
Compiler-Enforced Cache Coherence
Using a Functional Language

RICH WOLSKI1 AND DAVID CANN2

1Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093;
e-mail: rich @ cs.ucsd.edu
2Convex Computer Corporation, P.O. Box 833851, Richardson, TX 75083; e-mail: cann@ convex.com

ABSTRACT

The cost of hardware cache coherence, both in terms of execution delay and operational
cost, is substantial for scalable systems. Fortunately, compiler-generated cache manage­
ment can reduce program serialization due to cache contention; increase execution
performance; and reduce the cost of parallel systems by eliminating the need for more
expensive hardware support. In this article, we use the Sisal functional language system
as a vehicle to implement and investigate automatic, compiler-based cache manage­
ment. We describe our implementation of Sisal for the IBM Power/ 4. The Power/ 4,
briefly available as a product, represents an early attempt to build a shared memory
machine that relies strictly on the language system for cache coherence. We discuss the
issues associated with deterministic execution and program correctness on a system
without hardware coherence, and demonstrate how Sisal (as a functional language) is
able to address those issues. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

The cost of hardware cache coherence, both in
terms of execution delay and operational cost, is
substantial for scalable systems [4]. Parallel work
must stop while the caches are adjusted [8]. Fur­
thermore, as cache-coherent systems scale in size,
the time associated with each consistency opera­
tion increases. Small, bus-based systems can typi­
cally resolve a cache miss in 5 to 50 processor
cycles. Larger systems using distributed memories
and directory structures can require up to 500 cy-

Received April 1995
Revised June 1995

© 1996 John Wiley & Sons, Inc.
Scientific Programming, Vol. 5, pp. 161-171 (1996)
CCC 1058-9244/96/020161-11

des to resolve a miss, especially if the systems use
a local area network as a processor interconnect.
In addition, the trend in processor design is toward
wider instruction issue on each cycle. For example,
both the IBM RIOS 2 and the SCI TFP processing
units can issue up to four instructions per cycle.
A 100-cycle delay due to a cache miss could imply
a relative cost of 400 instructions. Out-of-order
instruction issue and hardware write buffering can
reduce this cost, but in general, the cache-syn­
chronization delay can seriously impair perfor­
mance. Fortunately, compiler-generated cache
management can reduce the amount of serializa­
tion resulting from hardware-based cache coher­
ence. Further, because the dollar cost of scalable
systems is high, compiler optimizations for cache
coherence can also reduce the need for more ex­
pensive hardware support, thereby improving
price performance.

In this article, we use the Sisal compiler as a

162 WOLSKI AJ\D CA.\i.\i

vehicle for implementing automatic, compiler­
based cache management. We describe an imple­
mentation of Sisal (Streams and Iterations in a
Single Assignment Language) [5] for the IB:\1
Power/4. The Power/4 supports shared memory,
but relies strictly on the language system to enforce
cache coherence. Functional languages are attrac­
tive for such a system as they are easily analyzed
for parallelism and data dependence. Moreover,
the compiler exclusively controls how data is
mapped with respect to cache alignment, so it can
ensure correct cache management. If future ma­
chines are built without hardware coherence, func­
tional programming can drastically reduce their
programming cost. Sisal is a good choice for such
an implementation as it has been shown to achieve
excellent shared memory execution performance
for scientific programs on other systems [2].

In the next section, we briefly describe the IBM
Power /4. Section 3 details some of the problems
associated with software cache management and
how we address them using OSC (the Optimizing
Sisal Compiler) [1]. In Section 4. we discuss the
difficulties in automatically parallelizing impera­
tive languages for the Power/4. In Section 5, we
detail and analyze our results in terms of two sci en­
tific programs: RICARD and SIMPLE. We discuss
both the relative performance (speedup) and the
execution time of each program, and identify
sources of execution overhead. Finally, in Section
6 we summarize our work and outline future re­
search directions.

2 THE IBM POWER/4

The Power/4 architecture, available only briefly
from IBM as a product, consists of four RIOS 1
processors connected to a set of seven globally ad­
dressable memorv banks via a crossbar switch.
System software partitions each processor's ad­
dress space into a privately accessible region and a
globally shared region. A different memory module
for each processor services private accesses, so in
the absence of sharing there is no contention for
memory. The system maps contiguous shared
memory locations across all memory hanks to min­
imize hot-spot contention. The RIOS 1 processors
implement no support for cache coherence. There
is no way to externally signal a cache post or invali­
date, and no way to bypass the on-board cache
and access memory directly. The machine we used
was an early prototype supporting 32K bytes of
data cache and 8K bytes of instruction cache per

processor, both managed using a copy-hack pol­
icy. In that machine, each cache line is 64 bytes
wide and a cache miss causes the processor to
stall; there is no support for pre-fetch and no write
buffering. Since the caehe cannot he bypassed,
every read of a memory location, ·~ither shared or
private, causes a copy of the memory to be cached
locally. Similarly, every processor write to memory
results in a write to cache only. Data are subse­
quently moved from cache to memory either when
it is evicted from the cache so that the cache line
can be reused, or when it is explicitly flushed by
the processor. While the Power/4 is no longer com­
men~ially available, it represents an early example
of a shared memory, eache-hased architecture
without hardware coherence.

3 SOFTWARE CACHE COHERENCE

Previous work in software cache management pro­
poses to reduce or eliminate entirely the need for
hardware-coherence mechanisms [3, 4, 6]. A pure
software-based approach requires the compiler
and run -time system to explicitly address the prob­
lems of stale data and false sharing in order to

generate deterministic programs. We describe
these problems in greater detaiL as well as the way
in which our implementation of OSC addresses
them, in the following subsections.

3.1 Stale Data

Stale data are copies of a data item that do not
reflect their most current value. If a computation
inadvertently uses a stale data item, all descendant
computations are potentially invalid. To ensure
data ''freshness" without hardware support, a
parallel program must execute cache invalidate,
post, and flush operations to explicitly control the
interaetion of the local caches with shared
memory.

Post: Data associated with an address is copied
back to global memory. The processor's cache
retains its copy of the data. A processor writing
a shared data element into its cache must post it
to memory some time before another processor
attempts to access it.

Invalidate: Data associated with an address are
marked invalid and the data are not copied baek
to global memory. The next reference for this
address by the processor will be to global mem-

G) A := 5

G) Post A

Barrier

Barrier

G) Invalidate A

G)B :=A

shared memory

FIGURE 1 Explicit cache synchronization.

ory. Any processor reading a memory location
that has been updated by another processor
must invalidate its own copy before reading.
Otherwise, it may read a stale copy from its own
cache and not the valid copy from shared
memory.

Flush: The atomic combination of invalidate
and post.

In Figure 1 we show the communication of a
shared variable from one processor to another. The
circled numbers show the order of execution and
associated data movement with each instruction.
Processor PO assigns the value 5 into shared vari­
able A. The value is written into PO's local cached
version of A (labeled A' in Fig. 1) as a result of the
store. PO then posts A to memory, causing the
data value cached therein to be copied to shared
memory. PO and P1 synchronize using a barrier
so that P1 does not attempt to read the value of A
before PO posts it. Before P1 reads the value for
A, it must invalidate its cached copy (labeled A")
so that the read will come from memory and not
its local cache. Note that this invalidate can take
place any time before P1 attempts its read, al­
though we show it colocated with the read itself.
Finally, P1 stores the value fetched from A into its
local cached copy of B.

3.2 OSC and Stale Data

The current version of OSC implements a master/
slave model of parallelism. All code except that
implementing parallel loops is executed sequen-

COYIPILER-E!\'FORCED CACHE COHERENCE 163

tially by the master thread. When the master
reaches a parallel loop, it spawns slave tasks by
writing an activation record (AR) into a predefined
shared memory location for each slave. The AR
describes all of the loop inputs, a loop body entry
point, and an index range over which the slave is
to execute. Cpon receipt of an AR, a slave executes
the loop body over the specified range and then
enters a barrier waiting for the other slaves partici­
pating in the computation to complete. Once all
slaves spawned by the master have entered the
barrier, the master is free to proceed.

Sisal's strict functional semantics ensure that
no communication will occur between slaves once
they are activated. All loop inputs must be com­
pletely available before the slaves are spawned,
and no loop output will be consumed until the
master and the slaves synchronize at the end of
the loop. On the IBM Power/4, both the post and
invalidate instructions are combined into a single
flush operation (implemented as an operating-sys­
tem call). Therefore, to avoid stale-data accesses,
the master must flush its cache before it spawns
any parallel work, and each slave must flush its
own cache before it enters the barrier at the end
of a loop (see Fig. 2). The master flushes both
posts any data it has written, and invalidates any
cache entries for the memory that the slaves will
write with the loop's outputs. Similarly, the slaves

Flush

1 -~
Flush

Spawn Slaves

Flush Flush

Barrier

1 Master

Slaves

FIGURE 2 Flush operations and the master/ slave exe­
cution model.

164 WOLSKI AND CANN

8 bytes -11 1 2 1 3 1 4 1 s 1 6 1 7 1 s 1 9 l1a 11111211311411sl

\
cache aligned

FIGURE 3 Cache-aligned vector.

post their outputs and invalidate the cache entries
corresponding to the memory that held the loop's
inputs. By flushing the caches at the communica­
tion points, both master and slaves ensure that
no stale-data accesses will occur. The functional
semantics of Sisal make those communication
points easy for the compiler to identify.

3.3 False Sharing

The unit of caching on the IBM Power/4 is a 64-
byte cache line. When a processor accesses a mem­
ory location, the entire 64-byte cache line in which
it resides is fetched into the processor's cache.
If data items written by different processors are
mapped to the same cache line, their accesses must
be sequentialized. Otherwise, processors will up­
date different copies of the same cache line. Since
they are not updating the same memory location
within the line (each memory location has a single
writer in a correct parallel section), each processor
will contain the cache line's original contents and
its own updates, but not the updates made by the
other processors. All of the cache line copies map
to the same set of memory locations, so when the
copies are flushed back to memory, only the last
write prevails. We refer to this condition as false
sharing.

For example, consider a parallel program exe­
cuting on a system that uses 32-byte cache lines.*
Assume that the program forms a contiguous vec­
tor of 15 double-precision floating-point numbers
in parallel, using two processors, and that the first
element of the memory allocated to hold the vector
is cache aligned (Fig. 3). Note that in the figure,
each double-precision number occupies 8 bytes,
and that we label the elements 1 through 15, re­
spectively. Assume further that the production of
the loop has been partitioned so that processor PO
produces elements 1 through 7, and processors

*We use 32-byte cache lines in this example to make the
explanations and the subsequent figures less complex.

P1 produces elements 8 through 15 (Fig. 4a). In
Figure 4b, we show the cache-line partitioning im­
posed by the hardware. A cache line size of 32
bytes is large enough to hold four double-precision
vector elements. Since element 1 is cache aligned
and the vector occupies contiguous memory, ele­
ments 5, 9, and 13 are also cache aligned. Note
that the values in the cache line containing ele­
ments 5 through 8 are falsely shared between proc­
essors PO and Pl. When PO produces elements 5
through 7 into its cache, the space for element 8
in the cache line will be left untouched. Similarly,
P1 will produce element 8 into the rightmost slot
of the cache line, leaving the slots for elements 5
through 7 untouched. The values ofthe untouched
elements are undefined. In practice, however, they
will contain whatever random data happened to
be in the memory locations corresponding to the
cache line before the first element is produced.
After each processor produces the elements it has
been assigned, it must post the values to memory.
However, the hardware will post the entire cache
line as a unit, thereby writing undefined values
into the vector. Figure 5 depicts the cache lines
and memory for the shared line just before the
post. The Xs in Figure 5 represent undefined val­
ues. 1\'ote that the result is nondeterministic, with
the last temporal post taking precedence. If PO
posts first, then the undefined values from P1 's
copy of the cache line will overwrite elements 5
through 7. Otherwise, P1 posts first, and the unde­
fined value for element 8 in PO's cache line will be
written into the vector.

The short cache line containing elements 13
through 15 in Figure 4b may also create the possi-

PO PI

(a)

(b)

FIGURE 4 Data and cache-line partitions.

PO PI

I X I X I X I 8 I cachlinecopies

memory for elements 5 through 8

FIGURE 5 Shared cache-line and memory prior to
postoperation.

bility for false sharing. When the cache line is writ­
ten to memory, the slot corresponding to what
would be the 16th element will also be written.
Since there is no 16th element in the vector pro­
duced by the computation, this slot will contain
an undefined value with respect to the program.
lf another unrelated data structure happens to be
contiguous with the vector, its first 8 bytes will
be overwritten when the cache line is posted to
memory. Again, in practice, the cache line will be
fetched from memory before P1 fills in element 13
so that whatever bit pattern is present in the 16th
element will be written back. If there are no proces­
sors updating the memory corresponding to the
last slot in the cache line, the correct value will be
posted back to the memory, and the program is
correct. In general, however, that memory may also
be updated in parallel since it is potentially used
by an independent data structure.

3.4 Padding and Tessellation

The general solution to the problem of false sharing
within a parallel section of code requires that

1. The memory used to implement all data
structures is an integral number of cache
lines.

2. No two processors share a cache line in par­
allel.

When implemented by a compiler and run-time
system, the first requirement translates to padding
in any memory allocation. For both imperative and
functional languages, statically defined data struc­
tures can be easily padded. However, if the pro­
grammer is allowed to manipulate pointers to dy­
namically allocated memory, the language system
cannot guarantee safe padding. Since functional
languages deal with values (i.e., names and not

COMPILER-ENFORCED CACHE COHERENCE 165

memory locations), storage management is implicit
and completely under the control of the compiler
and run-time software.t So they are good candi­
date languages for efficient implementation on
parallel architectures without cache coherence.

To satisfy the second requirement, the program
partitioner must understand the mapping between
logical data structures and the memory that imple­
ments them. In particular, the partitionermust tes­
sellate each shared data structure with an integral
number of cache lines. If the programmer is al­
lowed to specify a partition that does not tessellate,
the compiler and run-time must sequentialize all or
part of the computation. However, the functional
language compiler and run-time are free to coordi­
nate memory alignment and partitioning to en­
sure tessellation.

3.5 OSC and False Sharing

We modified OSC to pad all data structures to an
integral number of cache lines. We then changed
the dynamic memory allocation system used by
the run-time to allocate cache-aligned regions, and
to round all allocation requests up to the nearest
cache-line size. The result is that all statically and
dynamically defined data structures are cache
aligned and padded in the modified compiler.

As mentioned previously, the compiler crafts a
set of activation records (one per active processor)
in shared memory for each parallel loop. An activa­
tion record specifies a loop-body entry point, a list
of inputs, and an index range. It is the index range
that controls partitioning under OSC, as the func­
tional semantics of the loop dictate that the com­
putation associated with each index is inde­
pendent.

To effect tessellation, we needed to change the
AR generator to take into account cache alignment.
Sisal is statically typed so the elemental data types
within any aggregate (such as an array) are known
at compile time. Using the example in Figure 3,
the compiler knows a priori that the parallel loop
will produce a vector of double-precision elements.
The actual size of the array may not be known
until run-time. hence the activation record is not
crafted until the program actually executes. How­
ever, by knowing the cache-line size and the size
of each element produced by the loop, the AR

t Advanced imperative languages like Modula-3 disallow
pointer arithmetic, and so the false sharing problem is solvable
within these languages as well.

166 WOLSKI AND CANN

cache aligned by
the me100ry manager

padded by the
memory manager

FIGURE 6 Cache-aligned partition.

generator can calculate how many indices corre­
spond to a single cache line. Once the number of
processors and the total index range for the loop
are known, each processor can be assigned an inte­
gral number of cache lines to produce.

Returning to the example shown in Figure 3,
the compiler knows that four elements will fit in
each cache line. When the AR generator is called at
run-time, it is parameterized with this information,
the total index range (1 through 15), and the proc­
essor ids (PO and P1). It calculates that four cache
lines are required to hold the 15 elements pro­
duced by the loop and splits the work evenly, two
per processor. It then assigns indices 1 through 8
to processor PO, and 9 through 15 to processor
P1. We show the resulting partition in Figure 6.
Each cache line is differentiated by a different
shading. Note that the memory manager ensures
both the alignment of the first element, and that
padding is inserted between the end of the vector
and the next cache-line boundary in memory.

3.6 Interference with Other
Optimizations

While the changes to the memory manager and
AR generator were all that were necessary to effect
cache-line tessellation in the general sense, OSC
includes several other optimizations that poten­
tially interfere with tessellation. In particular, loop
fusion and storage preallocation cause difficulties
that we are forced to address.

OSC attempts to fuse loops whenever possible,
both to reduce the need for intermediate storage
variables and to reduce overall loop overhead.:j:
The result is that a single loop generates several

:j: Parallel Sisal loops mav return multiple values of different
types. OSC will compute these values using a single-loop imple­
mentation (thereby fusing their production) by default. Inver­
sion 12.9.1 of OSC. this default could not be ovPrridden al­
though the functionalitv should be part of future versions.

output variables, each with a potentially different
elemental type. For example, consider the fusion
of the loop producing the vector shown in Figure
6 with one that produces a 15-element vector of
2-byte integers. Since both loops produce 15 ele­
ments, they can be fused into a single loop to save
loop overhead. In Figure 7 we show both vectors
with their respective data and cache partitions.
1\"otice that all 15 two- byte integers will fit into a
single cache line. Therefore, the loop that produces
this vector cannot be parallelized if false sharing
is to be avoided. In general, each loop producing
more than one output must be partitioned accord­
ing to the least common multiple among the ele­
mental data types of its outputs. Since there is
no possibility for memory aliasing and no implicit
state in a functional language, each loop's outputs
are unambiguous. Further, Sisal's strong typing
makes the elemental data type known at compile
time. The size, however, may not be known. For
example, if a parallel loop produces a vector-of­
vectors (which is the way two-dimensional arrays
are represented in Sisal 1.2), the size of each inner
vector may not be known until run-time. OSC im­
plements such aggregates using pointers to non­
contiguous storage. That is, the outer vector con­
tains memory pointers, each referring to a different
inner vector. If the production of the outer vector
is parallelized, each loop body produces some
number of inner vectors and returns pointers to
them. The elemental data type for the outer vector
is therefore a memory pointers. the size of which
is known at compile time.

The other form of interference comes from the
build-in-place optimizations specified in [7].
These optimizations will cause contiguous memory
to be preallocated for data structures that are built
separately and then concatenated. For example,
if a vector is produced, and a border is then concat­
enated with either end of the vector, OSC will per­
form a single memory allocation for both the vector
and the border. The loop producing the vector
is then passed a memory pointer referring to the

PO PI
8 bytes

2bytes

FIGURE 7 Two vectors produced by the same loop.

cache aligned by
the memory manager

PO PI

FIGURE 8 Vector with border elements.

location within the allocated memory where the
vector is to be stored. In Figure 8 we depict the 15-
element vector from Figure 6 with a single border
element on each end. 1\-otice that the memory man­
ager has aligned the storage for the vector, which
in effect aligns the first border element and not the
first data value. The AR generator, therefore, must
consider offset from the beginning of a cache line to
the location where the first data value is produced
when it assigns an index range to each loop body.
In Figure 6 where there is no border, PO produces
elements 1 through 8 since a cache line boundary
falls between elements 8 and 9. With a cache­
aligned border, however, the same cache-line
boundary is shifted and subsequently falls between
elements 7 and 8. The result is that PO must pro­
duce elements 1 through 7, and P1 is assigned
8 through 15. In the examples, the load balance
remains the same even though the partition
changes. In general, however, cache aligning the
border elements can cause a load imbalance. If,
for example, two border elements were appended
to the vector, PO would produce 6 values, and P1
would produce 9, rather than the 7 and 8 split
shown in Figure 8.

4 COMPILING IMPERATIVE LANGUAGES

Compiling imperative languages (such as Fortran
and C) for the Power/4 is difficult. The designers
wished to support shared memory parallel com­
puting, but the task of correctly managing the per­
processor caches is extremely complex and error
prone. The system, therefore, includes paralleliza­
tion tools for Fortran (C is not supported) that
automatically insert cache-management system
calls. In addition, any parallelized loop must be
partitioned so that false sharing is avoided. Since
memory can be aliased via the Fortran common
block and unaligned addresses passed across sub­
routine boundaries, it is not generally possible to

C0.\1PILER-ENFOHCED CACIIE COHERENCE 167

determine the alignment between arrays and mem­
ory at compile time. That is, it is not possible for the
compile-time Fortran loop partitioner to determine
the cache-line boundaries within an arbitrarv
array. Further, the dialect of Fortran 77 supported
on the Power/ 4 allows dynamic allocation of mem­
ory at run-time. Since the alignment between array
elements and cache lines will be set at run-time
by the programmer, the parallelization tools must
insert code to dynamically define the loop partition
at run-time as well.

For example, assume that the vector shown in
Figure 9 consists of 15 double-precision values,
and that the target machine supports 32-byte
cache lines. Further assume that the vector is de­
fined as a parameter to the enclosing routine so
that its first element is not cache aligned, and that
four double-precision vector elements will fit in a
32-byte cache line. In Figure 9, shading shows the
cache-line decomposition of the vector, with each
shade corresponding to a different cache line. No­
tice that element 1 occupies the third element of
the cache line that contains it. Since the vector
may be embedded in some other array, the memory
adjacent to either end must be treated as valid. In
the example, data occupying the first and second
cache line elements (each marked X) immediately
adjacent to vector element 1 may be valid data
from an enclosing array. Therefore, the compiler
and run-time system cannot arbitrarily add pad­
ding to ensure cache alignment.

4.1 Parallelizing a Loop

The parallelization tools query the programmer for
dependence information in the cases where static
analysis fails. If the tool or the programmer deter­
mines that it is safe to parallelize a loop, code is
inserted that automatically determines the align­
ment of the first element at run-time. All elements
occupying partially filled cache lines are computed
sequentially unless the tool can determine unam­
biguously that the falsely shared values are not
updated. A parallel loop then computes all full
cache lines, partitioning them evenly between the
processors to avoid false sharing. In Figure 10,
assume that three processors (PO, P1, and P2) are
available. Elements 1, 2, and 15 are computed

FIGURE 9 Noncache-aligned Fortran vector.

168 WOLSKI AI\D CANN

SequentiaJ

FIGURE 10 Power/ 4 Fortran loop partition.

sequentially (in the case where the compilation sys­
tem must be conservative) by the first loop on ~ne
of the processors. Then elements 3 through 14 are
computed in parallel (one cache line per proces­
sor). While several optimizations to this general
scheme are possible, the loop must still be parti­
tioned at run-time as the compiler cannot know
a priori what the memory alignment for the data
will be.

4.2 Discussion

At the time of the Power I 4' s viability the scheme
outlined in the previous section was. ~xperimental
and under development.§ Cnfortunately, project
constraints prevented us from testing equivalent
Sisal and Fortran versions of the same program
before the project's termination. We note, how­
ever, that because Fortran allows the programmer
to dynamically associate array elements with the
memory that holds them, there is no easy way to
avoid the run-time overhead associated with dv­
namic loop partitioning. By way of contrast, the
Sisal compiler and run-time system are completely
responsible for memory management and loop
partitioning. Sisal's semantics do not permit the
programmer to specify how a particular data struc­
ture is implemented. In particular, it is not possible
for a program to explicitly control how and what
memory is allocated for each data structure. The
compiler and run-time system, then, are free to
force tessellation and padding of all data structures
in a way that is completely transparent to the pro­
gram, and which need not be analyzed at run-time.

5 RESULTS

We have limited results to report as our access
to a Power/4 proved somewhat problematic. The

9 We base our understanding of this scheme on several
conversations with the software devdopers. Other paralleliza­
tion products were planned for this svstem. at the time the
project was cancelled, which may have t~sed different partition­
ing methods.

Table 1. RICARD and SIMPLE

Lines of Floating-Point
Code Operations

SIMPLE 1550 119 052 334

RICARD 297 83 578 423

1\0TE: SIMPLE is a Lagrangian hydrodynamics bench­
mark developed at the Lawrence Livennorc ~ational Labora­
torv which simulates the behavior of fluid in a sphere. The code
is reasonably complex containing multiplv fused loops, both
with and without border constructions. RICARD is a production
code developed at the Universitv of Colorado Medical Center
to simulate the elution pattems :,f proteins in a gel.

machine on which we were able to develop our
compiler was an early prototype used to test soft­
ware upgrades and new products; however, we
were able to validate the correctness of our com­
piler and evaluate its effectiveness. Achieving cor­
rectness demonstrates that a functional language
system can automatically realize software coher­
ence without programme~ intervention and source
code modification. To show the viabilitv of our
implementation, we present execution times for
RICARD and SI.\1PLE, two scientific codes written
in Sisal 1.2.

Table 1 details the number of lines and the
floating-point operation counts for both codes.
Both codes perform both double-precision float­
ing-point arithmetic and integer calculations, but
the integer operations are primarily for arrav in­
dexing. Also, both codes define and read muitidi­
mensional arrays (implemented in OSC as vectors­
of-pointers to vectors).

In Figure 11 and Figure 12 we show the execu­
tion time and speedup profile for RICARD and
SI::\1PLE, respectively. Time, measured in sec­
onds, is the processor time returned by the svstem.
To compute speedup, we compiled e~ch Cf;de for
parallel execution and measured their execution
times on one, two, three, and four processors, re­
spectively. Each speedup value is calculated as the
ratio of one-processor execution time to parallel
execution time.

5.1 RICARD

The lack of a good speedup in Figure 11 (1.85 on
four processors) comes from a poor load balance
due to cache partitioning. In particular, OSC parti­
tions only the outer loop of nested parallel con­
structs by default. The dominant loop of RICARD
produces a two-dimensional array having only four

'·"'
6.00

BO

l.OO

4.l0

4.00

3.l0

3.00

2.10

2.00

.. ,.
1.00

O.l<J

0.00

l

'"

1.00

" "

;-

"
·-1-

--- --
200).00 4.00

C0.\1.PILER-E:\FORCED CACHE COHERE!\"CE 169

RICARD Speedup -400 ----
/

/
3.56

3.00
[_,/

/
2l0

2.00

LlO

1.00

1/
/' ---~

O.l<l -·-··--·

0.00 I
I

100 100 3.00 4.00

FIGURE 11 Results: RICARD.

rows. Since the output from the loop is four mem­
ory pointers (each to a row vector). and all four
row pointers will fit into a ,;ingle cache line, that
loop cannot be parallelized without producing a
sparse outer dimeni:iion. We reran the program in­
structing the partitioner to attempt the paralleliza­
tion of both inner and outer loops and the speedup
improved: however, the overall execution time in­
creased due to the control overhead associated
with exploiting innermost loop parallelism.

5.2 SIMPLE

The speedup for SL\1PLE is better than that for
RICARD despite the load imbalance caused by
fused loops and array border constructions. First.
the problem size of SL\tPLE is laq;er than RICARD
and more symmetric: i.e .. the iteration domains of
the outer parallel loops are wide enough to provide
cache-based parallelization. Second. tl1P time­
critical computations in SI~1PLE are spread across

SIMPLE Execulloa Timet!

I ~

-45.00

\
\

'\

40.00

35.00

3000

I

I ~
r--

25.00

20.00

15.00

'
10.00

l.OO

0.00

1.00 2.00 300 4.00

many parallel loop nests (not just one narrow loop
nest as in RICARD). Third, most of the parallel
loops in SIMPLE define both vectors and veetors­
of-vector:; (pointers to rows of double-precision
floating-point values and double-precision point
values). On the Power/4. pointer values occupy 4
bytes and double-precision valuf's occupy 8 bytes.
If a parallel loop returns both, it must be parti­
tioned for the least common multiple between the
two (4 bytes), yielding a poor load balance for the
other. However, most of the parallel loops in SIM­
PLE expend more computation defining the rows
than the single elements. OSC partitioned each of
these load-imbalanced loop forms for the pointers
so that the load imbalance favors the production
of the more expensive rows.

:\either SIVIPLE nor RICARD achieve good ab­
solute performance on the Power/4. SIMPLE exe­
cutes in 17.:->2 son four processors yielding 6.8
MFLOPS per second and RICARD's four-proces­
sor performance (3.54 s) is 23.6 MFLOPS per see-

SIMPLE Speedup .,...,,.
4.00 -

/
3.l<l

3.00

,.
2.00

'"'
1.00

/~/

,/ -/

// ,.

,...;::;.. v
-cr•

/
O.l<l

0.00

"'"" 1.00 2.00 lOO 4.00

FIGURE 12 Hesults: Sl:\1PLE.

170 WOLSKI Al'D CANN

ond.l/ We believe that there are essentially two rea­
sons, unrelated to the functional nature of SisaL
for these less than sterling performance numbers.
First, the implementation does not take advantage
of caching between parallel constructions. Like
manv scientific codes. SIMPLE and RICARD con­
tain parallel loops that are repeatedly executed
across time steps. Frequently, the arrays produced
during one time step serve as the inputs to the
next. However. the caches are flushed at the end
of every parallel loop, so no cached values are
carried over. It is possible to identify values that
can remain cached across iterations, hut the over­
head associated with the flush operation for se­
lected cache elements is much greater than that
for flushing the entire cache. Therefore, unless all
values could remain cached between iterations,
the cost of selectively flushing a few would over­
shadow the benefit gained from caching. \Ve con­
ducted a ft>w preliminary experiments and verified
this hypothesis on the prototype machine. Notice
that it is not the functional language but the hard­
ware implementation of cache sychronization in­
structions that impairs performance. lf the hard­
ware implemented separate invalidate and flush
operations as instructions (and not a single Hush
system call), we believe we could modify OSC to

take advantage of caching. Slaves would invalidate
inputs and post (without invalidating) outpub at
the end of each loop. Subsequent parallel sections
would then access valid data from their local
caches if they were present.

The seeond performance problem is due to the
overhead associated with locks. Each lock takes
about 250 dock cycles to execute for reasons we
were not able to diseern. OSC implements storage
reclamation via reference counting, which makes
moderate use of the native lock primitives. Further,
the mechanisms used within OSC to spawn nested
parallelism require locks to manage the work
queues for each slave task. The version of RICARD
that uses nested parallelism incurs this overhead,
while the more sequential version does not. The
use of locks to implement memory management is
a potential deficiency of OSC, however, it is not
related to hardware cache coherence. Presumably.
all parallel programs would suffer from expensive
lock synchronization. At the time that we per­
formed these experiments, we did not have access
to any parallel Fortran or C equivalent codes so

II Theoretical peak performance of the prorotvpe is approxi­
mately 45 MFLOPS/s per proeessor. as the processors were
"detuned" to 25 MHz.

we could not test this hypothesis directly. \Ve note,
however. that the use of locks and reference count­
ing does not hurt Sisal performance on other sys­
tems [2], so we do not believe it to be a serious lia­
bilitv.

In summary, Sisal and OSC enable the compiler
to coordinate memory manage1nent and loop par­
titioning so that parallelism can be exploited. The
interference with other optimizations introduced
by cache tessellation does not seem to dramatically
impact performance. The somewhat disappointing
execution times, we believe, are due to inefficienc­
ies in the base system and not the language model
or implementation.

6 CONCLUSIONS AND FUTURE WORK

In this study, we investigated the use of a functional
language as a vehicle for software cache manage­
ment. We have implemented Sisal1.2 (in the form
of OSC) for the lB~1 Power/ 4, a machine that relies
solely on the compiler and run-time system for
cache coherence. The strict functional semantics
of Sisal facilitate the elimination of stale data ac­
cesses. In addition, because the run-time system
controls all memory allocations, the functional lan­
guage system can coordinate memory alignment
and partitioning to avoid false sharing. One draw­
back of the underlying system is the potential for
poor load balance, especially in the presence of
other optimizations such as loop fusion. However,
our results show that the impact of such load im­
balance is not substantial. \Vhile the speedup val­
ues we observe for Sn1PLE and RICARD are rea­
sonable, the absolute execution performance of
Sl~PLE in particular is somewhat low. We attri­
bute much of the overhead in each execution to a
lack of cache reuse and an excessive cost associ­
ated with locks.

We therefore conclude that functional lan­
guages provide good vehicles for software cache
coherence. They shield the programmer from the
problems of stale data and false sharing while ex­
ploiting parallelism automatically. Absolute per­
formance, however, hinges on an efficient underly­
ing hardware implementation. ln particular, post
and invalidate operations should be implemented
as efficiently as possible, and flush by itself is
not sufficient.

As part of our future work, we plan to investigate
the tradeoff between cache tessellation and load
balance on systems with cache-coherent hard­
ware. We hope to develop a parameterized model

to determine when the reduced contention due to
cache partitioning will overshadow any subsequent
loss of performance due to load imbalance. Also,
we hope to study the efficacy of compiler-con­
trolled cache invalidate, post, and flush operations
as optimizations for hardware-coherent systems.

ACKNOWLEDGMENTS

The authors thank the members of the Computer
Research Group at Lawrence Livermore Na­
tional Laboratory for their invaluable aid and
insights. OSC and many Sisal programs are
available via anonymous ftp from sisal.llnl.gov
(128.115.19.65). Consult http : //www.llnl.gov/
sisal for more information. Also, we thank Jim Van
Fleet and the Advanced Workstation Group from
IBM-Austin for their tireless assistance in this proj­
ect. This work was supported in part by 1'\SF grant
ASC-9308900 and by DOE Contract W-7 405-
Eng-48.

DISCLAIMER

This document was prepared as an account of
work partially sponsored by an agency of the
Cnited States Government. Neither the United
States Government nor the Cniversity of California
nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, prod­
uct, or process disclosed, or represents that its use
would not infringe privately owned rights. Refer­
ence herein to any specific commercial products,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily

COMPILER-ENFORCED CACHE COHERENCE 171

constitute or imply endorsement, recommenda­
tions, or favoring by the United States Government
or the Cniversity of California. The views and opin­
ions of authors expressed herein do not necessarily
state or reflect those of the United States Govern­
ment or the University of California, and shall not
be used for advertising or product endorsement
purposes.

REFERENCES

[1] D. Cann, "Graph transformation algorithms for
array memory optimization in applicative lan­
guages," Colorado State University, Fort Collins,
CO, Tech. Rep. CS-89-1 08, May 1989.

[2] D. Cann, "Retire fortran? A debate rekindled,"
Commun. ACM, vol. 35, pp. 81-89, Aug. 1992.

[3] L. Choi, and P.-C. Yew, "A compiler-directed
cache scheme with improved intertask locality," in
Proceedings of Supercomputing 1994, 1994, pp.
773-782.

[4] R. Cytron, S. Karlovsky, and K. McAuiliffe. "Auto­
matic management of programmable caches," in
Proceedings of the 1988 International Conference
on Parallel Processing, August 1988, pp. 229-238.

[5] Lawrence Livermore ~ational Laboratory Com­
puter Research Group, Streams and Iterations in a
Single Assignment Language, Version 1.2. Liver­
more, CA, March 1985.

[6] T. :\lguyen, F. Mounes-Toussi, D. Lilja, and Z. Li.
"A compiler-assisted scheme for adaptive cache co­
herence enforcement," IFIP Trans. A (Computer
Sci. Techno!.,) A-50, pp. 69-78, Aug. 1994.

[7] J. Raneletti. "Graph transformation algorithms for
array memory optimization in applicative lan­
guages," Lawrence Livermore National Labora­
tory, Livermore, CA, Tech. Rep. UCRL-53832,
Nov. 1987.

[8] W. Yen, W. Yen, and K.-S. Fu. "Data coherence
problems in a multicache system," IEEE Trans.
Computers, vol. 34, pp. 56-65, 1985.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

