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ABSTRACT 

The cost of hardware cache coherence, both in terms of execution delay and operational 
cost, is substantial for scalable systems. Fortunately, compiler-generated cache manage­
ment can reduce program serialization due to cache contention; increase execution 
performance; and reduce the cost of parallel systems by eliminating the need for more 
expensive hardware support. In this article, we use the Sisal functional language system 
as a vehicle to implement and investigate automatic, compiler-based cache manage­
ment. We describe our implementation of Sisal for the IBM Power/ 4. The Power/ 4, 
briefly available as a product, represents an early attempt to build a shared memory 
machine that relies strictly on the language system for cache coherence. We discuss the 
issues associated with deterministic execution and program correctness on a system 
without hardware coherence, and demonstrate how Sisal (as a functional language) is 
able to address those issues. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

The cost of hardware cache coherence, both in 
terms of execution delay and operational cost, is 
substantial for scalable systems [ 4]. Parallel work 
must stop while the caches are adjusted [8]. Fur­
thermore, as cache-coherent systems scale in size, 
the time associated with each consistency opera­
tion increases. Small, bus-based systems can typi­
cally resolve a cache miss in 5 to 50 processor 
cycles. Larger systems using distributed memories 
and directory structures can require up to 500 cy-
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des to resolve a miss, especially if the systems use 
a local area network as a processor interconnect. 
In addition, the trend in processor design is toward 
wider instruction issue on each cycle. For example, 
both the IBM RIOS 2 and the SCI TFP processing 
units can issue up to four instructions per cycle. 
A 100-cycle delay due to a cache miss could imply 
a relative cost of 400 instructions. Out-of-order 
instruction issue and hardware write buffering can 
reduce this cost, but in general, the cache-syn­
chronization delay can seriously impair perfor­
mance. Fortunately, compiler-generated cache 
management can reduce the amount of serializa­
tion resulting from hardware-based cache coher­
ence. Further, because the dollar cost of scalable 
systems is high, compiler optimizations for cache 
coherence can also reduce the need for more ex­
pensive hardware support, thereby improving 
price performance. 

In this article, we use the Sisal compiler as a 
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vehicle for implementing automatic, compiler­
based cache management. We describe an imple­
mentation of Sisal (Streams and Iterations in a 
Single Assignment Language) [5] for the IB:\1 
Power/4. The Power/4 supports shared memory, 
but relies strictly on the language system to enforce 
cache coherence. Functional languages are attrac­
tive for such a system as they are easily analyzed 
for parallelism and data dependence. Moreover, 
the compiler exclusively controls how data is 
mapped with respect to cache alignment, so it can 
ensure correct cache management. If future ma­
chines are built without hardware coherence, func­
tional programming can drastically reduce their 
programming cost. Sisal is a good choice for such 
an implementation as it has been shown to achieve 
excellent shared memory execution performance 
for scientific programs on other systems [2]. 

In the next section, we briefly describe the IBM 
Power /4. Section 3 details some of the problems 
associated with software cache management and 
how we address them using OSC (the Optimizing 
Sisal Compiler) [1]. In Section 4. we discuss the 
difficulties in automatically parallelizing impera­
tive languages for the Power/4. In Section 5, we 
detail and analyze our results in terms of two sci en­
tific programs: RICARD and SIMPLE. We discuss 
both the relative performance (speedup) and the 
execution time of each program, and identify 
sources of execution overhead. Finally, in Section 
6 we summarize our work and outline future re­
search directions. 

2 THE IBM POWER/4 

The Power/4 architecture, available only briefly 
from IBM as a product, consists of four RIOS 1 
processors connected to a set of seven globally ad­
dressable memorv banks via a crossbar switch. 
System software partitions each processor's ad­
dress space into a privately accessible region and a 
globally shared region. A different memory module 
for each processor services private accesses, so in 
the absence of sharing there is no contention for 
memory. The system maps contiguous shared 
memory locations across all memory hanks to min­
imize hot-spot contention. The RIOS 1 processors 
implement no support for cache coherence. There 
is no way to externally signal a cache post or invali­
date, and no way to bypass the on-board cache 
and access memory directly. The machine we used 
was an early prototype supporting 32K bytes of 
data cache and 8K bytes of instruction cache per 

processor, both managed using a copy-hack pol­
icy. In that machine, each cache line is 64 bytes 
wide and a cache miss causes the processor to 
stall; there is no support for pre-fetch and no write 
buffering. Since the caehe cannot he bypassed, 
every read of a memory location, ·~ither shared or 
private, causes a copy of the memory to be cached 
locally. Similarly, every processor write to memory 
results in a write to cache only. Data are subse­
quently moved from cache to memory either when 
it is evicted from the cache so that the cache line 
can be reused, or when it is explicitly flushed by 
the processor. While the Power/4 is no longer com­
men~ially available, it represents an early example 
of a shared memory, eache-hased architecture 
without hardware coherence. 

3 SOFTWARE CACHE COHERENCE 

Previous work in software cache management pro­
poses to reduce or eliminate entirely the need for 
hardware-coherence mechanisms [3, 4, 6]. A pure 
software-based approach requires the compiler 
and run -time system to explicitly address the prob­
lems of stale data and false sharing in order to 

generate deterministic programs. We describe 
these problems in greater detaiL as well as the way 
in which our implementation of OSC addresses 
them, in the following subsections. 

3.1 Stale Data 

Stale data are copies of a data item that do not 
reflect their most current value. If a computation 
inadvertently uses a stale data item, all descendant 
computations are potentially invalid. To ensure 
data ''freshness" without hardware support, a 
parallel program must execute cache invalidate, 
post, and flush operations to explicitly control the 
interaetion of the local caches with shared 
memory. 

Post: Data associated with an address is copied 
back to global memory. The processor's cache 
retains its copy of the data. A processor writing 
a shared data element into its cache must post it 
to memory some time before another processor 
attempts to access it. 

Invalidate: Data associated with an address are 
marked invalid and the data are not copied baek 
to global memory. The next reference for this 
address by the processor will be to global mem-
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FIGURE 1 Explicit cache synchronization. 

ory. Any processor reading a memory location 
that has been updated by another processor 
must invalidate its own copy before reading. 
Otherwise, it may read a stale copy from its own 
cache and not the valid copy from shared 
memory. 

Flush: The atomic combination of invalidate 
and post. 

In Figure 1 we show the communication of a 
shared variable from one processor to another. The 
circled numbers show the order of execution and 
associated data movement with each instruction. 
Processor PO assigns the value 5 into shared vari­
able A. The value is written into PO's local cached 
version of A (labeled A' in Fig. 1) as a result of the 
store. PO then posts A to memory, causing the 
data value cached therein to be copied to shared 
memory. PO and P1 synchronize using a barrier 
so that P1 does not attempt to read the value of A 
before PO posts it. Before P1 reads the value for 
A, it must invalidate its cached copy (labeled A") 
so that the read will come from memory and not 
its local cache. Note that this invalidate can take 
place any time before P1 attempts its read, al­
though we show it colocated with the read itself. 
Finally, P1 stores the value fetched from A into its 
local cached copy of B. 

3.2 OSC and Stale Data 

The current version of OSC implements a master/ 
slave model of parallelism. All code except that 
implementing parallel loops is executed sequen-
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tially by the master thread. When the master 
reaches a parallel loop, it spawns slave tasks by 
writing an activation record (AR) into a predefined 
shared memory location for each slave. The AR 
describes all of the loop inputs, a loop body entry 
point, and an index range over which the slave is 
to execute. Cpon receipt of an AR, a slave executes 
the loop body over the specified range and then 
enters a barrier waiting for the other slaves partici­
pating in the computation to complete. Once all 
slaves spawned by the master have entered the 
barrier, the master is free to proceed. 

Sisal's strict functional semantics ensure that 
no communication will occur between slaves once 
they are activated. All loop inputs must be com­
pletely available before the slaves are spawned, 
and no loop output will be consumed until the 
master and the slaves synchronize at the end of 
the loop. On the IBM Power/4, both the post and 
invalidate instructions are combined into a single 
flush operation (implemented as an operating-sys­
tem call). Therefore, to avoid stale-data accesses, 
the master must flush its cache before it spawns 
any parallel work, and each slave must flush its 
own cache before it enters the barrier at the end 
of a loop (see Fig. 2). The master flushes both 
posts any data it has written, and invalidates any 
cache entries for the memory that the slaves will 
write with the loop's outputs. Similarly, the slaves 

Flush 

1 -~ 
Flush 

Spawn Slaves 

Flush Flush 

Barrier 

1 Master 

Slaves 

FIGURE 2 Flush operations and the master/ slave exe­
cution model. 
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FIGURE 3 Cache-aligned vector. 

post their outputs and invalidate the cache entries 
corresponding to the memory that held the loop's 
inputs. By flushing the caches at the communica­
tion points, both master and slaves ensure that 
no stale-data accesses will occur. The functional 
semantics of Sisal make those communication 
points easy for the compiler to identify. 

3.3 False Sharing 

The unit of caching on the IBM Power/4 is a 64-
byte cache line. When a processor accesses a mem­
ory location, the entire 64-byte cache line in which 
it resides is fetched into the processor's cache. 
If data items written by different processors are 
mapped to the same cache line, their accesses must 
be sequentialized. Otherwise, processors will up­
date different copies of the same cache line. Since 
they are not updating the same memory location 
within the line (each memory location has a single 
writer in a correct parallel section), each processor 
will contain the cache line's original contents and 
its own updates, but not the updates made by the 
other processors. All of the cache line copies map 
to the same set of memory locations, so when the 
copies are flushed back to memory, only the last 
write prevails. We refer to this condition as false 
sharing. 

For example, consider a parallel program exe­
cuting on a system that uses 32-byte cache lines.* 
Assume that the program forms a contiguous vec­
tor of 15 double-precision floating-point numbers 
in parallel, using two processors, and that the first 
element of the memory allocated to hold the vector 
is cache aligned (Fig. 3). Note that in the figure, 
each double-precision number occupies 8 bytes, 
and that we label the elements 1 through 15, re­
spectively. Assume further that the production of 
the loop has been partitioned so that processor PO 
produces elements 1 through 7, and processors 

*We use 32-byte cache lines in this example to make the 
explanations and the subsequent figures less complex. 

P1 produces elements 8 through 15 (Fig. 4a). In 
Figure 4b, we show the cache-line partitioning im­
posed by the hardware. A cache line size of 32 
bytes is large enough to hold four double-precision 
vector elements. Since element 1 is cache aligned 
and the vector occupies contiguous memory, ele­
ments 5, 9, and 13 are also cache aligned. Note 
that the values in the cache line containing ele­
ments 5 through 8 are falsely shared between proc­
essors PO and Pl. When PO produces elements 5 
through 7 into its cache, the space for element 8 
in the cache line will be left untouched. Similarly, 
P1 will produce element 8 into the rightmost slot 
of the cache line, leaving the slots for elements 5 
through 7 untouched. The values ofthe untouched 
elements are undefined. In practice, however, they 
will contain whatever random data happened to 
be in the memory locations corresponding to the 
cache line before the first element is produced. 
After each processor produces the elements it has 
been assigned, it must post the values to memory. 
However, the hardware will post the entire cache 
line as a unit, thereby writing undefined values 
into the vector. Figure 5 depicts the cache lines 
and memory for the shared line just before the 
post. The Xs in Figure 5 represent undefined val­
ues. 1\'ote that the result is nondeterministic, with 
the last temporal post taking precedence. If PO 
posts first, then the undefined values from P1 's 
copy of the cache line will overwrite elements 5 
through 7. Otherwise, P1 posts first, and the unde­
fined value for element 8 in PO's cache line will be 
written into the vector. 

The short cache line containing elements 13 
through 15 in Figure 4b may also create the possi-
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FIGURE 4 Data and cache-line partitions. 
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FIGURE 5 Shared cache-line and memory prior to 
postoperation. 

bility for false sharing. When the cache line is writ­
ten to memory, the slot corresponding to what 
would be the 16th element will also be written. 
Since there is no 16th element in the vector pro­
duced by the computation, this slot will contain 
an undefined value with respect to the program. 
lf another unrelated data structure happens to be 
contiguous with the vector, its first 8 bytes will 
be overwritten when the cache line is posted to 
memory. Again, in practice, the cache line will be 
fetched from memory before P1 fills in element 13 
so that whatever bit pattern is present in the 16th 
element will be written back. If there are no proces­
sors updating the memory corresponding to the 
last slot in the cache line, the correct value will be 
posted back to the memory, and the program is 
correct. In general, however, that memory may also 
be updated in parallel since it is potentially used 
by an independent data structure. 

3.4 Padding and Tessellation 

The general solution to the problem of false sharing 
within a parallel section of code requires that 

1. The memory used to implement all data 
structures is an integral number of cache 
lines. 

2. No two processors share a cache line in par­
allel. 

When implemented by a compiler and run-time 
system, the first requirement translates to padding 
in any memory allocation. For both imperative and 
functional languages, statically defined data struc­
tures can be easily padded. However, if the pro­
grammer is allowed to manipulate pointers to dy­
namically allocated memory, the language system 
cannot guarantee safe padding. Since functional 
languages deal with values (i.e., names and not 

COMPILER-ENFORCED CACHE COHERENCE 165 

memory locations), storage management is implicit 
and completely under the control of the compiler 
and run-time software.t So they are good candi­
date languages for efficient implementation on 
parallel architectures without cache coherence. 

To satisfy the second requirement, the program 
partitioner must understand the mapping between 
logical data structures and the memory that imple­
ments them. In particular, the partitionermust tes­
sellate each shared data structure with an integral 
number of cache lines. If the programmer is al­
lowed to specify a partition that does not tessellate, 
the compiler and run-time must sequentialize all or 
part of the computation. However, the functional 
language compiler and run-time are free to coordi­
nate memory alignment and partitioning to en­
sure tessellation. 

3.5 OSC and False Sharing 

We modified OSC to pad all data structures to an 
integral number of cache lines. We then changed 
the dynamic memory allocation system used by 
the run-time to allocate cache-aligned regions, and 
to round all allocation requests up to the nearest 
cache-line size. The result is that all statically and 
dynamically defined data structures are cache 
aligned and padded in the modified compiler. 

As mentioned previously, the compiler crafts a 
set of activation records (one per active processor) 
in shared memory for each parallel loop. An activa­
tion record specifies a loop-body entry point, a list 
of inputs, and an index range. It is the index range 
that controls partitioning under OSC, as the func­
tional semantics of the loop dictate that the com­
putation associated with each index is inde­
pendent. 

To effect tessellation, we needed to change the 
AR generator to take into account cache alignment. 
Sisal is statically typed so the elemental data types 
within any aggregate (such as an array) are known 
at compile time. Using the example in Figure 3, 
the compiler knows a priori that the parallel loop 
will produce a vector of double-precision elements. 
The actual size of the array may not be known 
until run-time. hence the activation record is not 
crafted until the program actually executes. How­
ever, by knowing the cache-line size and the size 
of each element produced by the loop, the AR 

t Advanced imperative languages like Modula-3 disallow 
pointer arithmetic, and so the false sharing problem is solvable 
within these languages as well. 
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FIGURE 6 Cache-aligned partition. 

generator can calculate how many indices corre­
spond to a single cache line. Once the number of 
processors and the total index range for the loop 
are known, each processor can be assigned an inte­
gral number of cache lines to produce. 

Returning to the example shown in Figure 3, 
the compiler knows that four elements will fit in 
each cache line. When the AR generator is called at 
run-time, it is parameterized with this information, 
the total index range (1 through 15), and the proc­
essor ids (PO and P1 ). It calculates that four cache 
lines are required to hold the 15 elements pro­
duced by the loop and splits the work evenly, two 
per processor. It then assigns indices 1 through 8 
to processor PO, and 9 through 15 to processor 
P1. We show the resulting partition in Figure 6. 
Each cache line is differentiated by a different 
shading. Note that the memory manager ensures 
both the alignment of the first element, and that 
padding is inserted between the end of the vector 
and the next cache-line boundary in memory. 

3.6 Interference with Other 
Optimizations 

While the changes to the memory manager and 
AR generator were all that were necessary to effect 
cache-line tessellation in the general sense, OSC 
includes several other optimizations that poten­
tially interfere with tessellation. In particular, loop 
fusion and storage preallocation cause difficulties 
that we are forced to address. 

OSC attempts to fuse loops whenever possible, 
both to reduce the need for intermediate storage 
variables and to reduce overall loop overhead.:j: 
The result is that a single loop generates several 

:j: Parallel Sisal loops mav return multiple values of different 
types. OSC will compute these values using a single-loop imple­
mentation (thereby fusing their production) by default. Inver­
sion 12.9.1 of OSC. this default could not be ovPrridden al­
though the functionalitv should be part of future versions. 

output variables, each with a potentially different 
elemental type. For example, consider the fusion 
of the loop producing the vector shown in Figure 
6 with one that produces a 15-element vector of 
2-byte integers. Since both loops produce 15 ele­
ments, they can be fused into a single loop to save 
loop overhead. In Figure 7 we show both vectors 
with their respective data and cache partitions. 
1\"otice that all 15 two- byte integers will fit into a 
single cache line. Therefore, the loop that produces 
this vector cannot be parallelized if false sharing 
is to be avoided. In general, each loop producing 
more than one output must be partitioned accord­
ing to the least common multiple among the ele­
mental data types of its outputs. Since there is 
no possibility for memory aliasing and no implicit 
state in a functional language, each loop's outputs 
are unambiguous. Further, Sisal's strong typing 
makes the elemental data type known at compile 
time. The size, however, may not be known. For 
example, if a parallel loop produces a vector-of­
vectors (which is the way two-dimensional arrays 
are represented in Sisal 1.2), the size of each inner 
vector may not be known until run-time. OSC im­
plements such aggregates using pointers to non­
contiguous storage. That is, the outer vector con­
tains memory pointers, each referring to a different 
inner vector. If the production of the outer vector 
is parallelized, each loop body produces some 
number of inner vectors and returns pointers to 
them. The elemental data type for the outer vector 
is therefore a memory pointers. the size of which 
is known at compile time. 

The other form of interference comes from the 
build-in-place optimizations specified in [7]. 
These optimizations will cause contiguous memory 
to be preallocated for data structures that are built 
separately and then concatenated. For example, 
if a vector is produced, and a border is then concat­
enated with either end of the vector, OSC will per­
form a single memory allocation for both the vector 
and the border. The loop producing the vector 
is then passed a memory pointer referring to the 
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FIGURE 7 Two vectors produced by the same loop. 
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FIGURE 8 Vector with border elements. 

location within the allocated memory where the 
vector is to be stored. In Figure 8 we depict the 15-
element vector from Figure 6 with a single border 
element on each end. 1\-otice that the memory man­
ager has aligned the storage for the vector, which 
in effect aligns the first border element and not the 
first data value. The AR generator, therefore, must 
consider offset from the beginning of a cache line to 
the location where the first data value is produced 
when it assigns an index range to each loop body. 
In Figure 6 where there is no border, PO produces 
elements 1 through 8 since a cache line boundary 
falls between elements 8 and 9. With a cache­
aligned border, however, the same cache-line 
boundary is shifted and subsequently falls between 
elements 7 and 8. The result is that PO must pro­
duce elements 1 through 7, and P1 is assigned 
8 through 15. In the examples, the load balance 
remains the same even though the partition 
changes. In general, however, cache aligning the 
border elements can cause a load imbalance. If, 
for example, two border elements were appended 
to the vector, PO would produce 6 values, and P1 
would produce 9, rather than the 7 and 8 split 
shown in Figure 8. 

4 COMPILING IMPERATIVE LANGUAGES 

Compiling imperative languages (such as Fortran 
and C) for the Power/4 is difficult. The designers 
wished to support shared memory parallel com­
puting, but the task of correctly managing the per­
processor caches is extremely complex and error 
prone. The system, therefore, includes paralleliza­
tion tools for Fortran ( C is not supported) that 
automatically insert cache-management system 
calls. In addition, any parallelized loop must be 
partitioned so that false sharing is avoided. Since 
memory can be aliased via the Fortran common 
block and unaligned addresses passed across sub­
routine boundaries, it is not generally possible to 
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determine the alignment between arrays and mem­
ory at compile time. That is, it is not possible for the 
compile-time Fortran loop partitioner to determine 
the cache-line boundaries within an arbitrarv 
array. Further, the dialect of Fortran 77 supported 
on the Power/ 4 allows dynamic allocation of mem­
ory at run-time. Since the alignment between array 
elements and cache lines will be set at run-time 
by the programmer, the parallelization tools must 
insert code to dynamically define the loop partition 
at run-time as well. 

For example, assume that the vector shown in 
Figure 9 consists of 15 double-precision values, 
and that the target machine supports 32-byte 
cache lines. Further assume that the vector is de­
fined as a parameter to the enclosing routine so 
that its first element is not cache aligned, and that 
four double-precision vector elements will fit in a 
32-byte cache line. In Figure 9, shading shows the 
cache-line decomposition of the vector, with each 
shade corresponding to a different cache line. No­
tice that element 1 occupies the third element of 
the cache line that contains it. Since the vector 
may be embedded in some other array, the memory 
adjacent to either end must be treated as valid. In 
the example, data occupying the first and second 
cache line elements (each marked X) immediately 
adjacent to vector element 1 may be valid data 
from an enclosing array. Therefore, the compiler 
and run-time system cannot arbitrarily add pad­
ding to ensure cache alignment. 

4.1 Parallelizing a Loop 

The parallelization tools query the programmer for 
dependence information in the cases where static 
analysis fails. If the tool or the programmer deter­
mines that it is safe to parallelize a loop, code is 
inserted that automatically determines the align­
ment of the first element at run-time. All elements 
occupying partially filled cache lines are computed 
sequentially unless the tool can determine unam­
biguously that the falsely shared values are not 
updated. A parallel loop then computes all full 
cache lines, partitioning them evenly between the 
processors to avoid false sharing. In Figure 10, 
assume that three processors (PO, P1, and P2) are 
available. Elements 1, 2, and 15 are computed 

FIGURE 9 Noncache-aligned Fortran vector. 
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FIGURE 10 Power/ 4 Fortran loop partition. 

sequentially (in the case where the compilation sys­
tem must be conservative) by the first loop on ~ne 
of the processors. Then elements 3 through 14 are 
computed in parallel (one cache line per proces­
sor). While several optimizations to this general 
scheme are possible, the loop must still be parti­
tioned at run-time as the compiler cannot know 
a priori what the memory alignment for the data 
will be. 

4.2 Discussion 

At the time of the Power I 4' s viability the scheme 
outlined in the previous section was. ~xperimental 
and under development.§ Cnfortunately, project 
constraints prevented us from testing equivalent 
Sisal and Fortran versions of the same program 
before the project's termination. We note, how­
ever, that because Fortran allows the programmer 
to dynamically associate array elements with the 
memory that holds them, there is no easy way to 
avoid the run-time overhead associated with dv­
namic loop partitioning. By way of contrast, the 
Sisal compiler and run-time system are completely 
responsible for memory management and loop 
partitioning. Sisal's semantics do not permit the 
programmer to specify how a particular data struc­
ture is implemented. In particular, it is not possible 
for a program to explicitly control how and what 
memory is allocated for each data structure. The 
compiler and run-time system, then, are free to 
force tessellation and padding of all data structures 
in a way that is completely transparent to the pro­
gram, and which need not be analyzed at run-time. 

5 RESULTS 

We have limited results to report as our access 
to a Power/4 proved somewhat problematic. The 

9 We base our understanding of this scheme on several 
conversations with the software devdopers. Other paralleliza­
tion products were planned for this svstem. at the time the 
project was cancelled, which may have t~sed different partition­
ing methods. 

Table 1. RICARD and SIMPLE 

Lines of Floating-Point 
Code Operations 

SIMPLE 1550 119 052 334 

RICARD 297 83 578 423 

1\0TE: SIMPLE is a Lagrangian hydrodynamics bench­
mark developed at the Lawrence Livennorc ~ational Labora­
torv which simulates the behavior of fluid in a sphere. The code 
is reasonably complex containing multiplv fused loops, both 
with and without border constructions. RICARD is a production 
code developed at the Universitv of Colorado Medical Center 
to simulate the elution pattems :,f proteins in a gel. 

machine on which we were able to develop our 
compiler was an early prototype used to test soft­
ware upgrades and new products; however, we 
were able to validate the correctness of our com­
piler and evaluate its effectiveness. Achieving cor­
rectness demonstrates that a functional language 
system can automatically realize software coher­
ence without programme~ intervention and source 
code modification. To show the viabilitv of our 
implementation, we present execution times for 
RICARD and SI.\1PLE, two scientific codes written 
in Sisal 1.2. 

Table 1 details the number of lines and the 
floating-point operation counts for both codes. 
Both codes perform both double-precision float­
ing-point arithmetic and integer calculations, but 
the integer operations are primarily for arrav in­
dexing. Also, both codes define and read muitidi­
mensional arrays (implemented in OSC as vectors­
of-pointers to vectors). 

In Figure 11 and Figure 12 we show the execu­
tion time and speedup profile for RICARD and 
SI::\1PLE, respectively. Time, measured in sec­
onds, is the processor time returned by the svstem. 
To compute speedup, we compiled e~ch Cf;de for 
parallel execution and measured their execution 
times on one, two, three, and four processors, re­
spectively. Each speedup value is calculated as the 
ratio of one-processor execution time to parallel 
execution time. 

5.1 RICARD 

The lack of a good speedup in Figure 11 (1.85 on 
four processors) comes from a poor load balance 
due to cache partitioning. In particular, OSC parti­
tions only the outer loop of nested parallel con­
structs by default. The dominant loop of RICARD 
produces a two-dimensional array having only four 
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FIGURE 11 Results: RICARD. 

rows. Since the output from the loop is four mem­
ory pointers (each to a row vector). and all four 
row pointers will fit into a ,;ingle cache line, that 
loop cannot be parallelized without producing a 
sparse outer dimeni:iion. We reran the program in­
structing the partitioner to attempt the paralleliza­
tion of both inner and outer loops and the speedup 
improved: however, the overall execution time in­
creased due to the control overhead associated 
with exploiting innermost loop parallelism. 

5.2 SIMPLE 

The speedup for SL\1PLE is better than that for 
RICARD despite the load imbalance caused by 
fused loops and array border constructions. First. 
the problem size of SL\tPLE is laq;er than RICARD 
and more symmetric: i.e .. the iteration domains of 
the outer parallel loops are wide enough to provide 
cache-based parallelization. Second. tl1P time­
critical computations in SI~1PLE are spread across 
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many parallel loop nests (not just one narrow loop 
nest as in RICARD). Third, most of the parallel 
loops in SIMPLE define both vectors and veetors­
of-vector:; (pointers to rows of double-precision 
floating-point values and double-precision point 
values). On the Power/4. pointer values occupy 4 
bytes and double-precision valuf's occupy 8 bytes. 
If a parallel loop returns both, it must be parti­
tioned for the least common multiple between the 
two ( 4 bytes), yielding a poor load balance for the 
other. However, most of the parallel loops in SIM­
PLE expend more computation defining the rows 
than the single elements. OSC partitioned each of 
these load-imbalanced loop forms for the pointers 
so that the load imbalance favors the production 
of the more expensive rows. 

:\either SIVIPLE nor RICARD achieve good ab­
solute performance on the Power/4. SIMPLE exe­
cutes in 17.:->2 son four processors yielding 6.8 
MFLOPS per second and RICARD's four-proces­
sor performance (3.54 s) is 23.6 MFLOPS per see-
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ond.l/ We believe that there are essentially two rea­
sons, unrelated to the functional nature of SisaL 
for these less than sterling performance numbers. 
First, the implementation does not take advantage 
of caching between parallel constructions. Like 
manv scientific codes. SIMPLE and RICARD con­
tain parallel loops that are repeatedly executed 
across time steps. Frequently, the arrays produced 
during one time step serve as the inputs to the 
next. However. the caches are flushed at the end 
of every parallel loop, so no cached values are 
carried over. It is possible to identify values that 
can remain cached across iterations, hut the over­
head associated with the flush operation for se­
lected cache elements is much greater than that 
for flushing the entire cache. Therefore, unless all 
values could remain cached between iterations, 
the cost of selectively flushing a few would over­
shadow the benefit gained from caching. \Ve con­
ducted a ft>w preliminary experiments and verified 
this hypothesis on the prototype machine. Notice 
that it is not the functional language but the hard­
ware implementation of cache sychronization in­
structions that impairs performance. lf the hard­
ware implemented separate invalidate and flush 
operations as instructions (and not a single Hush 
system call), we believe we could modify OSC to 

take advantage of caching. Slaves would invalidate 
inputs and post (without invalidating) outpub at 
the end of each loop. Subsequent parallel sections 
would then access valid data from their local 
caches if they were present. 

The seeond performance problem is due to the 
overhead associated with locks. Each lock takes 
about 250 dock cycles to execute for reasons we 
were not able to diseern. OSC implements storage 
reclamation via reference counting, which makes 
moderate use of the native lock primitives. Further, 
the mechanisms used within OSC to spawn nested 
parallelism require locks to manage the work 
queues for each slave task. The version of RICARD 
that uses nested parallelism incurs this overhead, 
while the more sequential version does not. The 
use of locks to implement memory management is 
a potential deficiency of OSC, however, it is not 
related to hardware cache coherence. Presumably. 
all parallel programs would suffer from expensive 
lock synchronization. At the time that we per­
formed these experiments, we did not have access 
to any parallel Fortran or C equivalent codes so 

II Theoretical peak performance of the prorotvpe is approxi­
mately 45 MFLOPS/s per proeessor. as the processors were 
"detuned" to 25 MHz. 

we could not test this hypothesis directly. \Ve note, 
however. that the use of locks and reference count­
ing does not hurt Sisal performance on other sys­
tems [2], so we do not believe it to be a serious lia­
bilitv. 

In summary, Sisal and OSC enable the compiler 
to coordinate memory manage1nent and loop par­
titioning so that parallelism can be exploited. The 
interference with other optimizations introduced 
by cache tessellation does not seem to dramatically 
impact performance. The somewhat disappointing 
execution times, we believe, are due to inefficienc­
ies in the base system and not the language model 
or implementation. 

6 CONCLUSIONS AND FUTURE WORK 

In this study, we investigated the use of a functional 
language as a vehicle for software cache manage­
ment. We have implemented Sisal1.2 (in the form 
of OSC) for the lB~1 Power/ 4, a machine that relies 
solely on the compiler and run-time system for 
cache coherence. The strict functional semantics 
of Sisal facilitate the elimination of stale data ac­
cesses. In addition, because the run-time system 
controls all memory allocations, the functional lan­
guage system can coordinate memory alignment 
and partitioning to avoid false sharing. One draw­
back of the underlying system is the potential for 
poor load balance, especially in the presence of 
other optimizations such as loop fusion. However, 
our results show that the impact of such load im­
balance is not substantial. \Vhile the speedup val­
ues we observe for Sn1PLE and RICARD are rea­
sonable, the absolute execution performance of 
Sl~PLE in particular is somewhat low. We attri­
bute much of the overhead in each execution to a 
lack of cache reuse and an excessive cost associ­
ated with locks. 

We therefore conclude that functional lan­
guages provide good vehicles for software cache 
coherence. They shield the programmer from the 
problems of stale data and false sharing while ex­
ploiting parallelism automatically. Absolute per­
formance, however, hinges on an efficient underly­
ing hardware implementation. ln particular, post 
and invalidate operations should be implemented 
as efficiently as possible, and flush by itself is 
not sufficient. 

As part of our future work, we plan to investigate 
the tradeoff between cache tessellation and load 
balance on systems with cache-coherent hard­
ware. We hope to develop a parameterized model 



to determine when the reduced contention due to 
cache partitioning will overshadow any subsequent 
loss of performance due to load imbalance. Also, 
we hope to study the efficacy of compiler-con­
trolled cache invalidate, post, and flush operations 
as optimizations for hardware-coherent systems. 
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