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ABSTRACT 

Applicative languages have been proposed for defining algorithms for parallel architec­
tures because they are implicitly parallel and lack side effects. However, straightforward 
implementations of applicative-language compilers may induce large amounts of copy­
ing to preserve program semantics. The unnecessary copying of data can increase both 
the execution time and the memory requirements of an application. To eliminate the 
unnecessary copying of data, the Sisal compiler uses both build-in-place and update­
in-place analyses. These optimizations remove unnecessary array copy operations 
through compile-time analysis. Both build-in-place and update-in-place ore based on 
hierarchical ragged arrays, i.e., the vector-of-vectors array model. Although this array 
model is convenient for certain applications, many optimizations are precluded, e.g., 
vectorization. To compensate for this deficiency, new languages, such as Sisal 2.0, have 
extended array models that allow for both high-level array operations to be performed 
and efficient implementations to be devised. In this article, we introduce a new method 
to perform update-in-place analysis that is applicable to arrays stored either in hierarchi­
cal or in contiguous storage. Consequently, the array model that is appropriate for an 
application con be selected without the loss of performance. Moreover, our analysis is 
more amenable for distributed memory and Iorge software systems. © 1996 John Wiley 

& Sons, Inc. 

1 INTRODUCTION 

Languages that follow the applicative paradigm 
have been proposed to define algorithms for paral­
lel architectures [1, 2, 8]. In applicative languages, 
such as Sisal [3, 5], computation is carried out by 
the evaluation of expressions. Because the evalua-
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tion of expressions is not influenced by side effects, 
the order of computation is dependent only on 
the availability of values. As values are computed, 
separate copies can be provided to many indepen­
dent operations that can execute simultaneously, 
thus exploiting parallel architectures. 

An implementation that strictly adheres to the 
applicative model is required to copy data values 
when they are modified. However, the cost associ­
ated with copying large data aggregates, such as 
arrays, can become prohibitive, nullifying the 
benefits achieved through parallel execution. Opti­
mizations are needed to remove the unnecessary 
copying. The Sisal 1.2 compiler, optimizing Sisal 
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compiler (OSC), uses build-in-place analysis [18] 
to preallocate memory for arrays and update-in­
place analysis [ 4] to reduce the copying of arrays. 
The optimizations that are part of these analyses 
are applied to a graph-based intermediate form, 
IF2 [21, 22]. As a result of these analyses, array­
intensive applications written in Sisal 1.2 execute 
as fast as their Fortran equivalents [4, 5, 9]. 

The design of Sisal 1.2 arrays is based on the 
vector-of-vectors array model. Under this model, 
multidimensional arrays are built hierarchically 
from one-dimensiona( arrays, i.e., from vectors 
(12], and are accessed through dope-vectors. Al­
though hierarchical arrays are convenient for many 
applications, it is expensive to manipulate array 
values represented in this model [9]. Because the 
additional expense is unnecessary for applications 
that do not utilize the advantages of the vector-of­
vectors model, other languages use the flat array 
model. Under this model, multidimensional arrays 
are built by the catenation of the subarrays of the 
innermost dimension to form a single one-dimen­
sional array [12]. The array's uniform structure 
allows many more optimizations to be performed, 
such as vectorization. 

The design of Sisal2.0 arrays includes an array 
model we call dimensional ( 10], while retaining 
the ability to express arrays as vector-of-vectors. 
Fully contiguous multidimensional arrays are 
added to the language for two reasons. First, many 
high-level array operations can be both expressed 
succinctly and implemented efficiently [ 17]. These 
operations include subarray definitions, such as 
"tiling," and array comprehension. Other benefits 
from this array design include a constant stride in 
each dimension for vector processing, potentially 
better cache performance via loop optimizations, 
and faster subscripting. 

Second, more efficient storage management is 
possible. The dynamic allocation and deallocation 
of multidimensional arrays are single operations 
instead of traversals. Substantial fractions of exe­
cution time in some Sisal 1. 2 benchmarks were 
devoted to array creation and deletion. A new opti­
mization was developed to alleviate the cost associ­
ated with arrav creation and deletion [ 6]. With 
fully contiguou~ arrays, the hierarchical storage of 
pointers associated with vector arrays is also elimi­
nated. 

We wish to extend and to enhance the perfor­
mance of Sisal 1.2 to version 2.0, so current opti­
mizations based on the vector-of-vectors model 
must be generalized for dimensional arrays. To 
that end, we explain in this article a new algorithm 

for update-in-place analysis that can be applied 
to arrays stored either as vector-of-vectors or in a 
contiguous, multidimensional space [ 11]. 

2 BACKGROUND: IF.x 

IF2 [22] is a graph-based language designed as 
an intermediate form for applicative languages. 
The language is based on and is a superset of 
IF1 [21]. Both languages follow the dataflow 
model. In this model, operations, which are rep­
resented by nodes, execute when all of their 
inputs (represented by edges) are available. How­
ever. IF2 does not strictly adhere to the applica­
tive model, since a set .of primitive nocles that 
allocate and manipulate memory are part of the 
language definition. Artificial dependency edges 
(ADEs), which are used to delay the execution 
of a node until some other node executes, are 
also included in the language. 

Within IF1 and IF2, there are no explicit 
control nodes or control lines. Control-flow con­
structs, such as conditionals and iterators, are 
represented by predefined compound nodes. 
These compound nodes consist of subgraphs that 
define the individual functionality of a control­
flow construct. For example, the LoopB node 
has four subgraphs: the initialization, the test, 
the bodv and the returns. Values are passed 
implicitly' between the subgraphs through ports 
(depicted as boxes as shown in Fig. 1). Since 
interaction between the subgraphs is implicit, 
the control-flow construct can be implemented 
differentlv for different architectures. 

The fc;llowing Sisal "for initial" expression is 
directly translated into the IF1 graph depicted in 
Figure 1. 

C : initial 
B :=A; 
i : = 1; 

while i <"" N 
repeat 

% the initialization 

% the test 

B :=old Bfold i : OJ; %the body 
i :=old B[old iJ + 1 

returns value of B % the returns 
end for 

Each of the subgraphs corresponds directly to an 
individual part of the iterative-loop construct. The 
expression is computed in the following manner. 
First, the loop variants, B and i, are initially de­
fined. These values are used in the other sub-
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FIGURE 1 Example of a LoopB compound node and 
its subgraphs. 

graphs. Under single-assignment semantics, only 
one redefinition for a loop variant is allowed per 
iteration. Either the previous or the current value 
of the loop variants can be used within the body 
subgraph. The previous value is accessed by pre­
fixing the name of the variant by the keyword 
"old." 

Second, the loop variants are supplied to the 
returns subgraph. The results of the LoopB node 
are prepared incrementally via the returns sub­
graph. Values flow to the returns subgraph from 
the initialization subgraph (corresponding to the 
first loop iteration) and then from each instantia­
tion of the body subgraph. 

Third, the body subgraph is executed. In our 
example, the AReplace node replaces the i 1

h ele­
ment of B with the value 0, producing a new array. 
The next value of i is defined bv the sum of one 
and the value of the i 1h element ~f B. The AEle­
ment node selects the i1

" element of the array and 
passes the value to the Plus node. Notice that the 
order of execution between the AElement node 
and the AReplace node is undefined. Conse­
quently, a copy of array B must be created for each 
loop instantiation. 

The second and third steps are performed it era­
tively, until the single value defined in the test sub­
graph is False. The result of the last instantiation 
of the returns subgraph, as indicated by the F i­
nal-Val node, is then returned as the value of 
the LoopB node. 
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3 UPDATE-IN-PLACE 

Update-in-place analysis is used to eliminate un­
necessary copying associated with array-update 
operations in applicative languages. In this section, 
we present an overview of the method and compare 
and contrast our approach with that of Cann's. 
We then describe, in some detail, our algorithms. 

3.1 Overview 

Our work is based on the methods developed by 
David Cann [4]. Principally, we have extended 
the analysis to handle arrays stored in contiguous 
memory. As a result, three different array models 
can be supported efficiently: the vector-of-vectors, 
the flat, and the dimensional array models. 

Although the two analyses operate in different 
manners, both analyses determine when an array 
modifier, such as an AReplace node, is the last 
operation to access an array. Under this situation, 
a destructive update may be performed on the in­
put array. The implicit copy operation is elimi­
nated, thus reducing execution time. When appro­
priate, ADEs are introduced to ensure a valid 
execution order. For example, consider the graph 
in Figure 2. 

In the graph's current form, the ARep 1 ace node 
may execute before the AElement node. If the 
AReplace node performs a destructive update on 
the input array, the result returned by the AEle­
ment node will be erroneous. Consequently, the 
AReplace node must always copy the input array 
before the update operation is performed. 

To eliminate the copy operation, an ADE, which 
is depicted as a dashed line, must be inserted to 
delay the execution of the AReplace node, as is 

FIGURE 2 IF1 graph for the Sisal expression 
"A[j :OJ, A[j]." 
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j "0" 

FIGURE 3 IF2 graph for the Sisal expression 
"A[j :OJ, A[j]," after update-in-place analy~is has 
been applied. 

depicted in Figure 3. Cnder the revised execution 
order, no copying is necessary. The R marks, 
which are located next to the array input edge of 
both the NoOP node and the ARep 1 ace node, indi­
cate that the input array is not copied but is passed 
by reference. 

The additional NoOp node is added to simplify 
analysis. NoOp nodes perform all necessary copy­
ing explicitly. All other array-modifier nodes now 
operate directly on their input array; no implicit 
copy operation is performed. The AReplace node 
is such an array-modifier node. Additional marks 
are associated with the NoOp node to indicate the 
type of copying performed. (We discuss these 
marks in more detail later in this article.) 

Both analyses start off with the same objective. 
Initial assumptions, however, resulted in two dif­
ferent algorithms. in the original update-in-place 
analysis developed by Cann, the following as­
sumptions were made. 

1. The entire program is available (and neces­
sary) for analysis. 

2. Exclusive write access to an array is not pre­
sumed. 

3. Arrays are always stored hierarchically. 
4. The cost of copying outweighs the potential 

loss of parallelism. 

Because the entire program was assumed to be 
available, an algorithm that traverses a graph in a 

top-down outside-in fashion was designed to de­
termine when exclusive access to an array is guar­
anteed. In general, the execution path in which an 
array flows is examined. As the graph is traversed, 
a number of operations are applied. In particular, 
ADEs are inserted to delay the exeeution of array­
write nodes. 

Reference counts are used to maintain a dy­
namic count of the number of operations that ae­
cess an array. Although reference counting in­
creases execution time and produces parallel 
bottleneeks [7, 9], they were deemed necessary for 
two reasons. First, it was presumed that exclusive 
access to arrays could not, in generaL be deter­
mined. Second, under a hierarchical array repre­
sentation, subarrays may be shared. Subarray 
sharing creates aliases that can be hard to detect. 
A major component of the analysis is used to deter­
mine when reference counting operations could 
be eliminated. 

Based on the revised execution order imposed 
by the ADEs, reference-count operations are elimi­
nated. Consequently, the inserted ADEs are bene­
ficial beeause they help to reduce copying and to 
reduee the overhead associated with reference 
counting. The potential loss of parallelism imposed 
by the inserted ADEs was assumed to be insig­
nificant. 

The original update-in-place analysis was im­
plemented and is part of the current Sisal compiler,. 
OSC. The analysis has shown to be effective in 
eliminating unnecessary copy operations. In most 
eases, no array copying and no reference counting 
are performed. \Ve were able to use this experience 
to take a more aggressive approach. At the same 
time, we were able to relax some of the restrictions 
placed on the original analysis. 

Our analysis was designed based on the follow­
ing assumptions. 

1. The entire program is not available for 
analysis. 

2. Exclusive write access to an arrav is pre­
sumed. 

3. Arrays may be stored hierarchieally or con­
tiguously. 

"!:. A performance tradeoff exists between re­
taining parallelism and eliminating copying. 

In many cases, an entire program is not avail­
able for analysis. Moreover, the time required to 
analyze a large application in its entirety can be 
prohibitive. This assumption has led to the design 
of an inside-out, bottom-up algorithm. Our ap-



proach allows subprograms to be analyzed sepa­
rately, stored for later use, and incorporated into 
an application. 

We assume that each subprogram has exclusive 
write access to its input arrays. This assumption 
simplifies analysis within the subprogram . .\lore­
over, this assumption reduces the need for refer­
ence counting. The assumption that arrays might 
be stored in contiguous memory further decreases 
the need for reference counting. Since individual 
subarrays may not be shared indirectly, aliases 
can be more easily detected. Consequently, our 
analysis does not rely on reference-counting oper­
ations to determine when copying is necessary. 

To ensure program semantics, we Inust guaran­
tee that each function has exclusive write access 
to its input arrays. A NoOp node is inserted into 
the caller's graph to perform any copy operation 
that is necessary before the function is called. The 
application of our analysis to that graph will deter­
mine if the copy operation is necessary. These ex­
tra NoOp nodes allow the tradeoff between the loss 
of parallelism and the cost of copying to be exam­
ined more fully. 

Consider the graph depicted in Figure 4. Two 
functions are given the array A as inpm. The first 
input edge to the Call node specifies the function 
applied. The function "alpha" performs a de­
structive update on the array, and the function 
"beta" uses the array as read-only data. A W mark 
indicates that the array is updated within the func­
tion. This information was determined when these 
functions were analyzed. The other marks are 
explained in a subsection of 3, "Examination 
Phase." 

A 

----~ 
I 
I 
I 
I 
I 
I 
I 
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I 
I 
I 
I 
I 
I 
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FIGURE 4 IFx graph with two function applications. 
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Copying is only necessary if the function alpha 
is not guaranteed to execute last. The ADE from 
the rightmost Call node to the leftmost NoOp node 
ensures that the correct execution order is main­
tained. However, the ADE can adversely affect the 
execution time of the program because parallelism 
is lost. If the time required to copy the array is less 
than the time to exeeute the function "beta," it is 
better to copy the array. The array can be copied 
by either the leftmost or the rightmost NoOp node. 

3.2 Our Algorithm 

Our analysis is performed in two phases: a prepa­
ration phase and an examination phase. During 
the preparation phase, the graph undergoes sev­
eral changes, which include the addition of marks 
that are annotated on edges, the insertionof NoOp 
nodes, and the reconstruction of subgraphs that 
perform multidimensional-array updates. These 
operations are applied as the graph is traversed in 
reverse dataflow order. 

During the examination phase, each compound 
node is reexamined. Seven interrelated operations 
are applied. Five of these operations are applied 
during a bottom-up traversal of each subgraph, 
and the remaining two operations are applied after 
each subgraph has been fully analyzed. Together, 
these operations annotate input edges of NoOp 
nodes, insert ADEs, insert grounding edges (a 
mechanism to deallocate arrays), identify aliases, 
and propagate marks to the outside of the com­
pound node. 

Each function within an IFx graph is optimized 
independently. Once optimized, the set of marks 
assigned to the graph's input and output edges are 
retained. These marks are then used to annotate 
the edges connected to each Call node that refer­
ences the function. The marks provide additional 
information needed to perform update-in-place 
analysis in the graph that contains the Call node. 
under this scheme, a set of fully optimized library 
functions may be created. When one of these func­
tions is referenced, the marks associated with the 
function are used to determine if an input array 
must be copied prior to function invocation. 

To ensure that each function-definition graph 
is optimized before it is referenced, all function 
graphs are optimized in reverse topological order 
as defined by a standard call graph. Since recursive 
functions introduce cycles into the call graph, these 
functions cannot be analyzed before they are refer­
enced. Consequently, these functions require spe­
cial handling. We have taken a conservative ap-
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proach to preserve program semantics. However, 
this approach prevents the identification and clim­
ination of some unnecessary copy operations. To 
fully optimize recursive functions, a more aggres­
sive approach is required. 

Preparation Phase 

Three main operations are performed during the 
preparation phase: edge classification, NoOp inser­
tion, and subgraph inheritance. The first two oper­
ations are similar to the operations performed un­
der Cann's analysis with only slight modifications. 
The third operation, suhgraph inheritance, is a 
refom1ation of reference inheritance, which was 
developed by David Cann [ 4]. We have also added 
a second component, known as MSD graph detec­
tion, to subgraph inheritance to help identify re­
dundant copy operations. Although ~1SD graph 
detection is part of the examination phase, we de­
scribe subgraph inheritance and :YISD graph de­
tection together to simplify the discussion. 

Edge Classification. Input edges are classified to 
determine how arrays are manipulated within 
functions and compound nodes. The classification 
of input edges is based on both the type of node 
being considered and the classification of the 
node's output edge. Due to the order of applica­
tion, marks are propagated in reverse dataflow or­
der through the graph. Edges may be classified 
as dope-vector write, arrax-data write, aggregate 
read, or subarra.y move. Based on the classifica­
tion, edges are annotated with one or more marks. 
Table 1 indicates the marks inserted during the 
edge classification procedure. Aggregate-read 
edges are not annotated. 

In our analysis, we have added two classifica­
tions: the dope-vector write and the subarrav­
move classifieation. Some operations modify or;ly 
an array's descriptor, i.e., the array's dope-vector. 
In the second phase of update-in-place analysis. 
ADEs are inserted to delay write operations to pre­
vent unnecessary copying. In some eases it is ad­
vantageous to copy a dope-vector rather than to 

Table 1. Annotations Applied to Edges During 
Edge Classification 

Classification 

Dope-vector write 
Array-data write 
Subarray move 

Annotation 

w 
w 
m 

rest1ict parallelism. The additional classification 
helps to differentiate the type of array modification 
that oecurs within functions and compound nodes. 

The subarray-move classification indicates that 
the elements of a subarray must be copied into 
another array. In general, this copy operation is 
necessary to ensure that the final array is stored in 
contiguous memory. Under certain circumstances 
this copy operation is unnecessary and is removed 
during the second phase of the analysis, via MSD 
graph detection (see footnote :j: on page 153). 

NoOp Node Insertion. Many IF x nodes induce 
copying, some copy dope-vectors, and some copy 
arrays. A NoOp node is inserted for everv array­
modifier node. Each arrav-modifier nod~ is al~o 
transformed into its AT-n~de equivalents, e.g., an 
AReplace node is transformed into an ARe­
placeAT node. Bv definition these nodes allow in­
place operations to occur.* 

Onee NoOp nodes are inserted, all copying is 
isolated to a single-node type. ~arks are used to 

indicate the type of copying performed by the NoOp 
node. The NoOp node's input edge is annotated 
with a P mark based on the classification of the 
node's output edge. i.e., the input edge of the 
array-modifier node. A P mark indicates that the 
arTay's dope-vector should be copied as opposed 
to the array's data. 

In our analysis, we insert NoOp nodes more lib­
erally. Two additional dasses of NoOp nodes are 
inserted: e.rternal and .final NoOp nodes. These 
NoOp nodes are not necessary to preserve program 
semantics, but their presence simplifies analvsis. 
An external NoOp is inserted for each array-i;1put 
edge connected to either a Call or a compound 
node. Their placement allows the neeessarv inter­
nal-copy operations to be expressed within .the ex­
ternal graph environment, where the tradeoff be­
tween the cost of copying and the loss of parallelism 
is more appropriately evaluated. 

NoOp nodes are then inserted for each arrav­
output edge connected to a graph boundary. The~e 
nodes. which are known as final NoOps, are used 
to copy arrays before they are exported from a 
graph. These copy operations may be necessary 
to prevent unwanted aliases from being created 
and to prevent side effects to loop variants associ­
ated with either a Loop A or a LoopB node. t A final 

* Under Cann ·,analysis. tlw AReplace uock i,; not trans­
formed into a AReplaceAT node. 

t A LoopA node corresponds to the repeat-until loop. 



NoOp is also associated with the third input edge 
of some AReplace nodes. 

Subgraph Inheritance Transformation and MSD 
Graph Detection. To update a single value in an 
N-dimensional array, a series of write operations 
is required, one for each dimension. Since each of 
these write operations accesses the same array, up 
toN- 1 sub arrays may be copied. To help identify 
the extra copy operations, each subgraph that per­
forms a multidimensional array-update operation 
is transformed. The transformation is applied for 
each AReplaceAT and AElement node pair in 
which an output edge of the AElement node is 
annotated with an m mark. This mark indicates 
that the subarray extracted by the AElement node 
will be moved. 

For example, consider the graph depicted in 
Figure 5. This graph illustrates the effect of apply­
ing subgraph inheritance to a typical multidimen­
sional array-update operation. The subarray-up­
date operation is forced to execute after the NoOp 
node and before the AReplaceAT node associated 
with the update operation for the outermoi-it di­
mension. As part of the transformation, a NoOp 

Subarray-update subgraph 

J 
MinorNoOp 

Sub graph 

Array-update subgraph 

FIGURE 5 Typical graph tt:>mplate for a multidimen­
sional array-update operation after subgraph inheri­
tance. 
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node (identified as the minor NoOp) and an ADE 
are inserted into the graph. Together, they ensure 
that the selected subarray is copied to a new loca­
tion before it is overwritten via the AReplaceAT 
node. In most cases, the copy operation is not nec­
essary and is eliminated in the second phase. 

Cnder the contiguous array model, the ARe­
placeAT must copy the subarray into the correct 
position within the destination array, i.e., the sub­
arrav must be moved to its final location. (Under 
hierarchical storage, only a single pointer has to 
be updated.) If the subarray is updated in place 
and the result of the operation is passed to the 
AReplaceAT node of the array-update operation, 
the subarray-move operation is redundant. Cnder 
this situation, the multidimensional array-update 
operation has the form depicted in Figure 5. We 
refer to such a graph as mutually strong-depen­
dent (YISD).:j: 

YlSD graph detection is used in the second 
phase to determine when the copy operation per­
formed by the minor NoOp and the move operation 
performed by the AReplaceAT node are unneces­
sary. The determination is easily made by examin­
ing the minor NoOp node's global-leaf set. (This 
set is discussed in a subioiection of Section 3, "Ex­
amination Phase.") If the graph is of the correct 
form and the copy operations are not necessary, 
the array-input edge of both NoOp nodes is anno­
tated with an R mark and the third input of the 
AReplaceAT node is annotated with a P mark. 
The P mark indicates that the subarray has been 
built in place [ 18]. 

Y1SD graph detection ii-i also beneficial for arrays 
stored hierarchically. Each AReplaceAT node 
that is annotated with a P mark allows a pointer­
update operation to be eliminated. The corre­
sponding performance gain can be substantial if 
the operation is nested within an iterative con­
struct. Moreover, on a distributed memory archi­
tecture, the pointer-update operation can greatly 
degrade performance [ 131. Consider the case 
where each s ubarray re,;ides on a different process­
ing unit. By eliminating the operation, we also elim­
inate the corresponding communication between 
the processing units. 

Examination Phase 

During the second phase of the algorithm. an IFx 
function graph is analyzed to remove all unneces-

~: \\ce have borrowed the term mutually strong-dependent 
from Kim [ 1-t:. We usc the term in a similar sen sec 
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Procedure Graph...Examination(graph G) 

For each array-generation node N of G 
in reverse dataflow order Do 

SN := Local-usage..Set_Construction{N); 

Control, Copy, NoCopy 
::::: Copy ~dentification ( S N); 

If N is a major-N oOP node Then 
Copy:= MSD_Graph.Detection(SN, Copy); 

End If 
Graph..Reordering( Control, Copy, NoCopy); 
SN .globaUeaves := 

Global-leaf..SeLConstruction( Control, Copy, 
No Copy, SN .F); 

End For 

Information_Fropagation(); 
Array .Deallocation(); 

End Procedure 

FIGUHE 6 Pseudocode for the graph-examination 
phase of update-in-place. 

sary copy operations. These copy operations are 
associated with the inserted NoOp nodes. Via the 
analysis, each NoOp node is potentially annotated 
with an R mark to indicate that no copying is per­
formed. Each function graph is analyzed starting 
at the innermost compound nodes. This ordering 
ensures that any necessary copy operations are 
always performed at the outermost level possible. 

The examination phase eontains seven interre­
lated operations. Three of the operations are used 
to prepare sets that summarize the usage of nodes 
within a graph. Each array-generation node is as­
sociated with two sets: a local-usage set and a 
global-leaf set. Together. these sets are used to 
construct three more sets, which are used to iden­
tify which NoOp nodes must copy their input 
arrays. These sets are constructed via the copy 
identification procedure. 

These sets are constructed incrementally 
through a bottom-up traversal of the graph. As the 
sets are constructed, two optimizations are per­
formed: MSD-graph detection and graph reorder­
ing. Graph reordering is used to insert ADEs into 
the graph to delay write operations. Once the entire 
compound node has been analyzed, two final op­
erations are performed: information propagation 
and array deallocation. We present the pseudo­
code for the examination phase in Figure 6. 

Local and Global Usage-Set Construction. Each 
node that conceptually creates a new array is asso­
ciated with a local-usage set. This set records the 

nodes in which the generated array is an input and 
is not an ourput. i.e., the array is consumed or 
copied. These nodes are referred to as leaf nodes. 
For example, an ASize node, which returns the 
size of an arrav. is a leaf node because it has an 
array a,; an input Lut only a scalar as an output. 
'Q1e NoOp nodes are also considered leaf nodes 
because they may copy an array to produce a 
new array. 

To build a local-usage set, each subgraph that 
is dominated by an array-generation node is tra­
versed in depth-first-search order. The search is 
bounded by the anay-generation node and leaf 
nodes. When a leaf node is encountered, its node 
number is recorded in one of four groups: final 
read (F), intermediate read (1). dope-vector write 
(w), or data write (W). NoOp nodes are recorded 
in a group based on the edge classification of their 
array-input edge. All non-NoOp nodes are re­
eorded in the F group. 

Consider the graph fragment in Figure 7. The 
local-usage set for the topmost array-generation 
node eontains two NoOp nodes and one AElement 
node. One NoOp node (no. 1) is recorded in the W 
group, and the other NoOp node (no. 3) is recorded 
in the I group. Only one of the AElement nodes 
is recorded into the local-usage set. The topmost 
AElement node (no. 2) is not recorded because 

Leaf Nodes 

Array-generation node 
______r- that outputs the array A 

FIGURE 7 Partial IF.x: graph illustrating leaf nodes. 
The local-usage sets for the anay A are also shown. 



the final result produced by this node is a sub array 
contained within the original array A. 

The local-usage set is used to identify copy oper­
ations within a localized region. In general, each 
potential copy operation, represented by a NoOp 
node. is recorded in one of three sets: Control, 
Copy, or NoCopy Based on the set in which a 
NoOp is recorded, ADEs are inserted and edges 
are annotated. (We defer the discussion of this 
process until later.) A global-usage set is then cre­
ated based, in part, on these sets. 

A global-usage set records the final nodes that 
access an arrav. This information is used to iden­
tify copy operations within a larger region of the 
graph. Each NoOp node recorded in the local-us­
age set also has a global-leaf set. These sets are 
pieced together to form the global-leaf set for the 
current array-generation node. In general a global­
leaf set is formed by the concatenation of 

1. The nodes listed in the F group of the current 
local-usage set 

2. The nodes listed in the global-leaf set of each 
NoOp node that does not perform any copy 
operation 

3. The nodes listed in the global-leaf set of each 
NoOp node that performs a dope-vector 
copy operation 

4. The NoOp nodes that perform an array­
copy operation 

In effect, a single global-leaf set is constructed in­
crementally for each array imported into the graph. 

Copy Identification and Graph Reordering. Once 
the local-usage sets are built, they are used to iden­
tify which of the NoOp nodes must perform a copy 
operation. If only a single NoOp node is recorded 
in the local-usage set, the corresponding copy op­
eration can always be eliminated. If, however, mul­
tiple NoOp nodes are recorded in the local-usage 
set, copying is necessary. In either case, ADEs are 
inserted to delay the execution of a single NoOp 
node if the cost of copying is greater than the loss 
of parallelism. 

To determine if the insertion of an ADE results 
in a performance gain, estimated execution costs 
can be associated with each node in the graph. 
During local-usage set construction, these esti­
mated costs are combined to determine the ex­
pected execution cost of a subgraph. These costs 
are then used to estimate both the expected copy 
cost and the expected delay cost of NoOp nodes. 
The delay cost of a NoOp node is defined to be t]. tc 
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cumulative execution time of the subgraph 
bounded by the NoOp node and the nodes recorded 
in its global-leaf set. 

Many different methods can be used to deter­
mine the expected time to execute each type of 
node: simple or compound. In particular, the cur­
rent Sisal compiler, OSC, uses a simplified version 
of the techniques developed by Vivek Sarkar [19] 
to assign an execution cost to each node. Although 
these techniques were developed for partitioning 
and scheduling parallel programs, they are suffi­
cient to calculate the cost of copying and the loss 
of parallelism. 

To identify which of the NoOp nodes in the local­
usage set should perform a copy operation, three 
steps are taken. As part of these steps, each NoOp 
node is recorded into one of three sets: Control, 
Copy, or NoCopy. The steps are: 

1. A single-write NoOp node is recorded in the 
Control set. 

If multiple-write NoOp exists, the selection 
of a NoOp node has an effect on the total 
amount of copying that can be eliminated. 
In general, the NoOp node that performs the 
largest amount of copying should be se­
lected. However, the amount of copying is 
partially determined by run-time informa­
tion making it difficult to predetermine. In 
many cases, there is only one such NoOp 
node from which to choose. 

2. The tradeoff between copying and the loss 
of parallelism is evaluated for the other NoOp 
nodes. 

Because only one write NoOp is selected in 
Step 1, all other write NoOps must perform 
a copy operation. However, for each read 
NoOp, a copy operation may or may not be 
beneficial to overall program performance. 
To determine if a read NoOp should perform 
a copy operation, the delay and the copy 
cost of the NoOp node are compared. If the 
copy cost is greater than the delay cost, the 
NoOp node is recorded in the NoCopy set. 
Otherwise, it is recorded in the Copy set. 

3. The control NoOp is identified as either a 
copy or a noncopy operation. 

If the control NoOp does not perform a copy 
operation, it will be delayed. The delay time 
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can be estimated by the cumulative execu­
tion times of the nodes that must execute 
after the current node and before the control 
NoOp. The difference between the copy cost 
and the delay time can be used to make the 
appropriate identification. If the control 
NoOp is identified as a copy operation, it is 
recorded in the Copy set and erased from 
the Control set. 

Once all copy operations are identified, ADEs 
are inserted to delay the execution of the control 
NoOp. The insertion of ADEs, in effect, reorders 
the graph. In general, an ADE is inserted for 
each node recorded in the following sets: the 
Copy set, the global-leaf set of the nodes con­
tained in the NoCopy set, and the F group of 
the local-usage set. Additionally, the input edge 
of each NoOp node that does not perform a copy 
is annotated with an R mark. These nodes are 
recorded in the NoCopy set. 

In some situations, only a dope-vector must be 
copied. If the input edge of a NoOp node is anno­
tated with a w mark, the edge is annotated with a 
P mark, indicating that only the dope-vector is 
copied. Since the dope-vector copy operation will 
create an alias, the position of the ADEs must be 
adjusted to preserve program semantics. An ADE 
is inserted for each node recorded in the global­
leaf set of a NoOp node that performs a dope-vector 
copy operation. 

Reconsider the graph fragment in Figure 7. Be­
cause a single-write NoOp node is listed in the local­
usage set, this node (no. 1) is recorded in the Con­
trol set. The other NoOp node (no. 3) is recorded 
in either the Copy or the NoCopy set. To prevent 
the copy operation associated with the selected 
NoOp, two ADEs must be inserted. The first ADE 
is connected to the AElement node because it is 
recorded in the F group of the local-usage set. The 
other ADE is connected to either the rightmost 
NoOp node (no. 3) or the compound node (no. 5). 

The position of the second ADE is based on the 
set in which the rightmost NoOp node is recorded. 
If this node performs a copy operation, i.e., it is 
recorded in the Copy set, the ADE extends from 
this NoOp node. If, however, no copying is per­
formed, the selected NoOp must be delayed until 
after all nodes contained in the rightmost NoOp's 
global-leaf set have executed. In this graph we as­
sume that node 5 is the onlv node recorded in 
that set. 

Ideally, a graph partitioning and scheduling 
scheme, e.g., [14, 19, 23, 24], should he used 

in conjunction with our analysis. Under this 
scheme, the cun·ent subgraph would first he par­
titioned. Our analysis would then be performed. 
The appropriate comparison function to apply 
during our analysis would be based on the parti­
tion obtained. The resulting subgraph would then 
be scheduled to a processor. On a distributed 
memory processor, if a NoOp node that performs 
a copy operation dominates a partition, the copy 
operation could he used as a data-transfer mech­
anism. 

Information Propagation and Array Dealloca­
tion. After an entire graph is analyzed, the global­
leaf sets associated with the import ports of a graph 
are used to classify the usage of all input arrays. 
Together with the global-leaf sets associated with 
array-generation nodes, we can identify both the 
node that creates an array and the final set of nodes 
that access the array. With respect to the current 
graph being analyzed, each array is classified into 
one of four classes: 

1. An array is neither created nor totally con­
sumed within the graph, i.e., it passes 
through the graph. 

2. An array is created within the graph. 
3. An array is imported into the graph and is 

(partially) consumed within the graph. 
4. An array is both created and totally con­

sumed within the graph. 

If an array is not created within the graph and is 
exported from the graph (i.e., the array is a mem­
ber of the first dass), this information must be 
propagated to the external graph environment. If, 
however, the array is both created and totally con­
sumed within the graph, the array can be deallo­
cated. 

The information-propagation procedure exam­
ines each global-leaf set associated with a graph­
import port. If a global-leaf set contains a final 
NoOp node, the imported array passes through the 
graph. Recall that a final NoOp is connected to 

the graph boundary. Both the array's export-port 
number, say P, and the array's import-port num­
ber, say Q, are used to indicate which of the 
graph's ports are annotated. The P1

" import port 
is annotated with an E=P mark, and the Q1

" ex­
port port is annotated with an I=Q mark. These 
marks are then propagated to the external graph 
environment. 

The array-deallocation procedure examines 
each global-leaf set that is not associated with an 



array import port. These are the arrays that are 
created within the graph. If any of these arrays are 
not exported from the graph, the corresponding 
array may be deallocated. The procedure inserts 
a grounding edge from the array-generation node 
to port zero of the graph node. 

Port zero semantics are nonstandard with re­
spect to both the syntax and the semantics of IFa; 
( 4]. Syntactically, this port allows multiple input 
edges, i.e., fan-in. Fan-in occurs when more than 
one array is deallocated within the graph. Semanti­
cally, the associated array is not available as an 
output value. Instead, the allocated memory for 
an array is deallocated at run-time. 

4 PRELIMINARY INDICATIONS 

To date, a full implementation of our algorithms 
has not been developed. To determine the effec­
tiveness of our analysis, we have manually applied 
our algorithms to several Sisal1.2 applications. In 
this article, we present execution times that result 
from our analysis for two programs: the Holm­
Aufenkamp state-removal algorithm [20] and a 
matrix inversion algorithm. To create the execut­
ables, we first manually generated IFx graphs for 
the programs. The Sisal compiler, OSC, was then 
used to complete the compilation process. To sim­
plify implementation, multidimensional arrays 
were represented under the vector-of-vectors array 
model, but under the assumption that the arrays 
were stored in contiguous memory. 

~oo~----~,~~----~,.-o------~,00------~,oo-------Jroo 

FIGURE 8 Execution times for the expresison "state­
removal(T), T[ 4]" when optimized both by Cann 's anal­
ysis and by our analysis. The ordinate indicates the 
execution time in seconds. 
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T 

state-removal 

FIGURE 9 l.Fx graph for the Sisal expression "state­
removai(T), T[4]." 

The IF2-to-C code translation, ir.2gen, was 
modified to insert code to simulate the copy opera­
tions required to preserve the contiguity require­
ment. The inserted code performed full multidi­
mensional-array copy operations and subarray 
move operations whenever necessary. These copy 
operations are associated with NoOp and ARe­
placeAT nodes, respectively. 

For comparison purposes, we also applied the 
analysis developed by Cann [ 4] to our test pro­
grams. Recall that the OSC compiler represents 
arrays under the vector-of-vectors array model. 
Although we are comparing execution times for two 
different array models, the comparison provides 
a reasonable measure of the effectiveness of our 
analysis. All test programs were executed on a uni­
processor, a DECstation 5000. Fifty separate runs 
were performed for each test case. Execution times 
that varied more than 5% from the average were 
eliminated to minimize the effect of system sharing. 
We report the average execution times of the re­
maining times. 

4.1 Hohn-Aufenkamp State-Removal 
Algorithm 

The state-removal algorithm of Aufenkamp and 
Holm [20] is a method of finding all the possible 
paths of length less than n bet\veen two nodes of 
a net, where n is the number of nodes. In general, 
the algorithm reduces an n X n matrix, say T, to 
a 1 X 1 matrix, incrementally, by the following 
equation. 
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T' Lj 

where 

Ti.j + Ti.n X Trt.j 

1- T,_, 

1::5 ij::5 fl- 1 

In the Sisal 1.2 implementation, three iterative 
loops were used. Although a more natural imple­
mentation using parallel loops is possible, update­
in-place analysis is noL in general, applicable un­
der such an implementation. 

Under both analyses, all copying was eliminated 
and execution times were similar. Different times, 
however, were obtained when we assumed that the 
algorithm was analyzed in isolation. Recall that 
under Cann's method the entire program must be 
available for analysis. In Figure 8, we present the 
execution times for expression "state-remov-
al(T), T[ 4]." 

In this expression, the fourth row of Tis shared. 
Consequently, under Cann's analysis, reference 
counting is used to determine when the row is cop­
ied. Under our analysis, the row is copied prior to 
the call of the state-removal function. The graph 
for the expression is depicted in Figure 9. Under 
Cann 's analysis, the increased execution times are 
due to the reference-counting operations. 

4.2 Matrix Inversion 

We have dwseu a particular algorithm for the ma­
trix inverse function that exhibits better perfor­
mance when the matrix is stored as a vector-of­
vectors. Within the algorithm, rows of the matrix 

Cant~'• Analy&ts -+-­
Our Anatysis ....... ~. 

FIGURE 10 Execution times for the matrix inversion 
function when optimized both by Cann 's analysis and 
by our analysis. The ordinate indicates the execution 
time in seconds. 

100 
.... ·· 

..··· 

.•.....•.•••••. £1( 

FIGURE 11 Execution times for the matrix inversion 
function using both hierarchical storage and mimicked 
contiguous storage for multidimensional anays. The 
ordinate indicates the Pxecmion time in seconds. 

are swapped. The swap operation can be per­
formed quickly under the vector model-via a 
pointer copy operation. tJnder contiguous storage, 
the individual elements of the swapped rows must 
be copied. 

A random matrix generator was used to create 
the input, a square matrix with a single non-zero 
entry in each row and in each column. In Figure 
10 the execution times for both versions of the 
program are shown. Not surprisingly, the vector­
of-vectors version runs faster because pointer 
swapping is used instead of row swapping, which 
is required under the dimensional version. To put 
this difference into perspective, Figure 11 depicts 
the execution times of unoptimized versions of 
both programs, along with the data repeated from 
Figure 1 0. We see that the copying penalty in the 
dimensional model is small compared to the pen­
alty of not applying the optimizations at all. 

5 CONCLUDING REMARKS 

We have presented a new approach to perform 
update-in-place analysis. Our methods improve 
upon the methods developed by Cann by allowing 
an array to be stored either as a vector-of-vectors 
or in a contiguous, multidimensional space. Addi­
tionally, our approach allows functions to be fully 
optimized separately, stored for later use, and in­
corporated into an application. This ability sup­
ports the construction of large software systems, 
and can also result in better performance. 



ln the state-removal algorithm, the ability to op­
timize the function independently resulted in a de­
crease in execution time. Cnder Cann's approach. 
it must be assumed that subarrays, e.g., rows of a 
matrix, are shared. Consequently, reference­
counting operations, which increase execution 
time, must be used to determine when row copying 
is necessary. under the contiguous storage of 
arrays, no such assumption is necessary. 

ln some situations, however. it is advantageous 
to store arravs hierarchicallv. The matrix-inverse . . 
program is an example of such a situation. For 
contiguous multidimensional arrays, subarray­
copy operations are necessary, which increase the 
execution time (as compared to hierarchical 
arrays). Specific analysis could be devised to deter­
mine which array storage model should be used. 
Our analysis is applicable for arrays stored hierar­
chically .. provided that row sharing is not permit­
ted. For the matrix-inverse program, each copy 
operation would only copy a pointer. Under this 
situation, we expect similar execution times to 
be achieved. 

As a result of our analysis, three different array 
models can be supported efficiently: the vector­
of-vectors, the flat, and the dimensional array 
models. The lack of reliance on a particular array 
model permits other benefits to be achieved. In 
particular. array representation under the dimen­
sional-array model permits better expressibility of 
array operations, more efficient storage manage­
ment, and decreased execution time. 

Much work is needed to achieve these benefits. 
Our immediate plan is to first implement our algo­
rithms. We will then test and verify our implemen­
tation using a dataflow simulator, TWIJ\'E [16]. 
This simulator allows a user-defined package, 
which can gather statistical information, to moni­
tor the execution of an IF:r graph. The result of 
these statistics will be used to guide our specific 
research directions. 
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