all training patterns: 

E = 2: (z'l'! - y 1')2 
p 

where p is an index into the set of training pat­
terns, zl'• is the correct output for pattern p, and 
y F" is the output of the network for pattern p. For 
the experiments reported here.::;" is set to 0.1 for 
the baseline task and 0. 9 for the mental arithmetic 
task. This determines how we interpret the output 
of the network as a classification: if y !'· > O .. S. 
pattern p is said to be classified as being from a 
mental arithmetic task: ifyP· < 0.5. the pattern is 
classified as a baseline task. 

The gradient of E with respect to the weights 
results in the following expressions. Let h/' signify 
the output of hidden unit i when the network re­
ceives input pattern p. To change the weights of 
the output unit. we sum the following !::..w/s 

l::..w/' = c(z I' - y I' )h/' 

over all training patterns and, at the end of the 
epoch. add the result to the weights in the output 
unit. The constant cis a scale factor that is chosen 
empirically to produce weight changes that are not 
too large or too small. If too large, the network 
would converge quickly to a suboptimal local min­
imum: if too small, the time required for the net­
work to converge would be impractically long. 
Similarly, we sum the !::..wj's for hidden unit j. 
given by 

c1 r~ I' - l'" \h 1' (1 - h "):1._.,, 
I\- • ) j jj I 

where x;": is a component of the input pattern 
given to the network. The hidden units have their 
own scale factor, c11 • 
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2.7 The OverfiHing Problem 

Although this algorithm is designed to n11mmize 
the squared error over a training set, the true goal 
of this procedure is to find a set of weights for 
which the squared error is minimized over a novel 
set of data, i.e., data to which the network was not 
trained. Only if the algorithm is able to find a 
model (the network and weights) that generalizes 
well to this test set can we say that the model cap­
tures the regularities present in the data. This 
problem has been called the overfitting problem­
the network too closely matches the training data 
and does not interpolate and extrapolate well to 
novel data. This is usually tested by dividing the 
data into a training and a testing set. The network 
is trained to com·ergence on the training set. after 
which the error on the testing set is calculated and 
used as an estimate of how well the network will 
perform on novel data. 

To limit the amount of overfitting. one may de­
crease the complexity of a trained network 
through pruning, or by limiting the growth in com­
plexity during training, or by terminating the 
training when the network begins to overfit. Each 
is described below. 

A trained network that overfits may be pruned 
by removing weights and units that have minimal 
effect on the network's error. This may be per­
formed by sequentially setting each weight to zero 
and testing the error of the resulting network. 
Methods that require less computation rely on 
measures of utility for each weight. For example. 
the Hessian of the error with respect to the weights 
for a given input pattern is the sensitivity of the 
error with respect to each wei~dH [1-t l. ~lozer and 
Smolensky [ 16 J and Ramachandran and Pratt 
[20] describe other measures of utility. 

The complexity of the function leanwd by a 
neural network is related to the number uf hidden 
units and the number of weights of magnitude sig­
nificantly different from zero. One way to limit the 
growth of complexity during training is to add an 
error term that biases the gradient search for 
weight values to regions in weight space of low­
magnitude weights. Weigend et al. [2-t] developed 
a term that penalizes large-magnitude weights 
and applied this to several time-series prediction 
problems. 

The third method for controlling overfitting is 
more dependent on the data than the previous 
two. The data are divided into three parts. two for 
training and testing, and the third for determining 
when the network is overfitting. The third part is 

called the validation set. After each pass through 
the training data, the error on the validation set is 
calculated. Initially, the error on the training and 
validation set decreases. As the network begins to 
overfit, the error on the validation set begins to 
increase. At this point, prior to convergence on the 
training data, training is halted and the error on 
the testing set is calculated as a measure of the 
network's performance. Weigend [23] used this 
technique on a time-series prediction problem 
and found it to be useful even for very small net­
works. 

For the experiments described here, we applied 
the validation set method for early stopping. We 
divided the data into 10 distinct subsets, corre­
sponding to the 10 recording sessions for one sub­
ject performing two tasks. One subset was selected 
to be the validation set, another subset was the 
testing set, and the remaining eight subsets com­
prised the training data. Thus, there are 90 possi­
ble combinations of training, validation. and test­
ing sets. Notice that training, validation, and 
testing were always performed on data from dis­
tinct recording sessions. All 90 combinations were 
used and classification performance (on the test­
ing sets) was averaged over the 90 runs. 

3 PROGRAMMING TECHNIQUE 

The data windowing, K-L transform, and fre­
quency analysis were performed with a comb ina­
tion of Unix shell scripts and C code and run on a 
Sun Spare 10. The eigenvector and frequency 
analysis were performed using implementations as 
described by Press et al. [ 18 J . 

The classification experiments were performed 
on a CNAPS Server II from Adaptive Solutions. 
Inc. Our CNAPS system is a parallel. SniD archi­
tecture with 128, 20 MHz processors, upgradable 
to 512 processors. It can be programmed at three 
levels, using assembly language, C with parallel 
programming extensions, or a library of routines 
that implements error backpropagation. Assembly 
language can be used to write highly efficient 
code, but the library of backpropagation routines 
is by far the most efficient in terms of development 
time. The C language level is intermediate, giving 
the programmer the ability to write efficient code 
in a familiar language. w·e chose to use the exist­
ing library to implement the error backpropaga­
tion algorithm. Specifically, we used Adaptive So­
lutions' BPfolded routine, which distributes the 
load even when the network is larger than the 
number of processors. 
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The library consists of routines to set algorithm 
parameters, to identify the source of the data, and 
to execute the algorithm. The following is an out­
line of the C program that we used to call the 
backpropagation routines. All steps, except ;;tep 
9, were performed on the Cl'\APS server; step 9 
was implemented in C. The C program was com­
piled and run on a Sun Spare 10. 

1. Connect to CNAPS server and specify the 
training algorithm. 

2. Specify the algorithm· s parameters, m­
cluding the number of inputs. output~. 

and hidden units, the number of traininl! 
and validation patterns and the name" of 
files containing them. the maximum num­
ber of epochs to train. the error criterion at 
which to terminate traiuiug. the leamin!! 
rate constants for output and hidden 
layers. 

3. Specify names of training and validation 
data files. 

4. Set control modes of C:\"APS to log the \ al­
idation error by epoch. 

u. Generate random initial weight ~·alues be­
tween -0.2 and 0.2. 

6. Initiate execution on the C:'\APS. L~pon 

completion, results are returned in a pre­
defined C structure. 

7. Identify epoch number at which error on 
validation set was lowest. 

8. Retrain, starting with same initial weights. 
stopping at epoch found in previou:-; step. 

9. Using the weights found in the previous 
step, calculate the mean square error over 
the testing set. 

10. Sa,·e results to a file and repeat afwr 
changing the learning rates, number of 
hidden units, or training and validation 
sets or input repre:-;entation (by specifying 
different data files). 

All data for a given representation is stored in a 
file with one pattern per line and alternating be­
tween baseline and mental arithmetic tasks. To 
produce the training, validation, and te:-;ting data 
files, this file is split into 10 equally sized pieces 
and each piece is converted into the binarv format 
required by the CNAPS server. This ster~ is per­
formed using the conversion tool cv from Adap­
tive Solutions. The assembly from these 10 part:-; 
into training, validation, and testing sets was im­
plemented in the Tel scripting language. The Tell 
Tk toolkit and shell is a public domain, interactive 

programming environment for creating graphical 
user interfaces [17] and general utilities. We 
chose T cl to implement this for two reasons. First. 
we plan to de,·elop a graphical user interface to 
facilitate the development aud visualization of dif­
ferent representations of EEG ~ignals. "ce will also 
add components to the CCI to allow us to control 
the nmning of the Cl'\APS server and analyzf the 
results. The second rea;;on we chose Tel is the 
ease of programming in its interactive eiwiron­
ment. 

4 Results 

Table 1 shows the results of all classification 
experiments a:-; the a\·erage percent of te,;t pat­
terns clas:-;ilied correctly, out of 1;)8 patterns. This 
table include;; 90% confidence iuten ak Lased on 
90 repetitions (see Section 2. "7). 

Clearly the best classification accuracy is 
achieved with the freyuency-band representation. 
giving an average accuracy of about "7-i% for a 
network with -±0 hidden units. thou~h the accu­
racy varies little for other network size:-;. including 
a network with a single hidden unit. Performance 
with the other representations is significantly 
lower, ranging from ;)0% to 53%. The effect of the 
number of hidden units is slightly more significant 
for the unprocessed and K-L representations 
than for the frequency-band representation. 
These results suggest that the energy within stan­
dard frequency bands is more useful in discrimi­
nating the two mental tasks than is the unproc­
essed data. or dimensionallv-reduced data. This 
hypothesis must be tested by further experimenta­
tion. It appears that the performance of the un­
proces:-;ed and K-L repre,;entations is increasinl! 
with network size. but the differences are not sta­
tistically significant. We ha,·e not yet tried net­
works with more than 80 hidden unit;;. 

To determine which frequency Lands or asym­
metry ratios were most usefuL the weights to 
which the neural network converged must be ex-

Table 1. Percent of Test Patterns Classified 
Correctly for Different Sized l\'etworks and 
Different Signal Representations 

Hidden Unprocessed 
l'nits (250Hz) 

40 
5 
1 

53.2 ± 0.6 
52.8 ± 0.6 
52.1 ± 0.5 

K-L 

51.7 ± 0.6 
51.8 ± 0.7 
50.4 ± 0.5 

Frequency­
Bands 

73.9 ± o.: 
?2.9 ± 0.6 
?3.1 ± 0.6 
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amined. The weight magnitudes prm·ide some in­
formation about which inputs are most relevant. 
More informative would be the partial derivatives 
of the network output with respect to each input 
component, showing which input components 
have the greatest effect on the output for a given 
input pattern. 

4.1 Benefit of Parallel Implementation 

To obtain the results reported here, each network 
was trained a number of times to approximately 
optimize the training algorithm's parameters-the 
learning rates for the output and hidden layer. Af­
ter finding good parameter values, 90 runs of 
1,000-5,000 epochs were made with each net­
work to calculate the averages in Table 1. The use 
of the parallel Ci'APS server made the scope of 
this study practical. 

To estimate the actual benefit of using the 
Cl\"APS server. we observed the execution time of 
training various sized networks for 1 ,000 epochs 
using the unprocessed data representation. 
Results are graphed in Figure 9 as the minutes of 
execution time versus number of hidden units. 
Execution time increases approximately linearly 
in the number of hidden units for the serial Spare 
10, but the execution time for the parallel Ci'APS 
server increases from 3.8 minutes for two hidden 
units to only 4.1 for 80 hidden units. A network of 
80 hidden units takes about 2-tO times longer on 
the Spare 10 than on the Cl\"APS server. Running 

Minutes 
of 

Execution 
Time 

16.5 hours 

Sun Spare 10 . 

500-1 .. 
I 

/' 

I 
I 

l ()() ' ;• 4.1 minutes l/ 128-Node CNAPS / 
0 -~··---,----. ---------, 

2 10 20 40 80 
Number of Hidden Units 

FIGURE 9 Minutes of execution time for increasin!! 
network size for the parallel C~APS ~erver and a serial 
Sun Spare 10. All runs were for 1,000 epochs. 

90 repetitions of the training procedure for a -tO 
hidden unit network took approximately 6 hours 
on the Cl\'APS Server; on the Spare 10 this would 
require 37 days. 

4.2 Program Development Effort 

~lost of the implementation effort for this study 
was devoted to extracting the binary EEG data 
from tape, separating and gathering the data for 
each experiment, dividing the data into segments, 
then normalizing and converting to the binary for­
mat for the Ci'APS machine. Writing the pro­
grams for running on the Cl\'APS server took one 
graduate student approximately one month to 
learn how to use the library. This effort is detailed 
below: 

Retrieving data from tape: This required 
discussions with Keirn to fully understand the 
format of the data on the tape. One graduate 
student wrote a C program to convert the data 
to ASCII and extract the data we needed to run 
each program. Effort: 2 weeks. 
Generating training and testing data: The 
data had to be segmented into quarter-second 
intervals, assigned a correct classification 
value, normalized, divided into training and 
testing sets, and converted into the binary form 
required by the Ci'APS machine. Two gradu­
ate students worked on this phase. Effort: 3 
weeks. 
Implementing the eigenvector analysis: 
The 1.\"umerical Recipes algorithm [19] was em­
bedded into a C program that performed the 
eigenvector decomposition and projected all 
data vectors onto the highest ranked eigenvec­
tors. Effort: 1 week. 
Implementing the frequency analysis: A C 
program was written to compute the Burg AR 
coefficients using the evlrnen and rnerncof C 
described by Proakis and Manolakis [19]. Ef­
fort: 1 week. 
Implementing backpropagation: One stu­
dent taught himself how to program the CNAPS 
machine using the library of backpropagation 
routines. He wrote a C program that accepts a 
number of command line arguments, calls the 
appropriate Ci'APS routines to initialize the 
machine and the backpropagation algorithm, 
and then calls the routines to perform the train­
ing and saving of results. Effort: 1 month. 
Interpretation of results: Awk [ 1] scripts 
were written to calculate means and standard 
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deviations of the results from multiple runs. Ef­
fort: 1 dav. 

5 CONCLUSIONS 

Two conclusions can be drawn from this work. 
The first is related to the results, the second to the 
method. The results strongly suggest that the fre­
quency-based representation produces signifi­
cantlv more accurate classification than do the 
unprocessed or K-L representations. The size of 
the neural network appears to have little effect on 
the classification accuracv. This means that the 
signal representations we have considered do not 
bear >-ignificant relation,.;hips much beyond the 
near-linear relationships that are possible with 
networks having a sinl!le hidden unit. 

This conclusion must be supported by further 
experimentation. \\~e are currently investigating 
the effect of awraging the output of the network 
over successive quarter-second segments. Prelim­
inary results show that by doing so the classifica­
tion accuracy can be increased up to 90% correct 
by awraging owr segments from the full 1 0-sec­
ond recording period. This, of course, would be 
impractical for the real-time control of a wheel­
chair. \\~e are also considering other representa­
tions, such as wavelets. \\~avelets represent both 
frequency and time features of a signal. For this 
reason, periods over which a signal is nonsta­
tionary are more accurately represented with 
wavelets than with a strictly frequency-based rep­
resentation. 

The second conclusion from this study is the 
utility of the parallel implementation of the error 
back propagation algorithm. A much greater num­
ber of network sizes and initial weight vectors 
could be evaluated on the Cl'APS server than 
could be completed in a comparable amount of 
time on a serial machine. The experiments re­
ported here would have required over 1 month to 
complete on a Sun Spare 10. 

The utility of this parallel implementation for a 
portable real-time EEG pattern recognizer is cur­
rently not known. If networks with only one or two 
hidden units suffice, then a parallel implementa­
tion of the neural network classifier may be un­
necessary. However, a parallel implementation of 
the Burg algorithm for computing the frequency­
based representation might significantly reduce 
the overall response time. Parallel algorithms for 
computing the FFT (Fast Fourier Transform) on 
SI\1D architectures are well known, [7, 11, 22], 

but the Burg method. based on an AH model. pro­
duces a smoother spectrum than does the FFT 
when applied to noisy signals. such as EEC. In­
cremental methods. based on Kalman filter tech­
niques. exist for cakul<.~ting the coefficient,; of an 
AH model as new samples are received. \'re are 
investigating parallel implementations of the;;e al­
gorithms as efficient means for computing th~ fre­
quency-based representations. However. the pri­
mary bottleneck we currenth· face in a real-tinw . . 
implementation is the apparent requirenwnt of 
averaging o\·er a number of successive time ;;eg­

ments to gain sufficient cla,.;sifieation accuracy. 
Even if the clas,.,ifier pro\·id1·s a real-time rP­
sponse. ,.;en-ral seconds of EEG samples must lw 
processed before a confident ta,.;k idPntification 
can be made. Thus. funher experimentation with 
diffPrent rPpresentation~ is required. 

ACKNOWLEDGMENTS 

The authors would like to thank .Iorge Aunon and Za­
chary Keirn for prm iding: tlw EEG data. Ed Oro,.;z for 
installing and imerpretill)! the data. and Andrea,.; 
\\·eigend for his helpful discussions concemin)! the 
analvsis of multivariate time ,.;cries. This research was 
funded by the :\ational Science Foundation through 
grant IHI-9:20:2100. 

REFERENCES 

[1] A. \·. Aho. B. \\-. Kerninghan. and P. J. \\·ein­
berger. The A II K Programming Language. Head­
ing. "'lA: Addi,.ull- \\"e;;ley. 1988. 

[2] J. C. Doyle. H. Ornstein. and D. Calin. ··Lateral 
specialization of cogniti,·e mode: II EEG fre­
quency analysis.·· Pb:n·hophysiology. Yol. 11. pp. 
567-578. 1974. 

[3] II. Ehrlichman and ~1. S. \,.ien1·r. ··EEG asym­
metry during covert me11tal acth·ity. ·· Ps_l·chophy­
siology. vol. 17, pp. 228-235. 1980. 

[4] L.A. Farwell and E. Donchin. ··Talkillg off the 
top of your head: Toward a mental prosthe:-;is uti­
lizing eYent-rdated brain potentials.·· Electruen­
cephalogr. ('/in .. \'eumphysiol., vol. 70. pp .. 510-
.523. 1988. 

[5] D. Galin and H. E. Ornstein, '·Hemi,pherie spe­
cialization and the duality of consciousness." 
/fum. Behuv. Bruin Function. 1973. 

[ 6 J A. S. Gevins. ··Oven·iew of computer analysis:' 
in Jfethods of Anu6-sis of Brain Electrical and 
Jfagnetic Signals, yoJ. 1 of EEG Handbook, A. S. 
Gcvins and A. Hemond. Eds. :\few York: Elsevier, 
1987, pp. 31-83. 



DETER\11:"1'\"G \IE:"TAL STATE FRO\! EEG SIG:"ALS 183 

[7] L. fl. JamiP~on. P. T. \ltwllt>r Jr.. and II. .fay 
Siq!PI. ··FFT al!-!"orithm-; for Sl\ID paralic•( pro­
ce~sin;r systems.·· J. Pam !lei !Jistrih. Comput., 
vol. :3. pp. -t8-71. 198h. 

[8] I L Jasper. ··The ten twenty elPctrode svste:>rn of 
the international fc·dc•ration·. l~'lectrrwnceplwlogr. 
C'lin. i\"europhysiol .. mi. 10. pp. :371-:37.5. 
1958. 

[9] Z. A. Keirn. "Alternative· f11()(1f's of communica­
tion lwtween man and machine ... \la~tc>r· s thesi:;. 
Purdue Lniversity, 1988. 

[10] Z. A. KPirn and J. I. Aunon. ·'A nc•w mode of 
communication lwtween man and his surround­
in!-!s."' IEI:'f,· Trans. /lionwd. Enp: .. n>l. :37. pp. 
1209-121-f. De-c. 1990. 

[11] D. E. Kirk and J. G. Yc·rly. ""An algorithm for 
di,;trilntted computation of FFTs. · · Comput. Elec. 
'-"rtg .. vol. 1:3. pp. 8:3-9(J. 1987. 

[12] T. Kohmwn. Se/f-Orp:ani=ntion and. lssociutice 
Jlemory. Berlin: Springer-\.c·rlag. 1 98-t. 

[1:3] H. II. Kraft. 0. H. \litdwll. \1. L. Langui,;. and 
G. f I. \\"heatley. "Jit .. misplwric a,;ymnwtry during 
six- to ei;rht-p .. ar old perfonnance of piaw·tian 
consPrvation and rcadin;r ta,;h. ·· .\"europs_}·c/wlo­
gia. vol. 22. pp. 6:37-6-t:J. 1WH. 

[ H J Y. LeCun. J. S. DPnker. and S. A. Solla. "Optimal 
brain damal!e. ·· in Adnmces in .\"eurollnformu­
tion Processing S.1·stems, vol. 2. D. S. Touretzky. 
Ed. San \lateo. C.\: \lor;ran Kaufmann. 1990. p. 
. 598. 

[1:)] S.-L. Lin. Y.-J. Tsai. and C.-Y. Liou. "Con­
scious m<'ntal tasks and tlwir EEG si;rnal~. ·· 
Jlcd. Bioi. Eng. Comput .. vol. :31. pp. -t21--t2::i. 
199:3. 

[1 b J \I. C. \Inzer and P. Smolc·n~b·. ""Skdtonization: 
A technique for trimrninf! tht• fat from a network 
via rdevance asse>"srnent. · · in Arft·ances in .\"eural 

Information Systems. vol. 1. D. S. Touretzky. Ed. 
San Mateo, CA: Morgan Kaufmann. 1989, pp. 
107-115. 

[17] J. K. Oustcrhout, Tel ami the Tk Toolkit. Profes­
sional Computing. Heading. \lA: Addison- \\"es­
ley, 199-t. 

[18] W. H. Press, B. P. Flannery. S. A. Teukolsky. and 
W. T. Vetterling, Numerical Recipes inC: The Art 
of Scienfitic Computing. Cambridge: Cambridge 
Lniversity Press, 1988. 

[19] J. G. Proakis and D. G. \lanolakis. Digital Signal 
Processing. New York: Mac\ lilian. 1 992. 

[20] S. Hamachandran and L. Pratt. "Information 
measure based skeletonisation, ·· in Adl'ances in 
Neural Information Systems. vol. -f. San \Jateo. 
CA: ~forgan Kaufmann. 1992. pp. 1080-1087. 

[21] D. E. Rumelhart, G. E. Hinton, and R. W. \\"il­
liams, "Learning internal representations by er­
ror propagation.·· in Parallel Distributed Process­
ing: Explornticms in the Jlicrostructure of 
Cognition, vol. 1, D. E. Rumelhart. J. L. \lcCiel­
land, and The PDP Ht~search Group. Eds. Cam­
bridge, MA: Bradford, 1986. pp. 318-:362. 

[22] P. N. Swartztrauber, '·FFT algorithms for vector 
computers," Parallel Comput., vol. 1, pp. 4-t-
63, 1984. 

[2.3] A. S. Weigend, "On overfitting and the effective 
number of hidden units ... in Proceedings of the 
199.3 Connectionist Jlorfcls Summer School . 
1994, pp. 33.5-342. 

[24] A. S. Weigend, D. E. Rumelhart, and B. A. Hu­
bennan, "Generalization by weight-elimination 
with application to forecasting.,. in ...!d!'anccs in 
i\ieural Information Processing Systems. vol. :3. 
R. P. Lippmann, J. E. \loody. and D. S. 
Touretzky, Eds. San Mateo. CA: \forgan Kauf­
mann. 1991, pp. 875-882. 



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


