
Update-in-Place Analysis for True
Multidimensional Arrays

STEVEN M. FITZGERALD1 AND RODNEY R. OLDEHOEFT2

1Department of Computer Science, California State Unz:versity, Northridge, Northridge, CA 91330-8281; e-mail: sfitzger@secs.csun.edu
2Department of Computer Science, Colorado State University, Fort Collins, CO 80523; e-mail: rro@cs.colostate.edu

ABSTRACT

Applicative languages have been proposed for defining algorithms for parallel architec­
tures because they are implicitly parallel and lack side effects. However, straightforward
implementations of applicative-language compilers may induce large amounts of copy­
ing to preserve program semantics. The unnecessary copying of data can increase both
the execution time and the memory requirements of an application. To eliminate the
unnecessary copying of data, the Sisal compiler uses both build-in-place and update­
in-place analyses. These optimizations remove unnecessary array copy operations
through compile-time analysis. Both build-in-place and update-in-place ore based on
hierarchical ragged arrays, i.e., the vector-of-vectors array model. Although this array
model is convenient for certain applications, many optimizations are precluded, e.g.,
vectorization. To compensate for this deficiency, new languages, such as Sisal 2.0, have
extended array models that allow for both high-level array operations to be performed
and efficient implementations to be devised. In this article, we introduce a new method
to perform update-in-place analysis that is applicable to arrays stored either in hierarchi­
cal or in contiguous storage. Consequently, the array model that is appropriate for an
application con be selected without the loss of performance. Moreover, our analysis is
more amenable for distributed memory and Iorge software systems. © 1996 John Wiley

& Sons, Inc.

1 INTRODUCTION

Languages that follow the applicative paradigm
have been proposed to define algorithms for paral­
lel architectures [1, 2, 8]. In applicative languages,
such as Sisal [3, 5], computation is carried out by
the evaluation of expressions. Because the evalua-

Received April 1995
Revised June 1995

© 1996 John Wiley & Sons, Inc.
Scientific Programming, Vol. 5, pp. 147-160 (1996)
CCC 1058-9244/96/020147-14

tion of expressions is not influenced by side effects,
the order of computation is dependent only on
the availability of values. As values are computed,
separate copies can be provided to many indepen­
dent operations that can execute simultaneously,
thus exploiting parallel architectures.

An implementation that strictly adheres to the
applicative model is required to copy data values
when they are modified. However, the cost associ­
ated with copying large data aggregates, such as
arrays, can become prohibitive, nullifying the
benefits achieved through parallel execution. Opti­
mizations are needed to remove the unnecessary
copying. The Sisal 1.2 compiler, optimizing Sisal

148 FITZGERALD AND OLDEHOEFT

compiler (OSC), uses build-in-place analysis [18]
to preallocate memory for arrays and update-in­
place analysis [4] to reduce the copying of arrays.
The optimizations that are part of these analyses
are applied to a graph-based intermediate form,
IF2 [21, 22]. As a result of these analyses, array­
intensive applications written in Sisal 1.2 execute
as fast as their Fortran equivalents [4, 5, 9].

The design of Sisal 1.2 arrays is based on the
vector-of-vectors array model. Under this model,
multidimensional arrays are built hierarchically
from one-dimensiona(arrays, i.e., from vectors
(12], and are accessed through dope-vectors. Al­
though hierarchical arrays are convenient for many
applications, it is expensive to manipulate array
values represented in this model [9]. Because the
additional expense is unnecessary for applications
that do not utilize the advantages of the vector-of­
vectors model, other languages use the flat array
model. Under this model, multidimensional arrays
are built by the catenation of the subarrays of the
innermost dimension to form a single one-dimen­
sional array [12]. The array's uniform structure
allows many more optimizations to be performed,
such as vectorization.

The design of Sisal2.0 arrays includes an array
model we call dimensional (10], while retaining
the ability to express arrays as vector-of-vectors.
Fully contiguous multidimensional arrays are
added to the language for two reasons. First, many
high-level array operations can be both expressed
succinctly and implemented efficiently [17]. These
operations include subarray definitions, such as
"tiling," and array comprehension. Other benefits
from this array design include a constant stride in
each dimension for vector processing, potentially
better cache performance via loop optimizations,
and faster subscripting.

Second, more efficient storage management is
possible. The dynamic allocation and deallocation
of multidimensional arrays are single operations
instead of traversals. Substantial fractions of exe­
cution time in some Sisal 1. 2 benchmarks were
devoted to array creation and deletion. A new opti­
mization was developed to alleviate the cost associ­
ated with arrav creation and deletion [6]. With
fully contiguou~ arrays, the hierarchical storage of
pointers associated with vector arrays is also elimi­
nated.

We wish to extend and to enhance the perfor­
mance of Sisal 1.2 to version 2.0, so current opti­
mizations based on the vector-of-vectors model
must be generalized for dimensional arrays. To
that end, we explain in this article a new algorithm

for update-in-place analysis that can be applied
to arrays stored either as vector-of-vectors or in a
contiguous, multidimensional space [11].

2 BACKGROUND: IF.x

IF2 [22] is a graph-based language designed as
an intermediate form for applicative languages.
The language is based on and is a superset of
IF1 [21]. Both languages follow the dataflow
model. In this model, operations, which are rep­
resented by nodes, execute when all of their
inputs (represented by edges) are available. How­
ever. IF2 does not strictly adhere to the applica­
tive model, since a set .of primitive nocles that
allocate and manipulate memory are part of the
language definition. Artificial dependency edges
(ADEs), which are used to delay the execution
of a node until some other node executes, are
also included in the language.

Within IF1 and IF2, there are no explicit
control nodes or control lines. Control-flow con­
structs, such as conditionals and iterators, are
represented by predefined compound nodes.
These compound nodes consist of subgraphs that
define the individual functionality of a control­
flow construct. For example, the LoopB node
has four subgraphs: the initialization, the test,
the bodv and the returns. Values are passed
implicitly' between the subgraphs through ports
(depicted as boxes as shown in Fig. 1). Since
interaction between the subgraphs is implicit,
the control-flow construct can be implemented
differentlv for different architectures.

The fc;llowing Sisal "for initial" expression is
directly translated into the IF1 graph depicted in
Figure 1.

C : initial
B :=A;
i : = 1;

while i <"" N
repeat

% the initialization

% the test

B :=old Bfold i : OJ; %the body
i :=old B[old iJ + 1

returns value of B % the returns
end for

Each of the subgraphs corresponds directly to an
individual part of the iterative-loop construct. The
expression is computed in the following manner.
First, the loop variants, B and i, are initially de­
fined. These values are used in the other sub-

A N

• • ~B i

LoopB I
•

~,.,~,

I) ·1" •

L-[}-D·--··-l·-·-·-·__j
·-·-·-----1

Test I

L________ _ ________ j

~~-~

L---··-·--·--

FIGURE 1 Example of a LoopB compound node and
its subgraphs.

graphs. Under single-assignment semantics, only
one redefinition for a loop variant is allowed per
iteration. Either the previous or the current value
of the loop variants can be used within the body
subgraph. The previous value is accessed by pre­
fixing the name of the variant by the keyword
"old."

Second, the loop variants are supplied to the
returns subgraph. The results of the LoopB node
are prepared incrementally via the returns sub­
graph. Values flow to the returns subgraph from
the initialization subgraph (corresponding to the
first loop iteration) and then from each instantia­
tion of the body subgraph.

Third, the body subgraph is executed. In our
example, the AReplace node replaces the i 1

h ele­
ment of B with the value 0, producing a new array.
The next value of i is defined bv the sum of one
and the value of the i 1h element ~f B. The AEle­
ment node selects the i1

" element of the array and
passes the value to the Plus node. Notice that the
order of execution between the AElement node
and the AReplace node is undefined. Conse­
quently, a copy of array B must be created for each
loop instantiation.

The second and third steps are performed it era­
tively, until the single value defined in the test sub­
graph is False. The result of the last instantiation
of the returns subgraph, as indicated by the F i­
nal-Val node, is then returned as the value of
the LoopB node.

UPDATE-IN-PLACE ANALYSIS 149

3 UPDATE-IN-PLACE

Update-in-place analysis is used to eliminate un­
necessary copying associated with array-update
operations in applicative languages. In this section,
we present an overview of the method and compare
and contrast our approach with that of Cann's.
We then describe, in some detail, our algorithms.

3.1 Overview

Our work is based on the methods developed by
David Cann [4]. Principally, we have extended
the analysis to handle arrays stored in contiguous
memory. As a result, three different array models
can be supported efficiently: the vector-of-vectors,
the flat, and the dimensional array models.

Although the two analyses operate in different
manners, both analyses determine when an array
modifier, such as an AReplace node, is the last
operation to access an array. Under this situation,
a destructive update may be performed on the in­
put array. The implicit copy operation is elimi­
nated, thus reducing execution time. When appro­
priate, ADEs are introduced to ensure a valid
execution order. For example, consider the graph
in Figure 2.

In the graph's current form, the ARep 1 ace node
may execute before the AElement node. If the
AReplace node performs a destructive update on
the input array, the result returned by the AEle­
ment node will be erroneous. Consequently, the
AReplace node must always copy the input array
before the update operation is performed.

To eliminate the copy operation, an ADE, which
is depicted as a dashed line, must be inserted to
delay the execution of the AReplace node, as is

FIGURE 2 IF1 graph for the Sisal expression
"A[j :OJ, A[j]."

150 FITZGERALD AND OLDEHOEFT

j "0"

FIGURE 3 IF2 graph for the Sisal expression
"A[j :OJ, A[j]," after update-in-place analy~is has
been applied.

depicted in Figure 3. Cnder the revised execution
order, no copying is necessary. The R marks,
which are located next to the array input edge of
both the NoOP node and the ARep 1 ace node, indi­
cate that the input array is not copied but is passed
by reference.

The additional NoOp node is added to simplify
analysis. NoOp nodes perform all necessary copy­
ing explicitly. All other array-modifier nodes now
operate directly on their input array; no implicit
copy operation is performed. The AReplace node
is such an array-modifier node. Additional marks
are associated with the NoOp node to indicate the
type of copying performed. (We discuss these
marks in more detail later in this article.)

Both analyses start off with the same objective.
Initial assumptions, however, resulted in two dif­
ferent algorithms. in the original update-in-place
analysis developed by Cann, the following as­
sumptions were made.

1. The entire program is available (and neces­
sary) for analysis.

2. Exclusive write access to an array is not pre­
sumed.

3. Arrays are always stored hierarchically.
4. The cost of copying outweighs the potential

loss of parallelism.

Because the entire program was assumed to be
available, an algorithm that traverses a graph in a

top-down outside-in fashion was designed to de­
termine when exclusive access to an array is guar­
anteed. In general, the execution path in which an
array flows is examined. As the graph is traversed,
a number of operations are applied. In particular,
ADEs are inserted to delay the exeeution of array­
write nodes.

Reference counts are used to maintain a dy­
namic count of the number of operations that ae­
cess an array. Although reference counting in­
creases execution time and produces parallel
bottleneeks [7, 9], they were deemed necessary for
two reasons. First, it was presumed that exclusive
access to arrays could not, in generaL be deter­
mined. Second, under a hierarchical array repre­
sentation, subarrays may be shared. Subarray
sharing creates aliases that can be hard to detect.
A major component of the analysis is used to deter­
mine when reference counting operations could
be eliminated.

Based on the revised execution order imposed
by the ADEs, reference-count operations are elimi­
nated. Consequently, the inserted ADEs are bene­
ficial beeause they help to reduce copying and to
reduee the overhead associated with reference
counting. The potential loss of parallelism imposed
by the inserted ADEs was assumed to be insig­
nificant.

The original update-in-place analysis was im­
plemented and is part of the current Sisal compiler,.
OSC. The analysis has shown to be effective in
eliminating unnecessary copy operations. In most
eases, no array copying and no reference counting
are performed. \Ve were able to use this experience
to take a more aggressive approach. At the same
time, we were able to relax some of the restrictions
placed on the original analysis.

Our analysis was designed based on the follow­
ing assumptions.

1. The entire program is not available for
analysis.

2. Exclusive write access to an arrav is pre­
sumed.

3. Arrays may be stored hierarchieally or con­
tiguously.

"!:. A performance tradeoff exists between re­
taining parallelism and eliminating copying.

In many cases, an entire program is not avail­
able for analysis. Moreover, the time required to
analyze a large application in its entirety can be
prohibitive. This assumption has led to the design
of an inside-out, bottom-up algorithm. Our ap-

proach allows subprograms to be analyzed sepa­
rately, stored for later use, and incorporated into
an application.

We assume that each subprogram has exclusive
write access to its input arrays. This assumption
simplifies analysis within the subprogram . .\lore­
over, this assumption reduces the need for refer­
ence counting. The assumption that arrays might
be stored in contiguous memory further decreases
the need for reference counting. Since individual
subarrays may not be shared indirectly, aliases
can be more easily detected. Consequently, our
analysis does not rely on reference-counting oper­
ations to determine when copying is necessary.

To ensure program semantics, we Inust guaran­
tee that each function has exclusive write access
to its input arrays. A NoOp node is inserted into
the caller's graph to perform any copy operation
that is necessary before the function is called. The
application of our analysis to that graph will deter­
mine if the copy operation is necessary. These ex­
tra NoOp nodes allow the tradeoff between the loss
of parallelism and the cost of copying to be exam­
ined more fully.

Consider the graph depicted in Figure 4. Two
functions are given the array A as inpm. The first
input edge to the Call node specifies the function
applied. The function "alpha" performs a de­
structive update on the array, and the function
"beta" uses the array as read-only data. A W mark
indicates that the array is updated within the func­
tion. This information was determined when these
functions were analyzed. The other marks are
explained in a subsection of 3, "Examination
Phase."

A

----~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l----

FIGURE 4 IFx graph with two function applications.

UPDATE-Ii\-PLACE ANALYSIS 151

Copying is only necessary if the function alpha
is not guaranteed to execute last. The ADE from
the rightmost Call node to the leftmost NoOp node
ensures that the correct execution order is main­
tained. However, the ADE can adversely affect the
execution time of the program because parallelism
is lost. If the time required to copy the array is less
than the time to exeeute the function "beta," it is
better to copy the array. The array can be copied
by either the leftmost or the rightmost NoOp node.

3.2 Our Algorithm

Our analysis is performed in two phases: a prepa­
ration phase and an examination phase. During
the preparation phase, the graph undergoes sev­
eral changes, which include the addition of marks
that are annotated on edges, the insertionof NoOp
nodes, and the reconstruction of subgraphs that
perform multidimensional-array updates. These
operations are applied as the graph is traversed in
reverse dataflow order.

During the examination phase, each compound
node is reexamined. Seven interrelated operations
are applied. Five of these operations are applied
during a bottom-up traversal of each subgraph,
and the remaining two operations are applied after
each subgraph has been fully analyzed. Together,
these operations annotate input edges of NoOp
nodes, insert ADEs, insert grounding edges (a
mechanism to deallocate arrays), identify aliases,
and propagate marks to the outside of the com­
pound node.

Each function within an IFx graph is optimized
independently. Once optimized, the set of marks
assigned to the graph's input and output edges are
retained. These marks are then used to annotate
the edges connected to each Call node that refer­
ences the function. The marks provide additional
information needed to perform update-in-place
analysis in the graph that contains the Call node.
under this scheme, a set of fully optimized library
functions may be created. When one of these func­
tions is referenced, the marks associated with the
function are used to determine if an input array
must be copied prior to function invocation.

To ensure that each function-definition graph
is optimized before it is referenced, all function
graphs are optimized in reverse topological order
as defined by a standard call graph. Since recursive
functions introduce cycles into the call graph, these
functions cannot be analyzed before they are refer­
enced. Consequently, these functions require spe­
cial handling. We have taken a conservative ap-

152 FITZGERALD AND OLDEHOEFT

proach to preserve program semantics. However,
this approach prevents the identification and clim­
ination of some unnecessary copy operations. To
fully optimize recursive functions, a more aggres­
sive approach is required.

Preparation Phase

Three main operations are performed during the
preparation phase: edge classification, NoOp inser­
tion, and subgraph inheritance. The first two oper­
ations are similar to the operations performed un­
der Cann's analysis with only slight modifications.
The third operation, suhgraph inheritance, is a
refom1ation of reference inheritance, which was
developed by David Cann [4]. We have also added
a second component, known as MSD graph detec­
tion, to subgraph inheritance to help identify re­
dundant copy operations. Although ~1SD graph
detection is part of the examination phase, we de­
scribe subgraph inheritance and :YISD graph de­
tection together to simplify the discussion.

Edge Classification. Input edges are classified to
determine how arrays are manipulated within
functions and compound nodes. The classification
of input edges is based on both the type of node
being considered and the classification of the
node's output edge. Due to the order of applica­
tion, marks are propagated in reverse dataflow or­
der through the graph. Edges may be classified
as dope-vector write, arrax-data write, aggregate
read, or subarra.y move. Based on the classifica­
tion, edges are annotated with one or more marks.
Table 1 indicates the marks inserted during the
edge classification procedure. Aggregate-read
edges are not annotated.

In our analysis, we have added two classifica­
tions: the dope-vector write and the subarrav­
move classifieation. Some operations modify or;ly
an array's descriptor, i.e., the array's dope-vector.
In the second phase of update-in-place analysis.
ADEs are inserted to delay write operations to pre­
vent unnecessary copying. In some eases it is ad­
vantageous to copy a dope-vector rather than to

Table 1. Annotations Applied to Edges During
Edge Classification

Classification

Dope-vector write
Array-data write
Subarray move

Annotation

w
w
m

rest1ict parallelism. The additional classification
helps to differentiate the type of array modification
that oecurs within functions and compound nodes.

The subarray-move classification indicates that
the elements of a subarray must be copied into
another array. In general, this copy operation is
necessary to ensure that the final array is stored in
contiguous memory. Under certain circumstances
this copy operation is unnecessary and is removed
during the second phase of the analysis, via MSD
graph detection (see footnote :j: on page 153).

NoOp Node Insertion. Many IF x nodes induce
copying, some copy dope-vectors, and some copy
arrays. A NoOp node is inserted for everv array­
modifier node. Each arrav-modifier nod~ is al~o
transformed into its AT-n~de equivalents, e.g., an
AReplace node is transformed into an ARe­
placeAT node. Bv definition these nodes allow in­
place operations to occur.*

Onee NoOp nodes are inserted, all copying is
isolated to a single-node type. ~arks are used to

indicate the type of copying performed by the NoOp
node. The NoOp node's input edge is annotated
with a P mark based on the classification of the
node's output edge. i.e., the input edge of the
array-modifier node. A P mark indicates that the
arTay's dope-vector should be copied as opposed
to the array's data.

In our analysis, we insert NoOp nodes more lib­
erally. Two additional dasses of NoOp nodes are
inserted: e.rternal and .final NoOp nodes. These
NoOp nodes are not necessary to preserve program
semantics, but their presence simplifies analvsis.
An external NoOp is inserted for each array-i;1put
edge connected to either a Call or a compound
node. Their placement allows the neeessarv inter­
nal-copy operations to be expressed within .the ex­
ternal graph environment, where the tradeoff be­
tween the cost of copying and the loss of parallelism
is more appropriately evaluated.

NoOp nodes are then inserted for each arrav­
output edge connected to a graph boundary. The~e
nodes. which are known as final NoOps, are used
to copy arrays before they are exported from a
graph. These copy operations may be necessary
to prevent unwanted aliases from being created
and to prevent side effects to loop variants associ­
ated with either a Loop A or a LoopB node. t A final

* Under Cann ·,analysis. tlw AReplace uock i,; not trans­
formed into a AReplaceAT node.

t A LoopA node corresponds to the repeat-until loop.

NoOp is also associated with the third input edge
of some AReplace nodes.

Subgraph Inheritance Transformation and MSD
Graph Detection. To update a single value in an
N-dimensional array, a series of write operations
is required, one for each dimension. Since each of
these write operations accesses the same array, up
toN- 1 sub arrays may be copied. To help identify
the extra copy operations, each subgraph that per­
forms a multidimensional array-update operation
is transformed. The transformation is applied for
each AReplaceAT and AElement node pair in
which an output edge of the AElement node is
annotated with an m mark. This mark indicates
that the subarray extracted by the AElement node
will be moved.

For example, consider the graph depicted in
Figure 5. This graph illustrates the effect of apply­
ing subgraph inheritance to a typical multidimen­
sional array-update operation. The subarray-up­
date operation is forced to execute after the NoOp
node and before the AReplaceAT node associated
with the update operation for the outermoi-it di­
mension. As part of the transformation, a NoOp

Subarray-update subgraph

J
MinorNoOp

Sub graph

Array-update subgraph

FIGURE 5 Typical graph tt:>mplate for a multidimen­
sional array-update operation after subgraph inheri­
tance.

UPDATE-11\'-PLACE Al\'ALYSIS 153

node (identified as the minor NoOp) and an ADE
are inserted into the graph. Together, they ensure
that the selected subarray is copied to a new loca­
tion before it is overwritten via the AReplaceAT
node. In most cases, the copy operation is not nec­
essary and is eliminated in the second phase.

Cnder the contiguous array model, the ARe­
placeAT must copy the subarray into the correct
position within the destination array, i.e., the sub­
arrav must be moved to its final location. (Under
hierarchical storage, only a single pointer has to
be updated.) If the subarray is updated in place
and the result of the operation is passed to the
AReplaceAT node of the array-update operation,
the subarray-move operation is redundant. Cnder
this situation, the multidimensional array-update
operation has the form depicted in Figure 5. We
refer to such a graph as mutually strong-depen­
dent (YISD).:j:

YlSD graph detection is used in the second
phase to determine when the copy operation per­
formed by the minor NoOp and the move operation
performed by the AReplaceAT node are unneces­
sary. The determination is easily made by examin­
ing the minor NoOp node's global-leaf set. (This
set is discussed in a subioiection of Section 3, "Ex­
amination Phase.") If the graph is of the correct
form and the copy operations are not necessary,
the array-input edge of both NoOp nodes is anno­
tated with an R mark and the third input of the
AReplaceAT node is annotated with a P mark.
The P mark indicates that the subarray has been
built in place [18].

Y1SD graph detection ii-i also beneficial for arrays
stored hierarchically. Each AReplaceAT node
that is annotated with a P mark allows a pointer­
update operation to be eliminated. The corre­
sponding performance gain can be substantial if
the operation is nested within an iterative con­
struct. Moreover, on a distributed memory archi­
tecture, the pointer-update operation can greatly
degrade performance [131. Consider the case
where each s ubarray re,;ides on a different process­
ing unit. By eliminating the operation, we also elim­
inate the corresponding communication between
the processing units.

Examination Phase

During the second phase of the algorithm. an IFx
function graph is analyzed to remove all unneces-

~: \\ce have borrowed the term mutually strong-dependent
from Kim [1-t:. We usc the term in a similar sen sec

154 FITZGERALD Al'\D OLDEHOEFT

Procedure Graph...Examination(graph G)

For each array-generation node N of G
in reverse dataflow order Do

SN := Local-usage..Set_Construction{N);

Control, Copy, NoCopy
::::: Copy ~dentification (S N);

If N is a major-N oOP node Then
Copy:= MSD_Graph.Detection(SN, Copy);

End If
Graph..Reordering(Control, Copy, NoCopy);
SN .globaUeaves :=

Global-leaf..SeLConstruction(Control, Copy,
No Copy, SN .F);

End For

Information_Fropagation();
Array .Deallocation();

End Procedure

FIGUHE 6 Pseudocode for the graph-examination
phase of update-in-place.

sary copy operations. These copy operations are
associated with the inserted NoOp nodes. Via the
analysis, each NoOp node is potentially annotated
with an R mark to indicate that no copying is per­
formed. Each function graph is analyzed starting
at the innermost compound nodes. This ordering
ensures that any necessary copy operations are
always performed at the outermost level possible.

The examination phase eontains seven interre­
lated operations. Three of the operations are used
to prepare sets that summarize the usage of nodes
within a graph. Each array-generation node is as­
sociated with two sets: a local-usage set and a
global-leaf set. Together. these sets are used to
construct three more sets, which are used to iden­
tify which NoOp nodes must copy their input
arrays. These sets are constructed via the copy
identification procedure.

These sets are constructed incrementally
through a bottom-up traversal of the graph. As the
sets are constructed, two optimizations are per­
formed: MSD-graph detection and graph reorder­
ing. Graph reordering is used to insert ADEs into
the graph to delay write operations. Once the entire
compound node has been analyzed, two final op­
erations are performed: information propagation
and array deallocation. We present the pseudo­
code for the examination phase in Figure 6.

Local and Global Usage-Set Construction. Each
node that conceptually creates a new array is asso­
ciated with a local-usage set. This set records the

nodes in which the generated array is an input and
is not an ourput. i.e., the array is consumed or
copied. These nodes are referred to as leaf nodes.
For example, an ASize node, which returns the
size of an arrav. is a leaf node because it has an
array a,; an input Lut only a scalar as an output.
'Q1e NoOp nodes are also considered leaf nodes
because they may copy an array to produce a
new array.

To build a local-usage set, each subgraph that
is dominated by an array-generation node is tra­
versed in depth-first-search order. The search is
bounded by the anay-generation node and leaf
nodes. When a leaf node is encountered, its node
number is recorded in one of four groups: final
read (F), intermediate read (1). dope-vector write
(w), or data write (W). NoOp nodes are recorded
in a group based on the edge classification of their
array-input edge. All non-NoOp nodes are re­
eorded in the F group.

Consider the graph fragment in Figure 7. The
local-usage set for the topmost array-generation
node eontains two NoOp nodes and one AElement
node. One NoOp node (no. 1) is recorded in the W
group, and the other NoOp node (no. 3) is recorded
in the I group. Only one of the AElement nodes
is recorded into the local-usage set. The topmost
AElement node (no. 2) is not recorded because

Leaf Nodes

Array-generation node
______r- that outputs the array A

FIGURE 7 Partial IF.x: graph illustrating leaf nodes.
The local-usage sets for the anay A are also shown.

the final result produced by this node is a sub array
contained within the original array A.

The local-usage set is used to identify copy oper­
ations within a localized region. In general, each
potential copy operation, represented by a NoOp
node. is recorded in one of three sets: Control,
Copy, or NoCopy Based on the set in which a
NoOp is recorded, ADEs are inserted and edges
are annotated. (We defer the discussion of this
process until later.) A global-usage set is then cre­
ated based, in part, on these sets.

A global-usage set records the final nodes that
access an arrav. This information is used to iden­
tify copy operations within a larger region of the
graph. Each NoOp node recorded in the local-us­
age set also has a global-leaf set. These sets are
pieced together to form the global-leaf set for the
current array-generation node. In general a global­
leaf set is formed by the concatenation of

1. The nodes listed in the F group of the current
local-usage set

2. The nodes listed in the global-leaf set of each
NoOp node that does not perform any copy
operation

3. The nodes listed in the global-leaf set of each
NoOp node that performs a dope-vector
copy operation

4. The NoOp nodes that perform an array­
copy operation

In effect, a single global-leaf set is constructed in­
crementally for each array imported into the graph.

Copy Identification and Graph Reordering. Once
the local-usage sets are built, they are used to iden­
tify which of the NoOp nodes must perform a copy
operation. If only a single NoOp node is recorded
in the local-usage set, the corresponding copy op­
eration can always be eliminated. If, however, mul­
tiple NoOp nodes are recorded in the local-usage
set, copying is necessary. In either case, ADEs are
inserted to delay the execution of a single NoOp
node if the cost of copying is greater than the loss
of parallelism.

To determine if the insertion of an ADE results
in a performance gain, estimated execution costs
can be associated with each node in the graph.
During local-usage set construction, these esti­
mated costs are combined to determine the ex­
pected execution cost of a subgraph. These costs
are then used to estimate both the expected copy
cost and the expected delay cost of NoOp nodes.
The delay cost of a NoOp node is defined to be t]. tc

UPDATE-IN-PLACE ANALYSIS 155

cumulative execution time of the subgraph
bounded by the NoOp node and the nodes recorded
in its global-leaf set.

Many different methods can be used to deter­
mine the expected time to execute each type of
node: simple or compound. In particular, the cur­
rent Sisal compiler, OSC, uses a simplified version
of the techniques developed by Vivek Sarkar [19]
to assign an execution cost to each node. Although
these techniques were developed for partitioning
and scheduling parallel programs, they are suffi­
cient to calculate the cost of copying and the loss
of parallelism.

To identify which of the NoOp nodes in the local­
usage set should perform a copy operation, three
steps are taken. As part of these steps, each NoOp
node is recorded into one of three sets: Control,
Copy, or NoCopy. The steps are:

1. A single-write NoOp node is recorded in the
Control set.

If multiple-write NoOp exists, the selection
of a NoOp node has an effect on the total
amount of copying that can be eliminated.
In general, the NoOp node that performs the
largest amount of copying should be se­
lected. However, the amount of copying is
partially determined by run-time informa­
tion making it difficult to predetermine. In
many cases, there is only one such NoOp
node from which to choose.

2. The tradeoff between copying and the loss
of parallelism is evaluated for the other NoOp
nodes.

Because only one write NoOp is selected in
Step 1, all other write NoOps must perform
a copy operation. However, for each read
NoOp, a copy operation may or may not be
beneficial to overall program performance.
To determine if a read NoOp should perform
a copy operation, the delay and the copy
cost of the NoOp node are compared. If the
copy cost is greater than the delay cost, the
NoOp node is recorded in the NoCopy set.
Otherwise, it is recorded in the Copy set.

3. The control NoOp is identified as either a
copy or a noncopy operation.

If the control NoOp does not perform a copy
operation, it will be delayed. The delay time

156 FITZGERALD AND OLDEHOEFT

can be estimated by the cumulative execu­
tion times of the nodes that must execute
after the current node and before the control
NoOp. The difference between the copy cost
and the delay time can be used to make the
appropriate identification. If the control
NoOp is identified as a copy operation, it is
recorded in the Copy set and erased from
the Control set.

Once all copy operations are identified, ADEs
are inserted to delay the execution of the control
NoOp. The insertion of ADEs, in effect, reorders
the graph. In general, an ADE is inserted for
each node recorded in the following sets: the
Copy set, the global-leaf set of the nodes con­
tained in the NoCopy set, and the F group of
the local-usage set. Additionally, the input edge
of each NoOp node that does not perform a copy
is annotated with an R mark. These nodes are
recorded in the NoCopy set.

In some situations, only a dope-vector must be
copied. If the input edge of a NoOp node is anno­
tated with a w mark, the edge is annotated with a
P mark, indicating that only the dope-vector is
copied. Since the dope-vector copy operation will
create an alias, the position of the ADEs must be
adjusted to preserve program semantics. An ADE
is inserted for each node recorded in the global­
leaf set of a NoOp node that performs a dope-vector
copy operation.

Reconsider the graph fragment in Figure 7. Be­
cause a single-write NoOp node is listed in the local­
usage set, this node (no. 1) is recorded in the Con­
trol set. The other NoOp node (no. 3) is recorded
in either the Copy or the NoCopy set. To prevent
the copy operation associated with the selected
NoOp, two ADEs must be inserted. The first ADE
is connected to the AElement node because it is
recorded in the F group of the local-usage set. The
other ADE is connected to either the rightmost
NoOp node (no. 3) or the compound node (no. 5).

The position of the second ADE is based on the
set in which the rightmost NoOp node is recorded.
If this node performs a copy operation, i.e., it is
recorded in the Copy set, the ADE extends from
this NoOp node. If, however, no copying is per­
formed, the selected NoOp must be delayed until
after all nodes contained in the rightmost NoOp's
global-leaf set have executed. In this graph we as­
sume that node 5 is the onlv node recorded in
that set.

Ideally, a graph partitioning and scheduling
scheme, e.g., [14, 19, 23, 24], should he used

in conjunction with our analysis. Under this
scheme, the cun·ent subgraph would first he par­
titioned. Our analysis would then be performed.
The appropriate comparison function to apply
during our analysis would be based on the parti­
tion obtained. The resulting subgraph would then
be scheduled to a processor. On a distributed
memory processor, if a NoOp node that performs
a copy operation dominates a partition, the copy
operation could he used as a data-transfer mech­
anism.

Information Propagation and Array Dealloca­
tion. After an entire graph is analyzed, the global­
leaf sets associated with the import ports of a graph
are used to classify the usage of all input arrays.
Together with the global-leaf sets associated with
array-generation nodes, we can identify both the
node that creates an array and the final set of nodes
that access the array. With respect to the current
graph being analyzed, each array is classified into
one of four classes:

1. An array is neither created nor totally con­
sumed within the graph, i.e., it passes
through the graph.

2. An array is created within the graph.
3. An array is imported into the graph and is

(partially) consumed within the graph.
4. An array is both created and totally con­

sumed within the graph.

If an array is not created within the graph and is
exported from the graph (i.e., the array is a mem­
ber of the first dass), this information must be
propagated to the external graph environment. If,
however, the array is both created and totally con­
sumed within the graph, the array can be deallo­
cated.

The information-propagation procedure exam­
ines each global-leaf set associated with a graph­
import port. If a global-leaf set contains a final
NoOp node, the imported array passes through the
graph. Recall that a final NoOp is connected to

the graph boundary. Both the array's export-port
number, say P, and the array's import-port num­
ber, say Q, are used to indicate which of the
graph's ports are annotated. The P1

" import port
is annotated with an E=P mark, and the Q1

" ex­
port port is annotated with an I=Q mark. These
marks are then propagated to the external graph
environment.

The array-deallocation procedure examines
each global-leaf set that is not associated with an

array import port. These are the arrays that are
created within the graph. If any of these arrays are
not exported from the graph, the corresponding
array may be deallocated. The procedure inserts
a grounding edge from the array-generation node
to port zero of the graph node.

Port zero semantics are nonstandard with re­
spect to both the syntax and the semantics of IFa;
(4]. Syntactically, this port allows multiple input
edges, i.e., fan-in. Fan-in occurs when more than
one array is deallocated within the graph. Semanti­
cally, the associated array is not available as an
output value. Instead, the allocated memory for
an array is deallocated at run-time.

4 PRELIMINARY INDICATIONS

To date, a full implementation of our algorithms
has not been developed. To determine the effec­
tiveness of our analysis, we have manually applied
our algorithms to several Sisal1.2 applications. In
this article, we present execution times that result
from our analysis for two programs: the Holm­
Aufenkamp state-removal algorithm [20] and a
matrix inversion algorithm. To create the execut­
ables, we first manually generated IFx graphs for
the programs. The Sisal compiler, OSC, was then
used to complete the compilation process. To sim­
plify implementation, multidimensional arrays
were represented under the vector-of-vectors array
model, but under the assumption that the arrays
were stored in contiguous memory.

~oo~----~,~~----~,.-o------~,00------~,oo-------Jroo

FIGURE 8 Execution times for the expresison "state­
removal(T), T[4]" when optimized both by Cann 's anal­
ysis and by our analysis. The ordinate indicates the
execution time in seconds.

UPDATE-IN-PLACE ANALYSIS 157

T

state-removal

FIGURE 9 l.Fx graph for the Sisal expression "state­
removai(T), T[4]."

The IF2-to-C code translation, ir.2gen, was
modified to insert code to simulate the copy opera­
tions required to preserve the contiguity require­
ment. The inserted code performed full multidi­
mensional-array copy operations and subarray
move operations whenever necessary. These copy
operations are associated with NoOp and ARe­
placeAT nodes, respectively.

For comparison purposes, we also applied the
analysis developed by Cann [4] to our test pro­
grams. Recall that the OSC compiler represents
arrays under the vector-of-vectors array model.
Although we are comparing execution times for two
different array models, the comparison provides
a reasonable measure of the effectiveness of our
analysis. All test programs were executed on a uni­
processor, a DECstation 5000. Fifty separate runs
were performed for each test case. Execution times
that varied more than 5% from the average were
eliminated to minimize the effect of system sharing.
We report the average execution times of the re­
maining times.

4.1 Hohn-Aufenkamp State-Removal
Algorithm

The state-removal algorithm of Aufenkamp and
Holm [20] is a method of finding all the possible
paths of length less than n bet\veen two nodes of
a net, where n is the number of nodes. In general,
the algorithm reduces an n X n matrix, say T, to
a 1 X 1 matrix, incrementally, by the following
equation.

158 FITZGERALD AND OLDEHOEFT

T' Lj

where

Ti.j + Ti.n X Trt.j

1- T,_,

1::5 ij::5 fl- 1

In the Sisal 1.2 implementation, three iterative
loops were used. Although a more natural imple­
mentation using parallel loops is possible, update­
in-place analysis is noL in general, applicable un­
der such an implementation.

Under both analyses, all copying was eliminated
and execution times were similar. Different times,
however, were obtained when we assumed that the
algorithm was analyzed in isolation. Recall that
under Cann's method the entire program must be
available for analysis. In Figure 8, we present the
execution times for expression "state-remov-
al(T), T[4]."

In this expression, the fourth row of Tis shared.
Consequently, under Cann's analysis, reference
counting is used to determine when the row is cop­
ied. Under our analysis, the row is copied prior to
the call of the state-removal function. The graph
for the expression is depicted in Figure 9. Under
Cann 's analysis, the increased execution times are
due to the reference-counting operations.

4.2 Matrix Inversion

We have dwseu a particular algorithm for the ma­
trix inverse function that exhibits better perfor­
mance when the matrix is stored as a vector-of­
vectors. Within the algorithm, rows of the matrix

Cant~'• Analy&ts -+-­
Our Anatysis ~.

FIGURE 10 Execution times for the matrix inversion
function when optimized both by Cann 's analysis and
by our analysis. The ordinate indicates the execution
time in seconds.

100
.... ··

..···

.•.....•.•••••. £1(

FIGURE 11 Execution times for the matrix inversion
function using both hierarchical storage and mimicked
contiguous storage for multidimensional anays. The
ordinate indicates the Pxecmion time in seconds.

are swapped. The swap operation can be per­
formed quickly under the vector model-via a
pointer copy operation. tJnder contiguous storage,
the individual elements of the swapped rows must
be copied.

A random matrix generator was used to create
the input, a square matrix with a single non-zero
entry in each row and in each column. In Figure
10 the execution times for both versions of the
program are shown. Not surprisingly, the vector­
of-vectors version runs faster because pointer
swapping is used instead of row swapping, which
is required under the dimensional version. To put
this difference into perspective, Figure 11 depicts
the execution times of unoptimized versions of
both programs, along with the data repeated from
Figure 1 0. We see that the copying penalty in the
dimensional model is small compared to the pen­
alty of not applying the optimizations at all.

5 CONCLUDING REMARKS

We have presented a new approach to perform
update-in-place analysis. Our methods improve
upon the methods developed by Cann by allowing
an array to be stored either as a vector-of-vectors
or in a contiguous, multidimensional space. Addi­
tionally, our approach allows functions to be fully
optimized separately, stored for later use, and in­
corporated into an application. This ability sup­
ports the construction of large software systems,
and can also result in better performance.

ln the state-removal algorithm, the ability to op­
timize the function independently resulted in a de­
crease in execution time. Cnder Cann's approach.
it must be assumed that subarrays, e.g., rows of a
matrix, are shared. Consequently, reference­
counting operations, which increase execution
time, must be used to determine when row copying
is necessary. under the contiguous storage of
arrays, no such assumption is necessary.

ln some situations, however. it is advantageous
to store arravs hierarchicallv. The matrix-inverse . .
program is an example of such a situation. For
contiguous multidimensional arrays, subarray­
copy operations are necessary, which increase the
execution time (as compared to hierarchical
arrays). Specific analysis could be devised to deter­
mine which array storage model should be used.
Our analysis is applicable for arrays stored hierar­
chically .. provided that row sharing is not permit­
ted. For the matrix-inverse program, each copy
operation would only copy a pointer. Under this
situation, we expect similar execution times to
be achieved.

As a result of our analysis, three different array
models can be supported efficiently: the vector­
of-vectors, the flat, and the dimensional array
models. The lack of reliance on a particular array
model permits other benefits to be achieved. In
particular. array representation under the dimen­
sional-array model permits better expressibility of
array operations, more efficient storage manage­
ment, and decreased execution time.

Much work is needed to achieve these benefits.
Our immediate plan is to first implement our algo­
rithms. We will then test and verify our implemen­
tation using a dataflow simulator, TWIJ\'E [16].
This simulator allows a user-defined package,
which can gather statistical information, to moni­
tor the execution of an IF:r graph. The result of
these statistics will be used to guide our specific
research directions.

ACKNOWLEDGMENTS

We thank John Motil for suggesting the Hohn­
Aufenkamp state-removal algorithm as a test ease.
We also thank the anonvmous reviewers for their
comments and suggestions. Their input has helped
to improve the article.

REFERENCES

[1 J Arvind and R. S. "'ikhil, '·Executing a program
on the .\1IT tagged-token dataflow architecture,,.

LPDATE-I'-1-PLACE ANALYSIS 159

IEEE Trans. Computers, vol. :39, pp. 300-318,
March 1990.

[2] J. Backus, "Can programming be liberated from
the von "'eumann style? A functional style and its
algebra of programs," Communications A CM, vol.
21. Aug. 1978.

[3] A. P. W. Bohm, R. R. Oldehoeft, D. C. Cann, and
.1. T. Feo, SISAL Reference Manual Language,
Version 2.0. Colorado State University­
Lawrence Livermore 1\Jational Laboratory, 1992.

[4J D. C. Cann, "Compilation techniques for high per­
formance applicative computation, •' PhD Thesis,
Colorado State University. CSC Tech. Rep. CS-
80-108, 1989.

[5] D. C. Cann, "Retire Fortran? A debate rekin­
dled,"' CAC'H. vol. 35, pp. 81-89, Aug. 1992.

[6] D. C. Cann and P. Evripidou, "Advanced array
optimizations for high performance functional lan­
guages," IEEE Trans. Parallel Distrib. Systems,
vol. 6, pp. 229-239, March 1995.

[7] D. C. Cann and R. R. Oldehoeft. "Reference count
and copy elimination for parallel applicative com­
puting," Department of Computer Science, Colo­
rado State University, Tech. Rep. CS-88-129,
l\ov. 1988.

[8] .1. B. Dennis, "Data flow supercomputers," IEEE
Computer, pp. 48-56,1\ov. 1980.

[9] .1. T. Feo, "Arrays in SISAL," Lawrence Liver­
more National Laboratory, Livermore, CA, Tech.
Rep. CCRL-JC-10608L Sept. 1990. Published
in The First International Workshop on Arrays,
Functional Languages, and Parallel Systems.

[1 OJ S.M. Fitzgerald, "Copy elimination for true multi­
dimensional arrays," in The Proceedings of the
Third SISAL Users and Developers Conference,
LLNL CO"'F-9310206, October 1993.

[11] S . .\1. Fitzgerald, "Array memory optimizations
for high speed parallel computing,'' PhD Thesis,
University of Massachusetts Lowell. 1\Jov. 1994.

[12] G. R. Gao, A Code Mapping Scheme for Dataflow
Software Pipelining. New York: Kluwer Academic
Publishers, 1990.

[13] .\1. Haines and W. Bohm, "A virtual shared ad­
dressing system for distributed memory SISAL,"
in The Proceedings of the Third SISAL Users and
Developers Conference, October 1993, pp.
151-163.

[14] S. J. Kim, "A general approach to multiprocessor
scheduling," PhD Thesis, The University of Texas
at Austin, Austin, Texas 78712-1188, Feb.
1988.

[15] J. McGraw, S. Skedzielewski, S. Allan, R. Olde­
hoeft, C. Kirkham, B. "'oyce, and R. Thomas,
SISAL: Streams and Iteration in a Single Assign­
ment Language, Language Reference Manual,
Version L2, M-146 ed. Livermore, CA: Lawrence
Livermore National Laboratory, March 1985.

[16] P. J. Miller, "TWINE: A portable, extensible

160 FITZGERALD AND OLDEHOEFT

SISAL execution kernel," in Proceedings of the
Second SISAL Users' Conference (San Diego, CA),
Lawrence Livermore National Laboratory, CONF-
9210270, December 1992, pp. 243-256.

[17] R. R. Oldehoeft, "Implementing arrays in SISAL
2.0," Proceedings of the Second SISAL Users'
Conference, December 1992, pp. 209-222.

[18] J. E. Ranelletti, "Graph transformation algorithms
for array memory optimization in applicative lan­
guages," PhD Thesis, University of California
Davis, UCD Tech. Rep. CCRL-53832, 1987.

[19] V. Sarkar, "Partitioning and scheduling parallel
programs for multiprocessors," PhD Thesis, Stan­
ford University, 1987.

[20] S. Seshu and M. B. Reed, Linear Graphs and
Electrical Networks. Addison-Wesley, 1961.

[21] S. Skedzielewski and .1. Glauert, !Fl-An lnterme-

diate Form for Applicative Languages, M-170 ed.
Livermore, CA: Lawrence Livermore National
Laboratory, July 1985.

[22] M. Welcome, S. Skedzielewski, R. K. Yates, and
J. Ranelletti, IF2-An applicative Language In­
termediate Form with Explicit .Memory l'vfanage­
ment, M-195 ed. University of California­
Lawrence Livermore 1'\ational Laboratory,
November 1986.

[23] L. M. Wilkens, "Modeling parallel computation
via the fusion of timed Petri nets with an applica­
tion to the mapping problem," PhD Thesis, De­
partment of Computer Science, University of Mas­
sachusetts at Lowell, Lowell, MA, May 1992.

[24] R. M. Wolski, "Program partitioning and schedul­
ing for NUMA computer architectures,'' PhD The­
sis, University of California, Davis. 1994.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

