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ABSTRACT 

This article discusses the core factorization routines included in the ScaLAPACK library. 
These routines allow the factorization and solution of a dense system of linear equations 
via LU, QR, and Cholesky. They or:-: implemented using a block cyclic data distribution, 
and are built using de facto standard kernels for matrix and vector operations (BLAS 
and its parallel counterpart PBLAS) and message passing communication (BLACS). In 
implementing the ScaLAPACK routines, a major objective was to parallelize the corre­
sponding sequential LAPACK using the BLAS, BLACS, and PBLAS as building blocks, 
leading to straightforward parallel implementations without a significant loss in perfor­
mance. We present the details of the implementation of the ScaLAPACK factorization 
routines, as well as performance and scalability results on the Intel iPSC/860, Intel 
Touchstone Delta, and Intel Paragon System. © 1996 John Wiley & Sons, me. 

1 INTRODUCTION 

Current advanced architecture computers are 
non-uniform memorv access (NU.VlA) machines. 
They possess hierarchical memories, in which ac­
cesses to data in the upper levels of the memory 
hierarchy (registers, cache, and/ or local memory) 
are faster than those in lower levels (shared or off­
processor memory). One technique to more effi­
ciently exploit the power of such machines is to 
develop algorithms that maximize reuse of data in 
the upper levels of memory. This can be done by 
partitioning the matrix or matrices into blocks and 
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by performing the computation with matrix-vec­
tor or matrix-matrix operations on the blocks. A 
set of BLAS (Level 2 and 3 BLAS) [15, 16] were 
proposed for that purpose. The Level 3 BLAS 
have been successfully used as the building blocks 
of a number of applications. including LAPACK 
[1, 2], which is the successor to UNPACK [14] 
and EISPACK [23]. LAPACK is a software library 
that uses block-partitioned algorithms for per­
forming dense and banded linear algebra compu­
tations on vector and shared memory computers. 

The scalable library we are developing for dis­
tributed memory concurrent computers will also 
use block-partitioned algorithms and be as com­
patible as possible with the LAPACK library for 
vector and shared memory computers. It is there­
fore called ScaLAPACK ("Scalable LAPACK") 
[ 6], and can be used to solve "grand challenge" 
problems on massively parallel, distributed mem­
ory, concurrent computers [5, 18]. 
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The basic linear algebra communication sub­
programs (BLACS) [;3] provide ease-of-use and 
portability for message passing in parallel linear 
algebra applications. The parallel BLAS (PBLt\S) 
assume a block cyclic data distribution and are 
functionally an extended subset of the Level L 2, 
and :3 BLAS for distributed memorv svstems. 
They are based on previous work with the parallel 
block BLAS (PB-BLAS) [8]. The current model 
implementation relies internally on the PB-BLAS .. 
as well as the BLAS and the BLACS. The ScaLA­
PACK routines consist of calls to the sequential 
BLAS, the BLACS, and the PBLAS modules. Sca­
LAPACK can therefore be ported to any machine 
on which the BLAS and the BLACS are available. 

This article presents the implementation de­
tails, performance, and scalability of the ScaLA­
PACK routines for the LL QR, and Cholesky fac­
torization of dense matrices. These routines have 
been studied on various parallel platforms by 
many other researchers [12, 13, 19j. \Ve maintain 
compatibility between the ScaLAPACK codes and 
their LAPACK equivalents by isolating as much of 
the distributed memory operations as possible in­
side the PBLAS and ScaLAPACK auxiliary rem­
tines. Our goal is to simplify the implementation of 
complicated parallel routines while still maintain­
ing good performance. 

Currentlv the ScaLAPACK librarv contains . . 
Fortran 77 subroutines for the analysis and solu­
tion of systems of linear equations, linear least 
squares problems, and matrix eigenvalue prob­
lems. ScaLAPACK routines to reduce a real 1-!en­
eral matrix to Hessenberg or bidiagonal form. and 
a symmetric matrix to tridiagonal form are consid­
ered in [ 11]. 

The design philosophy of the ScaLAPACK li­
brarv is addressed in Section 2. In Section 3. we 
describe the ScaLAPACK factorization routines 
by comparing them with the corresponding LA­
PACK routines. Section 4 presents more details of 
the parallel implementation of the routines and 
performance results on the Intel family of com­
puters: the iPSC/860. the Touchstone Delta. and 
the Paragon. In Section 5. the scalability of the 
algorithms on the systems is demonstrated. Con­
clusions and future work are presented in Sec­
tion 6. 

2 DESIGN PHILOSOPHY 

In ScaLAPACK, algorithms are presented in 
terms of processes. rather than the proc:Pssors of 

the physical hardware. A process is an indepen­
dent thread of control with its own distinct mem­
ory. Processes communicate by pairwise point-to­
point communication or by collective comm­
unication as necessary. In general there may be 
several processes on a physical processor. in 
which case it is assumed that the run-time svstem 
handles the scheduling of processes. For example. 
execution of a process waiting to receive a mes­
sage may be suspended and another process 
scheduled, thereby overlapping communication 
and computation. In the absence of such a so­
phisticated operating system, ScaLAPACK has 
been developed and tested for the case of one pro­
cess per processor. 

2.1 Block Cyclic Data Distribution 

The way in which a matrix is distributed over the 
processes has a major impact on the load balance 
and communication characteristics of the concur­
rent algorithm, and hence largely determines its 
performance and scalability. The block cyclic dis­
tribution provides a simple, yet general-purpose 
way of distributing a block-partitioned matrix on 
distributed memory concurrent computers. The 
block cyclic data distribution is parameterized by 
the four numbers P, Q, mh. and nh, where P X Q is 
the process grid and mt, X n!J is the block size. 
Blocks separated by a fixed stride in the column 
and row directions are assigned to the same pro­
cess. 

Suppose we have JJ objects indexed by the in­
tegers 0, 1. . . . , :VI - 1. In the block cyclic data 
distribution the mapping of the global index, m. 
can be expressed as m ~ (p, b. i). where p is the 
logical process number, b is the block number in 
process p, and i is the index within block b to 
which m is mapped. Thus. if the number of data 
objects in a block is m!J. the block cyclic: data dis­
tribution may be written as follows: 

m ~(~mod P .. l~J. m mod mh) 
where s = l m/ m1,J and P is the number of pro­
cesses. The distribution of a block-partitioned 
matrix can be regarded as the tensor product of 
two such mappings: One that distributes the rows 
of the matrix over P processes. and another that 
distributes the columns over (J processes. That is. 
the matrix element indexed globally by (m. n) can 
be written as 

(m, n) ~ ((p. q) .. (b. d). (i. j)). 
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FIGURE 1 Example of a block cyclic data distribution. 

Figure 1a shows an example of the block cyclic 
data distribution, where a matrix with 12 X 12 
blocks is distributed over a 2 X 3 grid. The num­
bered squares represent blocks of elements, and 
the number indicates at which location in the pro­
cess grid the block is stored-all blocks labeled 
with the same number are stored in the same pro­
cess. The slanted numbers, on the left and on the 
top of the matrix, represent indices of a row of 
blocks and of a column of blocks, respectively. 
Figure 1b reflects the distribution from a process 
point of view. Each process has 6 X 4 blocks. The 
block cyclic data distribution is the only distribu­
tion supported by the ScaLAPACK routines. The 
block cyclic data distribution can reproduce most 
data di~tributions used in linear algebra computa­
tions. For example, one-dimensional distributions 
over rows or columns are obtained by choosing P 
or Q to be 1. 

The nonscattered decomposition (or pure block 
distribution) is just a special case of the cyclic dis­
tribution in which the block size is given by mh = 

fM/Pl and nb = fN!Ql. That is, 

(m, n) ~ ( (l,:J l:,,J)' 
(0, 0), (m mod mb, n mod nb)). 

Similarly a purely scattered decomposition (or 
two-dimensional wrapped distribution) is another 
special case in which the block size is given by 
mb = nb = 1, 

(m, n) 

~ ((m mod P, n mod Q), (l; J, l~J), (0, 0)) · 

2.2 Building Blocks 

The ScaLAPACK routines are composed of a 
small number of modules. The most fundamental 
of these are the sequential BLAS, in particular the 
Level2 and 3 BLAS, and the BLACS, which per­
form common matrix-oriented communication 
tasks. ScaLAPACK is portable to any machine on 
which the BLAS and the BLACS are available. 

The BLACS comprise a package that provides 
ease-of-use and portability for message passing in 
a parallel linear algebra program. The BLACS _effi­
cientlv support not only point-to-point operatiOns 
betw~en processes on a logical two-dimensional 
process grid, but also collective communications 
on such grids, or within just a grid row or column. 

Portable software for dense linear algebra on 
multiple-instruction, multiple-data (Ml.\1D) plat­
forms may consist of calls to the BLAS for compu­
tation and calls to the BLACS for communication. 
Because both packages will have been optimized 
for each particular platform, good performan~e 
should be achieved with relatively little effort. We 
have implemented the BLACS for the Intel family 
of computers, the TMC CM-5, and IR\1 SP1 a_nd 
SP2. and PVM. Several vendors are producmg 
optimized versions of the BLACS (e.g., Cray. IB~1, 
and Meiko). We plan to produce an MPI version of 
the BLACS in the near future. 

The PBLAS are an extended subset of the 
BLAS for distributed memory computers and op­
erate on matrices distributed according to a block 
cyclic data distribution scheme. These restrictions 
p.ermit certain memory access and communica­
tion optimizations that would not be possible (or 
would be difficult) if general-purpose distributed 
Level 2 and Level 3 BLAS were used [7, 9]. 
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FIGURE 2 Hierarchichal view of ScaLAPACK. 

The sequential BLAS, the BLACS. and the 
PBLAS are the modules from which the hiaher­
level ScaLAPACK routines are built. The PikAS 
~re used as the highest level building blocks for 
I~plementing the ScaL-\PACK library and pro­
vide the same ease-of-use and portabilitv for Sca­
LAPACK that the BLAS provide for LAPACK. 
Most of the Level 2 and 3 BLAS routines in LA­
PACK routines can be replaced with the corre­
sponding PBLAS routines in ScaLAPACK. so the 
source code of the top software laver of ScaLA­
PACK looks very similar to that. of LAPACK. 
Thus, the ScaLAPACK code is modular, deaL 
and easy to read. 

Figure 2 shows a hierarchical view of ScaLA­
PACK. Main ScaLAPACK routines usuallv call 
only the PBLAS, but the auxiliary ScaLAPACK 
routines may need to call the BLAS directlv for 
local computation and the BLACS for com~uni­
cation among processes. In manv cases the Sca­
LA~ACK library will be sufficier{t to build appli­
catiOns. However, more expert users mav make 
use of the lower-level routines to build cus;omized 
routines not provided in ScaLAPACK. 

2.3 Design Principles 

ScaLAPACK is a message-passing version of LA­
PACK and is designed to be efficient across a wide 
range of architectures. The performance of the 
routines relies ultimatelv on the architectural 
characteristics of the ~achine. HoweveL the 
codes are flexible in that they allow the tuning of 
certain parameters such as block size and the size 
of the process grid. This flexibilitv ensures that the 
ScaLAPACK routines will be able to achieve good 
performance. 

The ScaLAPACK routines. like their LAPACK 

equivalents, are designed to perform correctlv for 
a wide range of inputs. Whenever practicaL .thev 
behave appropriately when overflow and under~ 
flow problems are encountered or a routine is used 
incorrectly. Examples of error handling are giYen 
in Sections 4.2 and 4.3. 

3 FACTORIZATION ROUTINES 

In this section, we first brieflv describe the se­
quential, block-partitioned ve;sions of the dense 
LC, QR, and Cholesky factorization routines of 
the LAPACK library. B~cause we also wish to dis­
cuss the parallel factorizations, we describe the 
right_-looking versions of the routines. The right­
looking variants minimize data communication 
and distribute the computation across all pro­
cesses [ 17]. After describing the sequential factor­
izations, the parallel versions will be discussed. 

For the implementation of the parallel block­
partitioned algorithms in ScaLAPACK. we as­
sume that a matrix A is distributed over a P X Q 
process grid with a block cvclic distribution and a 
block size of nb X nh matching the block size of the 
algorithm. Thus, each nvwide column (or row) 
panel lies in_ one column (row) of the process grid. 

In the Lu, QR, and Choleskv factorization rou­
tines, in which the distributio~ of work becomes 
uneven as the computation progresses, a larger 
block size results in greater local imbalance. but 
reduces the frequency of communication between 
processes. There is, therefore, a tradeoff between 
load imbalance and communication startup cost 
that can be controlled by varying the block size. 

In addition to the load imbalance that arises as 
distributed data are eliminated from a computa­
tion, load imbalance may also arise due to com­
putational "hot spots" ~here certain processes 
have more work to do between synchronization 
points than others. This is the cas~, for example, 
in the LU factorization algorithm where partial 
pivoting is performed over rows in a sinale column 

"' of the process grid while the other processes are 
idle. Similarly, the evaluation of each block row of 
the U matrix requires the solution of a lower trian­
gular system across processes in a single row of the 
process grid. The effect of this type of load im­
balance can be minimized through the choice of P 
and Q. 

3.1 LU Factorization 

The LC factorization applies a sequence of Gaus­
sian eliminations to form A = PLU, where A and L 



are M X N matrices, and U is anN X N matrix. L 
is a unit lower triangular (lower triangular with 1 's 
on the main diagonal), U is an upper triangular, 
and Pis a permutation matrix, which is stored in a 
min(M, N) vector. 

At the k-th step of computation (k = 1. 
2, . . . ), it is assumed that them X n submatrix of 
A:k'(m=M- (k-1)·nb,n=N- (k-1)·nb)isto 
be partitioned as follows, 

(
£11 U11 

=P 
£21 U11 

where the block A 11 is nb X nh, A12 is nb X (n - n!J). 
A21 is (m- nh) X nb, and A22 is (m- nh) X (n­
nb) 0 £11 is a unit lower triangular matrix and u11 is 
an upper triangular matrix. 

At first, a sequence of Gaussian eliminations is 
performed on the first m X nh panel of A k: (i.e .. 
A11 andA 21 ). Once this is completed, the matrices 
£11, £21 , and U11 are known, and we can rear­
range the block equations, 

U12 ~ (L11t1A12· 

An ~ A22 - £21 Uu = £22 U-n. 

The LlJ factorization can be done bv recursivelY 
0 • 

applving the steps outlined above to the (m -
nh) X (n - nh) matrix A22. Figure 3 shows a snap­
shot of the block LU factorization. It shows how 
the column panels, £ 11 and £ 21 , and the row pan­
els, u11 and u12' are computed, and how the trail­
ing submatrix A22 is updated. ln the figure, the 
shaded areas represent data for which the corre­
sponding computations are completed. Later, row 
interchanges will be applied to Lo and £.21 . 

The computation of the above steps in the LA­
PACK routine, DGETRF, involves the following op­
erations: 

FIGURE 3 A snapshot of block LU factorization. 
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1. DGETF2: Apply the LC factorization on an 
m X nbcolumnpanelofA (i.e.,A11 andA21). 
• [Repeat nh times (i = 1, .... nh)] 

-IDAMAX: Find the (absolute) maximum 
element of the i-th column and its loca­
tion. 
-DSWAP: Interchange the i-th row with 
the row that holds the maximum. 
-DSCAL: Scale the i-th column of the 
matrix. 
-DGER: Cpdate the trailing submatrix. 

2. DLASWP: Apply row interchanges to the left 
and the right of the panel. 

3. DTRSM: Compute the nh X (n - nt,) row 
panel of U, 

4. DGEMM: Cpdate the rest of the matrix. A22, 

The corresponding parallel implementation of 
the ScaLAPACK routine. PDGETRF. proceeds as 
follows: 

1. PDGETF2: The current column of processe:o 
performs the LU factorization on an m X nh 
panel of A (i.e., A11 and A21 ). 
• [Repeat n 1, times (i = 1. . . .. nh)] 

-PDAMAX: Find the (absolute) maximum 
value of the i-th column and its location 
(pivot information will be stored on the 
column of processes). 
-PDLASWP: Interchange the i-th row with 
the row that holds the maximum. 
-PDSCAL: Scale the i-th column of the 
matrix. 
-PDGER: Broadcast the i-th row column­
wise ( (n~; - i) elements) in the current 
column of processes and update the trail­
ing submatrix. 

• Every process in the current process 
column broadcasts the same pivot infor­
mation rowwise to all column:,; of pro­
cesses. 

2. PDLASWP: All processes apply row inter­
changes to the left and the right of the cur­
rent panel. 

3. PDTRSM: £ 11 is broadcast along the current 
row of processes, which converts the row 
panel A12 to U12. 

4. PDGEMM: The column panel £ 21 is broadcast 
rowwise across all columns of processes. 
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The row panel U12 is broadcast columnwise 
down all rows of processes. Then, all pro­
cesses update their local portions of the rna­
trix, A22. 

3.2 QR Factorization 

Given an J/ X N matrix A, we seek the factoriza­
tion A = QR, where Q is an J;J X :Vf orthogonal 
matrix and R is an J;f X :V upper triangular matrix. 
At the k-th step of the computation, we partition 
this factorization to the m X n submatrix of A k as 

A"·= (A 1 
Au) = Q. (R,, 
An 0 

where the blockA 11 is nt, X niJ. A 12 is nh X (n- niJ). 

A2 1 is (m - nh) X nh, and An i,; (m - nh) X (n -
niJ). A 1 is an m X nh matrix containing the first 
nh columns of the matrix A "· andA 2 is an m X (n­
nh) matrix containing the last !n - nh) columns of 

( (A,,) (A12)) A" i.e., A, A
21 

and A 2 = An . R 11 is a 

nh X nh upper triangular matrix. 
A QR factorization is performed on the first m X 

nh panel of A 'k (i.e., A 1 ). ln practice, Q is com­
puted by applying a series of Householder trans­
formations to A, of the form, H; =I- T;v;v/"where 
i = 1, . . . , nh. The vector V; is of length m with 
O's for the first i - 1 entries and 1 for the i-th 
entry, and T; = 2/(v! v;). During the QR factoriza­
tion, the vector v; overwrites the entries of A below 
the diagonal and T; is stored in a vector. Further­
more, it can be shown that Q = H 1 lh · · · IIn,, = 

I- VTVT, where Tis n 1, X nh upper triangular and 
the i-th column of V equals V;. This is indeed a 
block version of the QR factorization [ 4, 22] and 
is rich in matrix-matrix operations. 

The block equation can be rearranged as 

(
A",2) (R,.,) -_ --T- TT A2 - - ~ - Q A2 - (I- VT V )A 2 . 
A22 R22 

A snapshot of the block QR factorization is shown 
in Figure 4. During the computation, the se­
quence of the Householder vector Vis computed, 
and the row panels R 11 and R12 and the trailing 
submatrix A22 are updated. The factorization can 
be done by recursively applying the steps o_utlined 
above to the (m - nh) X (n - nb) matrix A22. 

The computation of the above steps of the LA­
PACK routine, DGEQRF, involves the following op­
erations: 

~ 
. ; 

Ro Ro 
-------

Au Au [ Rn 
I 

Vo 
I 

Vo I 
A21 A22 :v A22 

1 
I 
I 

FIGURE 4 A snapshot of block QR factorization. 

1. DGEQR2: Compute the QR factorization on 
an m X nh panel of A k (i.e .. A1) 

• [Repeat nh times (i = 1. ... , nh): 
-DLARFG: Generate the elementarv re­
flector V; and T;. 

-DLARF: Cpdate the trailing submatrix 

- T T A, ~If A, = (I- Tv v \41 l { l l ;~ 

2. DLARFT: Compute the triangular factor T of 
the block reflector Q. 

3. DLARFB: Apply QT to the rest of the matrix 
from the left 

• DGEMM: w ~ VTA2 
• DTRMM: w ~ TTW 

The corresponding steps of the ScaLAPACK rou­
tine, PDGEQRF, are as follows: 

1. PDGEQR2: The current column of processes 
performs the QR factorization on an m X nh 
panel of A ik) (i.e., A1) 

• [Repeat nb times (i = 1, ... , nb)] 
-PDLARFG: Generate elementary reflec­
tor v; and T;. 

-PDLARF: Cpdate the trailing submatrix. 
2. PDLARFT: The current column of processes, 

which has a sequence of the Householder 
vectors V, computes T only in the current 
process row. 

3. PDLARFB: Apply Q T to the rest of the matrix 
from the left 
• PDGEMM: Vis broadcast rowwise across all 

columns of processes. The transpose of V 



is locally multiplied by A2. then the prod­
ucts are added to the current process row 
(W~ vrAz). 

• PDTRMM: T is broadcast rowwise in the 
current process row to all columns of pro­
cesses and multiplied with the sum UV ~ 
TTW). 

• PDGEMM: W is broadcast columnwise 
down all rows of processes. Now, pro­
cesses have their own portions of V and W. 
then they update the local portions of the 
matrix 

3.3 Cholesky Factorization 

Cholesky factorization factors anN X N, symmet­
ric, positive-definite matrix A into the product of a 
lower triangular matrix L and its transpose, i.e., 
A = LLT (or A = U'~'U, where U is upper triangu­
lar). It is assumed that the lower triangular portion 
of A is stored in the lower triangle of a two-dimen­
sional array and that the computed elements of L 
overwrite the given elements of A. At the k-th step, 
we partition then X n matrices Ark:, L and £ik'T, 
and write the system as 

where the block A11 is nb X nb, A21 is (n- nb) X 

nb, andA22 is (n- nb) X (n- nb). £11 and£22 are 
lower triangular. 

The block-partitioned form of Cholesky factori­
zation may be inferred inductively as follows. If we 
assume that £ 11 , the lower triangular Cholesky 
factor of A 11 , is known, we can rearrange the block 
equations. 

£21 ~ A21 (Lf1J-\ 

A22 ~ A22 - £21 LJ~ = L22Lf2. 

A snapshot of the block Cholesky factorization al­
gorithm in Figure 5 shows how the column panel 
£(kl (£11 and £21) is computed and how the trailing 
submatrix A22 is updated. The factorization can 
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Lo 

FIGURE 5 A snapshot of block Cholesky factoriza­
tion. 

be done by recursively applying the steps ?utlined 
above to the (n - nt,) X (n - nh) matrix A22. 

In the right-looking version of the LAPACK 
routine, the computation of the above steps in­
volves the following operations: 

1. DPOTF2: Compute the Cholesky factoriza­
tion of the diagonal block A 11 . 

2. DTRSM: Compute the column panel £21. 

3. DSYRK: Cpdate the rest of the matrix, 

The parallel implementation of the correspond­
ing ScaLAPACK routine, PDPOTRF, proceeds as 
follows: 

1. PDPOTF2: The process P,, which has the 
nb X nh diagonal block A 11 , performs the 
Choleskv factorization of A 11 . 
• P; performs A 11 ~ L 11 L{~ , and sets a flag 

if A 11 is not positive definite. 
• P, broadcasts the flag to all other pro­

cesses so that the computation can be 
stopped if A 11 is not positive definite. 

2. PDTRSM: L 11 is broadcast columnwise by P; 
down all rows in the current column of pro­
cesses, which computes the column of 
blocks of £21 . 

3. PDSYRK: The column of blocks £ 21 is broad­
cast rowwise across all columns of processes 
and then transposed . .[\.;ow, processes have 
their own portions of £21 and Lf1 . They up­
date their local portions of the matrix A22 . 
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4 PERFORMANCE RESULTS 

We have outlined the basic parallel implementa­
tion of the three factorization routines. In this sec­
tion, we provide performance results on the Intel 
iPSC/860, Touchstone Delta, and Paragon sys­
tems. We also discuss specific implementation de­
tails to improve performance and possible varia­
tions of the routines that might yield better 
performance. 

The Intel iPSC/860 is a parallel architecture 
with up to 128 processing nodes. Each node con­
sists of an i860 processor with 8 Mbyte of mem­
ory. The system is interconnected with a hyper­
cube structure. The Delta svstem contains .512 
i860-based computational nodes with 16 .\1byte/ 
node, connected with a two-dimensional (2-D) 
mesh communication network. The Intel Paragon 
located at the Oak Ridge 1\"ational Laboratory has 
512 computational nodes, interconnected with a 
2-D mesh. Each node has 32 .\1bvte of memorv . . 
and two i860XP processors, one for computation 
and the other for communication. The Intel iPSC/ 
860 and Delta machines both use the same 40 
MHz i860 processor, but the Delta has a higher 
communication bandwidth. Significantly higher 
performance can be attained on the Paragon sys­
tem, because it uses the faster 50 .\1Hz i860XP 
processor and has a larger communication band­
width. 

On each node all computation was performed 
in double precision arithmetic, using assembly­
coded BLAS (Level 1, 2, and 3), provided by In­
tel. Communication was performed using the 
BLACS package, customized for the Intel systems. 
Most computations by the BLAS and communica­
tion by the BLACS are hidden within the PBLAS. 

A good choice for the block size, mb X nh, was 
determined experimentally for each factorization 
on the given target machines. For all performance 
graphs, results are presented for square matrices 
with a square block size mh = nh. The numbers of 
floating-point operations for an N X N matrix 
were assumed to be 2/3 JV'l for the LL factoriza­
tion, 4/3 N"' for the QR factorization, and 1/3JY1 

for the Cholesky factorization. 

4.1 LU Factorization 

Figure 6 shows the performance of the ScaLA­
PACK LL factorization routine on the Intel iPSC/ 
860, the Delta, and the Paragon in Gflop (Gflop or 
a billion floating-point operations per second) as a 
function of the number of processes. The selected 

15 

... )(_ ... X 

,x- 16 x 32 :Delta 
10 

.x 

0 5000 10000 15000 20000 25000 30000 35000 

Matrix Size. N 

FIGURE 6 Performance of the LL factorization on 
the Intel iPSC/860, Delta. and Paragon. 

block size on the iPSC I 860 and the Paragon was 
mb = nh = 8, and on the Delta was mb = nt1 = 6, 
and the best performance was attained with a pro­
cess aspect ratio, 1/4::::; P/Q::::; 1/2. The LL rou­
tine attained 2.4 Gflop for a matrix size of;\/ = 

10,000 on the iPSC/860; 12.0 Gflop for N = 

26,000 on the Delta: and 18.8 Gflop for 
N = 36,000 on the Paragon. 

The LL factorization routine requires pivoting 
for numerical stability. Many different implemen­
tations of pivoting are possible. In the paragraphs 
below, we outline our implementation and some 
optimizations that we chose not to use in order to 
maintain modularity and clarity in the library. 

In the unblocked LL factorization routine 
(PDGETF2), after finding the maximum value of 
the i-th column (PDAMAX), the i-th row will be ex­
changed with the pivot row containing the maxi­
mum value. Then the new i-th row is broadcast 
columnwise ((nb - i) elements) in PDGER. A 
slightly faster code may be obtained by combining 
the communications of PDLASWP and PDGER. 
That is, the pivot row is directly broadcast to other 
processes in the grid column and the pivot row is 
replaced with the i-th row later. 

The processes apply row interchanges 
(PDLASWP) to the left and to the right of the 
column panel of A (i.e., A11 and A21 ). These two 
row interchanges involve separate communica­
tions, which can be combined. 

Finally, after completing the factorization of the 
column panel (PDGETF2), the column of pro­
cesses, which has the column panel. broadcasts 
rowwise the pivot information for PDLASWP, £ 11 



for PDTRSM, and L 21 for PDGEMM. It is possible to 
combine the three messages to save the number of 
communications (or combine L11 and L2 1 ) and 
broadcast rowwise the combined message. 

Notice that nonnegligible time is spent broad­
casting the column panel of L across the process 
grid. It is possible to increase the overlap of com­
munication to computation by broadcasting 
columns ro"\\rwise as soon as thev are evaluated. 
rather than broadcasting all of the panel across 
after factoring it. ~With these modified communi­
cation schemes, the performance of the routine 
may he increased, but in our experiments we have 
found the improvement to be less than 3% and, 
therefore, not worth the loss of modularity. 

4.2 QR Factorization 

To obtain the elementary Householder vector v;, 
the Euclidean norm of the vector. A,;, is required. 
The sequential LAPACK routine, DLARFG, calls 
the Level 1 BLAB routine. DNRM2, which com­
putes the norm while guarding against underflow 
and overflow. In the corresponding parallel Sca­
LAPACK routine, PDLARFG, each proces::; in the 
column of processes, which holds the vector A,;. 
computes the global norm safely using the 
PDNRM2 routine. 

For consistency with LAPACK, we have chosen 
to store T and V and generate T when necessary. 
Although storing T might save us some redundant 
computation. we believed that consistency was 
more important. 

Them X nb lower trapezoidal part of V. which is 
a sequence of the nb Householder vectors. will be 
accessed in the form. 

where V1 is nb X n,, unit lower triangular and V1. is 
(m - nh) X nb. In the sequential routine, the mul­
tiplication involving Vis divided into two steps: 
DTRMM with V1 and DGEMM with V2.. However, in 
the parallel implementation. Vis contained in one 
column of processes. Let V be a unit lower trape­
zoidal matrix containing the strictly lower trape­
zoidal part of V. P is broadcast ro"\\rwise to the 
other process columns so that every column of 
processes has its own copy. This a_llows us to per­
form the operations involving V in one step 
(DGEMM), as illustrated in Figure 7, and not worry 
about the upper triangular part of V. This one­
step multiplication not only simplifies the imple-
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FIGURE 7 The storage scheme of the lower trapezoi­
dal matrix v in ScaLAPACK QR factorization. 

mentation of the routine (PDLARFB), but may, de­
pending on the BLAS implementation, increase 
the overall performance of the routine (PDGEQRF) 
as well. 

Figure 8 shows the performance of the QR fac­
torization routine on the Intel familv of concurrent 
computers. The block size of mb = n 1, = 6 was 
used on all of the machines. Best performance was 
attained with an aspect ratio of 1 I 4 5: PI Q 5: 1 I 2. 
The highest performances of 3.1 Gflop for j\/ 
10,000 was obtained on the iPSCI860: 14.6 
Gflop for N = 26,000 on the Delta: and 21.0 
Gflop for N = 36,000 on the Paragon. Generally, 
the QR factorization routine has the best perfor­
mance of the three factorizations because the up­
dating process of Q TA = (/ - VTVT)A is rich in 
matrix-matrix operation and the number of float­
ing-point operations is the largest (4:13 N 1). 

4.3 Cholesky Factorization 

The PDSYRK routine performs rank-nh updates on 
an (n - nh) X (n - n,) "ymmetrie matrix A22 with 

Block size = 6 on iPSC/860, Delta. and Paragon 

16 x 32: Paragon 

15 >t .... x 
~-- 16 X 32: Delta 

lO 

5 
/ .-><>< 8 x 16: Paragon 
-st><3t-i<·lt 8 x 16 : Delta 

~~.)< 8 X 16: iPSC/860 

0 5000 10000 15000 20000 25000 30000 35000 

Matrix Size, N 

FIGURE 8 Performance of the QR factorization on 
the Intel iPSC/860, Delta, and Paragon. 
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FIGURE 9 Performance of the Choleskv factorization 
as a function of the block size on 8 X 16 and 16 X 16 
processes of the Intel Delta (/V = 10,000). 

an (n - ni>) X nh column of blocks L 21 . After 
broadcasting L 21 rowwise and transposing it, each 
process updates its local portion of A 22 with its 
own copy of L 21 and L~1 . The update is compli­
cated by the fact that the globally lower triangular 
matrix A22 is not necessarily stored in the lower 
triangular form in the local processes. For details 
see [8]. The simplest way to do this is to repeat­
edly update one column of blocks of A2:z. How­
ever, if the block size is smalL this updating pro­
cess will not be efficient. It is more efficient to 
update several blocks of columns at a time. The 
PBLAS routine, PDSYRK efficiently updates An 
by combining several blocks of columns at a time. 
For details, see [8]. 

The effect of the block size on the performance 
of the Choleskv factoriz:Hion is shown in Figure 9 
on 8 X 16 and 16 X 16 processors of the Intel 
Delta. The best performance was obtained at the 
block size of nb = 24, but relativelv good perfor­
mance could be expected with the block size of 
nb ::=::: 6, because the routine updates multiple 
column panels at a time. 

Figure 10 shows the performance of the Cho­
lesky factorization routine. The best performance 
was attained with the aspect ratio of 1/2 :5 P!Q :S 

1. The routine ran at 1.8 Gflop for N = 9600 on 
the iPSC/860; 10.5 Gflops for N = 26,000 on the 
Delta; and 16.9 Gflop for N = 36,000 on the Par­
agon. Because it requires fewer floating-point op­
erations (1/3 N 3 ) than the other factorizations, it 
is not surprising that its flop rate is relatively poor. 

If A is not positive definite, the Cholesky factor­
ization should be terminated in the middle of the 

computation. As outlined in Section 3.3, a pro­
cess P; computes the Cholesky factor L 11 from A 11 . 

After computing L11 , process P; broadcasts a flag 
to all other processes to stop the computation if 
A11 is not positive definite. If A is guaranteed to be 
positive definite, the process of broadcasting the 
flag can be skipped, leading to a corresponding 
increase in performance. 

5 SCALABILITY 

The performance results in Figures 6, 8, and 10 
can be used to assess the scalabilitv of the factori­
zation routines. In general, concurrent efficiency, 
E, is defined as the concurrent speedup per pro­
cess. That is, for the given problem size, N .. on the 
number of processes used, N1,. 

E'( . u ) 1 T.,(N) 
i'V, Jvl' = -:--\1 T (l\r 7\T) 

..1. p p..~.V .. 1Vp 

where Tp(N, Np) is the time for a problem of size N 
to run on Nl' processes and T., (N) is the time to nm 
on one process using the best sequential algo­
rithm. 

Another approach to investigate the efficiency 
is to see how the performance per process de­
grades as the number of processes increases for a 
fixed grain size, i.e., by plotting isogranularity 
curves in the (l\~,, G) plane, where G is the perfor­
mance. Because 

g. 

G T.,(N) - l'' E(\' .\' \ 
rx T (·\' ;\' \ - . v/, ~ ' .. pi· 

p • •• pi 
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FIGURE 10 Performance of the Choleskv factoriza­
tion on the Intel iPSC/860. Delta. and Paraf!'on. 
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FIGURE 11 Scalabilitv of factorization routint;s on 
the Intel Paragon (5, 20\1byte-node). 

the scalability for memory-constrained problems 
can readilv be accessed bv the extent to which the . . 
isogranularity curves differ from linearity. !so­
granularity was first defined in [ 24]. and later ex­
plored in [2L 20]. 

Figure 11 shows the isogranularity plots for the 
ScaLAPACK factorization routines on the Para­
g(m. The matrix size per process is fixed at 5 and 
20 Mbyte on the Paragon. Refer to Figures 6. 8, 
and 10 for block size and process grid size charac­
teristics. The near-linearity of these plots shows 
that the ScaLAPACK routines are quite scalable 
on this system. 

6 CONCLUSIONS 

We have demonstrated that the LAPACK factori­
zation routines can be parallelized fairly easily to 
the corresponding ScaLI\PACK routines with a 
small set of low-level modules, namely the se­
quential BLAS, the BLACS, and the PBLAS. We 
have seen that the PBLAS are particularly useful 
for developing and implementing a parallel dense 
linear algebra library relying on the block cyclic 
data distribution. In general, the Level 2 and 3 
BLAS routines in the LAPACK code can be re­
placed on a one-for-one basis by the correspond­
ing PBLAS routines. Parallel routines imple­
mented with the PBLAS obtain good 
performance, because the computation per­
formed by each process within PBLAS routines 
can itself be performed using the assembly-coded 
sequential BLAS. 
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In designing and implementing software li­
braries, there is a tradeoff between performance 
and software design considerations, such as mo­
dularity and clarity. As described in Section 4.1, it 
is possible to combine messages to reduce the 
communication cost in several places, and to re­
place the high-level routines, such as the PBLAS, 
by calls to the lower-level routines, such as the 
sequential BLAS and the BLACS. However, we 
have concluded that the performance gain is too 
small to justify the resulting loss of software mo­
dularity. 

We have shown that the SeaLAPACK factori­
zation routines have good performance and scala­
bility on the Intel iPSC/860, Delta. and Paragon 
systems. Similar studies may be performed on 
other architectures to which the BLACS have been 
ported, including PVM, T.\1C C:M-5. Cray T3D, 
and IB.\1 SP1 and SP2. 

The ScaLAPACK routines are currentlv avail­
able through netlib for all numeric data types, sin­
gle precision real, double precision real, single 
precision complex, and double precision com­
plex. To obtain the routines, and the ScaLAPACK 
Reference Manual [10], send the message "send 
index from scalapack" to netlib@ornl.gov. 
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