
73

P 3T+: A performance estimator for
distributed and parallel programs∗

T. Fahringer and A. Požgaj
Institute for Software Science, University of Vienna,
Liechtensteinstrasse 22, A-1090 Vienna, Austria
E-mail: tf@par.univie.ac.at

Developing distributed and parallel programs on today’s mul-
tiprocessor architectures is still a challenging task. Particular
distressing is the lack of effective performance tools that sup-
port the programmer in evaluating changes in code, problem
and machine sizes, and target architectures. In this paper we
introduce P 3T+ which is a performance estimator for mostly
regular HPF (High Performance Fortran) programs but par-
tially covers also message passing programs (MPI). P3T+
is unique by modeling programs, compiler code transforma-
tions, and parallel and distributed architectures. It computes
at compile-time a variety of performance parameters includ-
ing work distribution, number of transfers, amount of data
transferred, transfer times, computation times, and number
of cache misses. Several novel technologies are employed to
compute these parameters: loop iteration spaces, array access
patterns, and data distributions are modeled by employing
highly effective symbolic analysis. Communication is esti-
mated by simulating the behavior of a communication library
used by the underlying compiler. Computation times are pre-
dicted through pre-measured kernels on every target architec-
ture of interest. We carefully model most critical architecture
specific factors such as cache lines sizes, number of cache
lines available, startup times, message transfer time per byte,
etc. P 3T+ has been implemented and is closely integrated
with the Vienna High Performance Compiler (VFC) to sup-
port programmers develop parallel and distributed applica-
tions. Experimental results for realistic kernel codes taken
from real-world applications are presented to demonstrate
both accuracy and usefulness of P3T+.

1. Introduction

Parallelizing and optimizing programs for multipro-
cessor systems with distributed memory is still a no-

∗This research is partially supported by the Austrian Science Fund
as part of Aurora Project under contract SFBF1104.

toriously hard task. In most cases it is the program-
mer’s responsibility to find parallelism, to distribute
data (data parallelism) and computations (task paral-
lelism) onto the target architecture, and to apply code
transformations in order to improve performance. Pro-
grammers are faced with many problems when it comes
to examine the performance of their codes:

– What is the effect of a code change in the perfor-
mance of a program?

– What happens to the performance if problem and
machine sizes are modified?

– How much performance can be gained by chang-
ing a specific machine parameter (e.g. communi-
cation bandwidth or cache size)?

Clearly this list is incomplete, but it shows, that tools
providing accurate performance information to exam-
ine some of these effects are of paramount importance.

Historically there have been two classes of perfor-
mance tools. On the one hand, there is extensive work
done on monitoring distributed and parallel applica-
tions but these approaches have several drawbacks:
availability of program and target architecture, long ex-
ecution times, perturbation of measured performance
data, and vast amounts of performance data. Monitor-
ing, however, in principle can handle arbitrary com-
plex and large codes and commonly also provides quite
accurate results. On the other hand, there is the class
of performance estimators that try to statically exam-
ine a program’s performance without executing it on
a target architecture. This approach suffers mostly by
restricting programs and machines that can be modeled
as well as by less accurate results. Performance predic-
tion does not require that the target architecture must
be available. Moreover, the time needed to compute
performance information can be very short.

In this paper we concentrate primarily on perfor-
mance prediction which has seen many research ef-
forts in the last several years. Traditionally, the qual-
ity of performance prediction has been hampered by
modeling either programs or architectures with good
accuracy but not both of them. Firstly, those methods

Scientific Programming 8 (2000) 73–93
ISSN 1058-9244 / $8.00  2000, IOS Press. All rights reserved

74 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

that provided accurate predictions for applications suf-
fered by some severe restrictions imposed on model-
ing architectures. Commonly these tools are unable to
determine useful parameters reflecting computational
and communication overhead. Secondly, performance
prediction that concentrates on modeling architectures
may not have enough information about the applica-
tion that executes on this architecture. Statistical mod-
els are commonly used to assume a more or less vir-
tual and often unrealistic application behavior. More-
over, very few performance estimators actually con-
sider code transformations and optimizations applied
by a compiler.

In this paper we introduce P 3T+, the successor
tool of P 3T [16,17,22], which models programs, code
transformations, and parallel and distributed architec-
tures. The input programs of P 3T+ are written in
High Performance Fortran [2,27] which represents the
de-facto standard of high-level data parallel program-
ming. Moreover, P 3T+ analyzes Fortran90 message
passing programs generated by the underlying com-
piler (VFC [3]) which can be executed on parallel and
distributed machines such as network of workstations.
P 3T+ models communication overhead, work distri-
bution, computation times, and cache misses which is
important for both distributed and parallel programs.

P 3T+ invokes a single profile run of the original
sequential input program – ignoring all explicit parallel
language constructs such as HPF directives – by using
SCALA [21] in order to determine execution frequen-
cies and branching probabilities. In order to achieve
high estimation accuracy, we aggressively exploit com-
piler analysis and optimization information. P 3T+
computes a variety of parameters that reflect some of
the most important performance aspects of a parallel
program which includes: work distribution, number of
transfers, amount of data transferred, transfer times,
computation times, and cache misses.

Our estimation technology is based on modeling loop
iteration spaces, array access patterns, and data distri-
butions by employing highly effective symbolic analy-
sis. Communication is estimated by simulating the be-
havior of the communication library as employed by the
underlying compiler. Computation times are predicted
through kernels which are pre-measured on every tar-
get architecture of interest. We carefully model most
critical architecture specific factors such as cache lines
sizes, number of cache lines available, startup times,
message transfer time per byte, etc.

The rest of this paper is organized as follows: The
following section discusses related work. In Section 3

we describe P 3T+ and its performance parameters.
Section 4 reports on experimental results by using sev-
eral realistic kernel codes taken from real-world appli-
cations. Finally, some concluding remarks are made
and future work is outlined.

2. Related work

J. Brehm et al. [6] built a user-driven performance
prediction tool PerPreT based on an analytical model to
predict speedup, execution time, computation time and
communication time for parallelization strategies. The
tool examines application strategies without requiring
a program. Communication and computation times are
described by parameterized formulas where parame-
ters describe the the application’s problem size and the
number of processors. The target machine is modeled
by architectural parameters such as the setup times for
computation, link bandwidth and sustained computing
performance per node (expressed in MFLOP/s). The
user can describe the application and machine model
through a specific language called LOOP [29]. While
PerPreT offers an interesting possibility to evaluate the
computation and communication times required by a
parallel application, it does not provide information
about work distribution or number of cache misses.

In [32] W. Kaplow et al. present a compile-time
method for determining the cache performance of the
loop nests in a program and a heuristic that uses this
method for compile-time optimization of loop ranges
in iteration-space blocking. The cache misses estima-
tions are produced by applying the program’s reference
string of a loop nest, determined during compilation, to
an architecturally parameterized cache simulator. Data
reference strings are generated while parsing the source
code as opposed to most hardware cache simulators
where reference strings are generated at run-time. Data
reference strings are then used by a simulator whose re-
sults are less accurate than hardware simulation. How-
ever, their approach appears to be effective enough for
loop optimization techniques.

W. Kaplow and B. Szymanski [32] described an ap-
proach to estimate cache behavior for parallel programs
based on realistic simulation of the input program for
parallel architectures. Array reference traces are simu-
lated at compile-time. The simulator can predict what
is the next set of indices for the same array reference
that will access the data beyond the cache line just
loaded. The speed at which program execution is simu-
lated is proportional to the cache miss rate of the simu-

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 75

lated loop nest which is much slower than our analytical
approach.

W. Meira et al. developed Carnival [31] which is
a performance measurement and visualization tool for
SPMD message-passing programs that automates the
cause-and-effect inference process for waiting time.
Carnival uses detailed event traces to gather perfor-
mance information, which it presents both as global
summary statistics and as localized performance pro-
files, facilitating top-down performance analysis. The
user interface presents performance information to-
gether with the source code, creating a link between the
observed phenomena and the code. Carnival supports
waiting time analysis, an automatic inference process
that explains each source of waiting time.

In [10,11] M. Clement et al. present a compiler-
generated analytical model for the prediction of cache
behavior, CPU execution time, and message passing
overhead for scalable algorithms implemented in high
level data-parallel languages. The performance predic-
tion requires a single instrumentation run of the pro-
gram with a reduced problem size to generate a sym-
bolic equation for execution time which includes the
contributions of each basic block in a program ex-
pressed as a function of the problem size and the num-
ber of processors. Since the result of this model is an
equation rather than a time estimate for a given problem
size, the execution time can be differentiated with re-
spect to a given system parameter. The resulting equa-
tion is used to determine the sensitivity of the appli-
cation to changes in that parameter as the problem is
scaled up. Their approach is more restricted in terms
of program classes that can be handled (e.g. more re-
stricted loops, no GOTOs, etc.) as compared to P 3T+.

M. Faerman et al. [15] introduced the Adaptive Re-
gression Modeling (AdRM) which is a method for
performance prediction of data transfer operations in
network-bound distributed data-intensive applications.
The presented technique predicts performance in multi-
user distributed environments by employing small net-
work bandwidth probes (provided by the Network
Weather Service (NWS) [48]) to make short-term pre-
dictions of transfer times for a range of problem sizes.
The NWS gathers performance probe data from a dis-
tributed collection of resources and catalogues that data
as individual performance histories for each resource.
It then applies lightweight time series analysis models
to each performance history to produce short-term fore-
casts of future performance levels. AdRM combines the
NWS measurements with instrumentation data taken
from actual application runs to predict the future per-

formance of the application. To capture the relation-
ship between NWS probes and application benchmark
data, regression models are used which calibrate the
application execution performance to the dynamic state
of the system measured by the NWS. The result is an
accurate performance model that can be parameterized
by “live” NWS measurements to make time-sensitive
performance predictions which can be used to support
adaptive scheduling of individual components of a dis-
tributed system.

In [23], W. Fang et al. present a method for the eval-
uation of the communication overhead in the SHRIMP
multicomputer under a variety of workloads: analytic
modeling and event-driven simulation. Using both
methods, the authors study the behavior of the system
under different communication patterns and report on
system performance parameters such as message la-
tency, occupancy of system buffers and network con-
gestion. The purpose of their work is to learn about
the behavior of the SHRIMP machine, and to explore
the tradeoffs between analytic modeling and simula-
tion as performance prediction techniques. Their an-
alytic model is based on two assumptions: (i) packet
inter-arrival times and service times at every compo-
nent are exponentially distributed, and (ii) the states of
any pair of components are independent random vari-
ables. While these assumptions do not match the way
the system really operates, the authors believe they do
not introduce a significant error in the model. Further-
more, the model assumes that each processor executes
the same program, that all messages are of the same
size and that messages are sent to uniformly distributed
destinations.

In [44,40], A. van Gemund presents a methodol-
ogy that yields parameterized performance models of
parallel programs running on shared-memory as well
as distributed-memory (vector) machines. The aim of
this research is to estimate performance degradation
due to synchronization effects, covering both condi-
tion synchronization (task dependency) as well as mu-
tual exclusion (resource contention). The author intro-
duces an explicit, highly structured formalism called
PAMELA together with an analysis technique that in-
tegrates an approximate analysis of mutual exclusion
within a conventional condition synchronisation anal-
ysis technique.

There is a variety of related projects which focus on
performance analysis based on real executions of the
parallel program on the target architecture.

B. Miller et al. developed the Performance Consul-
tant (PC) as part of the PARADYN project [37] which

76 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

data flow
control flow

Interactive performance-driven parallelization system

User

Passing Program

System (SCALA)
Analysis
Performance

Performance
Prediction
System (P3T+)

Code
Transformed

Predicted
Performance

Data

Data
Performance
Measured

Performance evaluation sub-system

VFCFlow Graph

Call Graph

Syntax Tree

Program Database

...

Performance Data

Input Code

Coordination System
+

GUI

Message

Fig. 1. Performance-driven development of distributed and parallel programs.

searches for performance bottlenecks according to the
W 3 Search Model. An automatic online performance
analysis is conducted by using dynamic instrumenta-
tion for monitoring. Hypotheses can be defined to de-
termine the occurrence of a set of performance bottle-
necks which is currently predefined. It includes CPUb-
ound, Excessive Sync Waiting Time, ExcessiveIOBlock-
ingTime, and TooManySmallIOOps.

F. Wolf and B. Mohr have built EARL [46] which en-
ables description of performance event patterns in mes-
sage passing programs in a procedural fashion as scripts
in a high-level event trace analysis language. Fre-
quently used, higher-level events like region instances
or message transfers are represented by links between
their constituent events, which can be easily traversed
by a script.

A. Espinosa et al. developed KAPPA-PI [1] which
is an automatic performance analyzer for PVM-
programs. It is a post-execution tool, implemented in
PERL, that evaluates traces generated by the Tape/PVM
monitoring library or by the VAMPIR MPI trace library.
Based on a predefined list of performance bottlenecks,
it searches for performance problems and their causes.
In addition to trace data, it analyzes the source code
using pattern matching.

3. P 3T+: A performance estimator for
distributed and parallel programs

P 3T+ is a state-of-the-art performance estimator
that targets both distributed and parallel programs. Fig-
ure 1 shows P 3T+ as part of a program development
and optimization system. Input programs are parsed
and analyzed by VFC which generates syntax trees,
call graphs, flow graphs, etc. and stores them in a
program database. VFC applies various code transfor-
mations and optimizations to the program with/without
user control. The programmer can invoke a perfor-
mance analysis system (SCALA) to instrument, com-
pile, and execute a distributed or parallel program on
the target architecture. Based on the instrumented
program execution, performance data is gathered and
stored in the program database. Moreover, P 3T+ can
be employed to predict the performance behavior of
the code transformations and optimizations applied by
VFC. P 3T+’s performance data is also stored in the
program database. All three tools (VFC, SCALA, and
P 3T+) are coordinated and controlled through a coor-
dination system that also includes a graphical user inter-
face (GUI) for displaying source code and performance
data and for enabling user interaction. Finally, as a
result of performance-driven program development, an
optimized distributed or parallel program is created by
VFC.

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 77

The programs which are estimated by P 3T+ are
based on the underlying compilation and program-
ming model of VFC [3] which is a source-to-source
parallelization system that translates Fortran90/HPF
programs to Fortran90/MPI message-passing SPMD
programs. Moreover, P 3T+ also models Fortran90
message-passing programs. The parallelization strat-
egy of VFC is based on data decomposition in conjunc-
tion with the Single-Program-Multiple-Data (SPMD)
programming model. With this method, data arrays in
the original program are each partitioned and mapped
to the processors of the target architecture. The spec-
ification of the mapping of the array elements to the
set of processors is called the data distribution of that
program. A processor is then thought of as owning
the data assigned to it; these data elements are stored
in its local memory. The work contained in the pro-
gram is distributed according to the data distribution:
computations which define the data elements owned
by a processor are performed by it – this is known as
the owner computes paradigm. The processors then
execute essentially the same code in parallel, each on
the data stored locally. If a computation requires data
which is owned by a remote processor, then such non-
local data is accessed through inter-processor commu-
nication, which is automatically implemented by VFC
through message passing.

P 3T+ currently supports mostly regular HPF pro-
grams which restricts array subscript expressions and
loop bounds to linear functions of loop variables. Ir-
regular codes with indirect array references (array sub-
script expressions contain array references) are ex-
cluded.

A key issue for a useful performance estimator is
to provide critical information to the programmer and
compiler which allows steering of the performance tun-
ing process. Most existing tools estimate only exe-
cution time. The problem with this parameter is that
all important information is hidden in a single run-
time figure. As a consequence, the cause of potential
performance losses remains unknown. It is not clear
whether a parallel program’s performance is poor due
to cache, load balance, communication or computation
behavior. Other performance parameters may also play
an important role. Without making such information
transparent, performance tuning is extremely difficult.
P 3T+ at compile-time computes a set of performance
parameters each of which reflects a different perfor-
mance aspect. In the following all P 3T+ performance
parameters are described.

3.1. Work distribution

It is well known [7,14,25,30,34,41–43,45] that
the work distribution has a strong influence on the
cost/performance ratio of a parallel system. An uneven
work distribution may lead to a significant reduction in
a program’s performance. Therefore, providing both
programmer and parallelizing compiler with a work
distribution parameter for parallel programs is critical
to steer the selection of an efficient data distribution.

Two problems must be solved in order to compute the
work distribution of a parallel program: first, how much
work is contained in a program and second, how much
work is being processed by every individual processor.
We first consider these problems for loops and then
extend our approach to full programs. Consider the
following loop nest with a statement S included in a
conditional statement.

DO J1=1,N1

DO J2=1,N2*J1

IF (J1 � N2) THEN
S : A = A + . . .

. . .
ENDIF

ENDDO
ENDDO

Computing how many times S is executed is equiva-
lent to counting the number of integer solutions of I =
{1 � J1 � N1, 1 � J2 � N2 ∗ J1, J1 � N2}. J1

and J2 are (loop) variables and N1, N2 are parameters
(loop invariants). Note that we consider J2 � N2 ∗ J1

to be non-linear, although N2 is loop invariant. The
statement execution count for S is given by:

min(N1,N2)∑
J1=1

N2∗J1∑
J2=1

1

=

{
N2

1∗N2
2 + N1∗N2

2 , = if 1 � N1 � N2,
N3

2
2 + N2

2
2 , = if 1 � N2 < N1.

In general, every loop implies at least two constraints
on its loop variable, one for its upper and one for its
lower bound. Additional constraints on both parame-
ters and variables can be implied, for instance, by con-
ditional statements, minimum and maximum functions,
data declarations, etc.

We briefly describe a symbolic algorithm which
computes the number of integer solutions of a set of

78 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

linear and non-linear constraints I defined over V ∪ P
where P is the set of parameters and V the set of vari-
ables. Every I ∈ I is restricted to be of the following
form:

p1(�P) ∗ v1 + . . . + pk(�P) ∗ vk REL 0 (1)

where REL ∈ {�,�, <,>,=, 	=} represents an equal-
ity or inequality relationship. �P is a vector defined
over parameters of P . pi(�P) are linear or non-linear
expressions over P , whose operations can be addition,
subtraction, multiplication, division, floor, ceiling, and
exponentiation. Minimum and maximum functions are
substituted where possible by constraints free of mini-
mum and maximum functions.

Figure 2 shows the algorithm for counting the num-
ber of solutions to a set of constraints, given I (set of
constraints), P , V , E, and R. E is an intermediate
result (symbolic expression) for a specific solution E i

of the symbolic sum algorithm. The result R is a set
of tuples (Ci, Ei) where 1 � i � k. Each tuple corre-
sponds to a conditional solution of the sum algorithm.
Note that the conditions C (satisfying (1)) among all
solution tuples are not necessarily disjoint. The result
has to be interpreted as the sum over all Ei under the
condition of Ci as follows:∑

1�i�k

γ(Ci) ∗ Ei (2)

where γ is defined as

γ(C) =

{
1, if C = TRUE,

0, otherwise.
(3)

E and R must be respectively set to 1 and φ (empty
set) at the initial call of the algorithm.

In each recursion the algorithm (see Fig. 2) is elim-
inating one variable v ∈ V . First, all lower and upper
bounds of v in I are determined. Then the maximum
lower and minimum upper bound of v are searched by
generating disjoint subsets of constraints based on I.
For each such subset I ′, the algebraic sum of the cur-
rent E over v is computed. Then the sum algorithm
is recursively called for I ′, the newly computed E,
V−{v},P , and R. Eventually at the deepest recursion
level, V is empty, then E and its associated I repre-
sent one solution tuple defined solely over parameters.
More details about this algorithm are given in [20].

In what follows we demonstrate how the symbolic
sum algorithm can be used to determine the work con-
tained in a loop nest as well as the work to be processed
by a generic processor.

The following code shows a High Performance For-
tran – HPF code excerpt with a processor array PR of
size P .

INTEGER A(N2)
!HPF$ PROCESSORS :: PR(P)
!HPF$ DISTRIBUTE (BLOCK) ONTO PR :: A
DO J1=1,N1

DO J2=1,J1 ∗N1

IF (J2 � N2) THEN
S: A(J2) = . . .

ENDIF
ENDDO

ENDDO

The loop nest contains a write operation to a one-
dimensional array A which is block-distributed onto
P processors. Let k (1 � k � P) denote a specific
processor of the processor array. Computations that
define the data elements owned by a processor k are
performed exclusively by k. For the sake of simplicity
we assume that P evenly divides N2. Therefore, a
processor k is executing the assignment to A based on
the underlying block distribution if N2∗(k−1)

P + 1 �
J2 � N2∗k

P . The precise work to be processed by a
processork is the number of times k is writingA, which
is defined by work(k).

The problem to estimate the amount of work to be
done by processor k can now be formulated as counting
the number of integer solutions to I which is given by:

1 � J1 � N1,

1 � J2 � J1 ∗N1,

J2 � N2,
N2∗(k−1)

P + 1 � J2 � N2∗k
P .

(4)

In the following we substitute N2∗(k−1)
P + 1 by LB

and N2∗k
P by UB.

By applying our algorithm we can automatically de-
termine that statement S is approximately executed

work(k) =
∑

1�i�3

γ(Ci) ∗ Ei(k)

times by a specific processor k (1 � k � P) for the
parameters N1, N2 and P . γ(Ci) is defined by (3) and

C1 = {UB � N2
1 , P � N2}

with

E1(k) = (N1+UB−LB)∗(LB−2∗N1+2∗LB∗N1+UB)
2∗N2

1
,

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 79

SUM(, , , ,)

INPUT:
: set of linear and non-linear constraints deÞned over
: set of variables
: set of parameters
: symbolic expression deÞned over

INPUT-OUTPUT:
: set of solution tuples where . is a conjunction

of linear or non-linear constraints deÞned over . is a
linear or non-linear symbolic expression deÞned over .

ALGORITHM:

S1: Simplify

S2: if is inconsistent (no solution) then
return

endif

S3: if then

return
endif

S4: Split

S4.1: Choose variable for being eliminated

S4.2: := subset of not involving
= ,..., := set of lower bounds of in
= ,..., := set of upper bounds of in
:= cardinality of
:= cardinality of

S4.3: for each do

:=

SUM()

endfor

S5: return

Fig. 2. Symbolic sum algorithm for computing the number of solutions of a set of constraints I .

C2 = {UB

N1
> N1,

LB

N1
� N1}

with

E2(k) = (N1 − LB

N1
+ 1) ∗ (

N2
1

2
− LB

2
+ 1),

C3 = {N2 � P, N2
1 � UB + 1}

with

E3(k) =
N2

P
∗ (N1 − UB + 1

N1
+ 1).

Note that by omitting the last two inequalities in
(4), we can use the same symbolic sum algorithm to
compute the overall work contained in the HPF code
excerpt shown above.

Most conventional performance estimators must re-
peat the entire performance analysis whenever the prob-
lem size or the number of processors used are changing.
However, our symbolic performance analysis provides
the solution of the above problem as a symbolic expres-
sion of the program unknowns (P,N1, N2, and k). For
each change in the value of any program unknown we
simply re-evaluate the result, instead of repeating the
entire performance analysis.

Having clarified the algorithm for computing how
much work is contained in a program and how much
work is being processed by every individual processor,
we finally present the definitions for work distribution
goodness of array assignment and loops, procedures
and programs. Let S be an array assignment statement
inside of a loop L, where A is the left hand-side array.
PA is the set of processors onto which A is distributed.

80 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

Definition 3.1. Optimal amount of work. The arith-
metic mean: owork(S) = work(S, PA)/|PA| defines
the optimal amount of work to be processed by every
single processor in PA.

Based on the optimal amount of work a goodness
function for the useful work distribution of an array
assignment statement in a loop L is defined.

Definition 3.2. Useful work distribution goodness
for an array assignment. The goodness of the useful
work distribution with respect to an array assignment
statement S is defined by

wd(S) =
1

owork(S)

× 2

√√√√ 1
|PA|

∑
p∈P A

(
work(S, p) − owork(S)

)2
.

The above formula is the standard deviation (σ)
divided by the arithmetic mean (owork(S)), which
is known as the variation coefficient in statistics [5].
In [17] we have presented a proof for the lower
and upper bound of wd(S) with the following result:
0 � wd(S) � |PA|−1. Best-case and worst-case work
distribution are, respectively, given by wd(S) = 0 and
wd(S) = |PA| − 1.

Based on Definition 3.2, a work distribution good-
ness function for loops, procedures, and programs can
be defined.

Definition 3.3. Work distribution goodness for
loops, procedures, and programs.Let E be a loop,
procedure or an entire program with �(E) the set of
array assignment and procedure call statements in E,
and freq(S) is the execution time frequency of S, then
the work distribution goodness for E is defined by:

wd(E) =
∑

S∈
(E)

freq(S)∑
S′∈
(E)

freq(S′)
wd(S).

If S represents a call to a procedureE, then wd(S) : =
wd(E).

3.2. Communication parameters

The overhead to access nonlocal data from remote
processors on distributed memory architectures is com-
monly orders of magnitude higher than the cost of ac-
cessing local data. P 3T+ estimates this critical per-

formance aspect of a distributed or parallel program by
simulating on a von Neumann architecture the associ-
ated communication behavior and computing the fol-
lowing performance parameters: the number of trans-
fers (NT), the amount of data transfered (TD), and the
overall communication time (TT). In this paper we de-
scribe how P 3T+ models communication caused by
Fortran 90 array assignments in the context of regular
data distributions. Predicting communication based on
Fortran 77 array references has been described in detail
in [18].

In what follows, we briefly sketch how VFC gen-
erates parallel code for Fortran 90 array assignments.
Then, we outline the computation of the communica-
tion parameters for Fortran 90 array assignments based
on a modified VFC runtime system and associated com-
munication libraries

3.2.1. Modeling Fortran 90 array assignment
statements (VFC)

Distributed arrays, when referenced in a Fortran 90
array assignment statement, can introduce a consider-
able amount of communication, depending on the data
distribution of the arrays involved in the assignment,
access patterns implied by array subscripts, and prob-
lem and machine size chosen.

As shown in Fig. 3, a parallel program generated by
VFC contains calls to the VFC Run Time System (RTS)
which manages distributed data structures (including
redistribution of arrays) and provides an interface to
communication libraries such as Adlib library [8]. A
VFC generated parallel program contains calls to the
RTS for any kind of communication. RTS requires
allocation of a runtime descriptor (RD) for every ar-
ray in a program. The RD is updated during runtime,
for instance, when changing the shape of an array or
its distribution. Let an array assignment statement S
consist of a left-hand side array reference (LHS ref)
and several right-hand side array references (RHS ref).
VFC compiles Fortran 90 array assignment statements
as follows:

1. For every array reference in S, a section descrip-
tor (SD) is allocated and initialized. SD describes
the array elements (specified by an array section
with lower, upper bound and stride for every ar-
ray dimension) that are touched by a given array
reference.

2. Communication buffers are allocated for every
different distributed RHS ref of S.

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 81

ADLIB

MPICH

(generated by VFC based on HPF+ input program)
Compiled Parallel Program

VFC Run-Time System

Fig. 3. The structure of the compiled parallel program.

3. For every distributed RHS ref of S, a call to a
RTS routine is inserted with the following pa-
rameters: RD and SD of LHS ref and RHS ref,
and a communication buffer of RHS ref. The
RTS routine is responsible to transfer non-local
data to the communication buffer by invoking an
Adlib library call which is implemented on top of
MPI [26].

4. The subscript expressions of RHS ref are mod-
ified so as references to non-local data are redi-
rected to their associated communication buffers.

For further information on the parallelization of For-
tran 90 array assignments in VFC, the reader may refer
to [3].

3.2.2. Modifying VFC RTS and Adlib library
P 3T+ estimates the communication behavior of

VFC generated distributed or parallel programs by sim-
ulating the behavior of the VFC RTS and associated
Adlib library calls on a von Neumann architecture. This
means that at compile-time P 3T+ partially executes
calls to the VFC RTS and Adlib library for every pro-
cessor suppressing any actual communication. Only
those code sections that compute the sending processor
and size of messages are executed. This is achieved
by integrating P 3T+ with a modified VFC RTS and
Adlib library (see Fig. 4) and executing them for every
processor of the parallel program at compile-time on a
von Neumann architecture.

In RTS we suppressed initialization code where the
number of processors available on a given parallel ar-
chitecture is compared with the number of processors
requested by the parallel program. The Adlib library
has been modified as follows:

– Three global variables have been introduced:
NoOfProcessors holds the number of processors
onto which the parallel program is being executed

(as defined by the HPF PROCESSORS directive).
CurrentProcessor (1 � CurrentProcessor � NoOf-
Processors) defines the identification of the cur-
rent processor that is being simulated by P 3T+.
CurrentLineNumber holds the line number of the
currently analyzed source code line.

– All calls to functions MPI COMM SIZE and
MPI COMM RANK are, respectively, replaced with
a reference to NOOFPROCESSORS and CURRENT-
PROCESSOR.

– A new data structure – P3T COMM SEQUENCE
– is introduced which records all SEND oper-
ations of a unique statement S. Every entry
in P3T COMM SEQUENCE holds information
about a unique SEND operation by specifying the
size of the message in bytes, the sending processor,
and the number of the currently analyzed source
code line.

– All send operations are suppressed except compu-
tation of their parameters which are used to update
P3T COMM SEQUENCE.

– All receive and wait operations are suppressed.

We use a preprocessor together with conditional code
in VFC RTS and Adlib library thus both VFC and
P 3T+ can use the same sources. The conditional code
is only activated for P 3T+.

3.2.3. Computing P 3T+ communication parameters
In order to estimate the communication behavior of

all Fortran 90 array assignments in a parallel program,
P 3T+ proceeds as follows:

1. Invoke VFC to generate message passing code
based on input program.

2. Traverse VFC generated message passing code
and execute pre-compiled communication code –
based on modified VFC RTS and Adlib library –
for every call to a communication routine R of
VFC RTS.

82 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

ADLIB (modified)

VFC Run-Time System (modified)

P3T+
Adlib Extensions

MPICH

P3T+

Fig. 4. Modified VFC RTS and Adlib library as part of P3T+.

(a) Update P3T COMM SEQUENCE for every
processor p that executes R.

3. Compute communication parameter for all code
regions (e.g. statements, loops, procedures, and
program) of interest based on P3T COMM SE-
QUENCE entries.

Some of the input parameters of RTS and Adlib li-
brary calls may require user interaction. For instance,
in order to determine number of processors and pro-
gram unknowns appearing in array subscript expres-
sions or loop bounds, the user may be requested for
realistic values.

Definition 3.4. Communication parameters for an
array assignment. Let S denote the set of array as-
signments in a program and F(S) the set of procedures
referenced within a statement S ∈ S. Furthermore, let
K(S) denote the set of communication records (stored
in P3T COMM SEQUENCE) associated withS. Then
the number of transfers nt S(S), the amount of data
transfered td S(S), and the transfer time tt S(S) for S
statement are defined as

nt S(S) = freq(S) ∗


|K(S)|

+
∑

q∈F(S)

ntE(q) ∗ card(q, S)∑
S′∈calls(q)

freq(S′) ∗ card(q, S′)


 ,

td S(S) = freq(S) ∗


 ∑

k∈K(S)

data(k)

+
∑

q∈F(S)

tdE(q) ∗ card(q, S)∑
S′∈calls(q)

freq(S′) ∗ card(q, S′)


 ,

tt S(S) = freq(S) ∗


 ∑

k∈K(S)

(α + data(k) ∗ β)

+
∑

q∈F(S)

ttE(q) ∗ card(q, S)∑
S′∈calls(q)

freq(S′) ∗ card(q, S′)


 ,

where freq(S) is the execution frequency of S,
calls(q) denotes the set of statements calling procedure
q in the program, ntE(q) denotes the overall number
of transfers for a procedure q, card(q, S) is the number
of calls to procedure q in S, data(k) is the amount of
data (in bytes) transfered by a message k, and α and
β, both measured on the target machine, denote the
message startup time and the transfer time per message
byte respectively.

The nesting level of a statement S is defined as the
number of loops enclosing that statement. If S is not
enclosed in a loop then S has loop nesting level 0.

Definition 3.5. Communication parameters for a
loop nest. Let L denote a loop at the nesting level
i, SL the set of all statements (excluding nested loop
statements and their bodies) appearing in the body of
L. Furthermore, let LL denote the set of all loops at the
nesting level i+1, occurring in the body ofL. Then the
number of transfers nt L(L), the amount of transfered
data td L(L), and the transfer time tt L(L) for L are
recursively defined as

ntL(L) =
∑

s∈SL

ntS(s) +
∑
l∈LL

ntL(l),

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 83

tdL(L) =
∑

s∈SL

tdS(s) +
∑
l∈LL

tdL(l),

ttL(L) =
∑

s∈SL

ttS(s) +
∑
l∈LL

ttL(l).

Definition 3.6. Communication parameters for a
procedure or a program. Let E be a procedure or
an entire program, LE the set of loop nests with nest-
ing level 0 (correspond to loop nests without enclosing
loop) in E. Furthermore, let SE denote the set of state-
ments (excluding loop nests) in E, outside of loops.
Then, number of transfers ntE(E), amount of trans-
fered data tdE(E), and transfer time ttE(E) implied
by all statements S ∈ SE and loop nests L ∈ LE , are
defined as

nt E(E) =
∑

s∈SE

ntS(s) +
∑

l∈LE

ntL(l),

td E(E) =
∑

s∈SE

tdS(s) +
∑

l∈LE

tdL(l),

tt E(E) =
∑

s∈SE

ttS(s) +
∑

l∈LE

ttL(l).

3.3. Computation times

The computation time parameter reflects the time re-
quired by a processor to execute local computations of
the program excluding communication. By local com-
putations we mean those computations assigned to a
processor according to the SPMD programming model
and the “owner computes paradigm” (see Section 3).
This parameter can be useful to

– analyze the communication/computation relation-
ship by incorporating also communication param-
eters described in Section 3.2

– evaluate whether there is enough computation con-
tained in a code region, thus parallelizing the code
region may be effective.

– identify the most time-consuming code regions of
the program (hot spots) which are often hard to
isolate without the help of a profiling tool.

Our method for predicting computation times em-
ploys statement execution frequencies and branching
probabilities as well as pre-measured kernel codes. Pre-
measured kernel codes are used to associate statements
and small code sections in the input program with pre-
measured execution times for a specific target machine.
A large set of kernel codes are pre-measured for every
target machine of interest and stored in a benchmark
kernel library.

Figure 5 shows the architecture of the CT parameter.
Given the Fortran program and the profiling informa-
tion for a specific set of input data, the computation time
parameter is estimated for each statement separately by
pattern matching against pre-measured kernels stored
in the benchmark kernel library.

In what follows we describe the set of kernels upon
which our techniques are based on. Then, we will dis-
cuss the training phase of the benchmark kernel library
which measures all kernels once for every different
target machine of interest. Finally, we describe how
to estimate computation times based on pre-measured
kernels and profiling data.

3.3.1. Benchmark kernel library
The benchmark kernels of the computation time pa-

rameter can be classified as follows:

1. Assignments
Scalar assignment operations considering several
cases where the data types of left-hand side and
right-hand side scalars are identical or different.
Different data types may cause additional over-
head due to type conversion.

2. Basic mathematical operations
Basic mathematical operations, such as +, -, *, /,
**.

3. Procedures(subroutines and functions)
Subroutine call and function reference overheads
for varying numbers of parameters.

4. Intrinsic functions
Standard intrinsic functions, like SIN, COS,
MOD, LOG, etc. and implicit reduction functions
included in Fortran such as MIN, MAX, SUM,
and INDEX.

5. Arrays
Kernels for array reference address calculations.

6. Miscellaneous
All other kernels comprising, for instance,
boolean operations, IF-THEN-ELSE constructs,
loop headers, etc.

3.3.2. Training phase
The performance estimator has to be trained once for

all different target machines of interest in order to de-
termine computation times for each different kernel in
the kernel library. This is achieved by a training phase.
Primitive statements and most primitive operations –
except array operations - are measured for different
data types and stored in the benchmark kernel library
as numeric values. Computation times for array oper-

84 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

CT calculation phase

External data (benchmark kernel library)

Input/Output Data (Fortran program)

Basic
Math.

Operations

Phase 2: Computation time estimation

ArraysCT calculation

Phase 1: Profiling

Phase 3: Annotation

Subroutines
and

Intrinsic
Functions

Functions

Benchmark Kernel Library

Input Program

profile data
+

Profiling

Program

Annotate

Program with

Annotate

Annotated Program

for a statement S

S with CT

ne
xt

 s
ta

te
m

en
t S

annotated statements

code regions

Assignments

Misc.

Fig. 5. Estimating computation times under P3T+.

ations and intrinsic functions depend not only on the
data types involved but also on the data size of arrays
and the number of parameters which are considered by
the measurements. Based on these measurements a set
of functions describing the computation times for dif-
ferent access patterns, data types, and problem sizes is
constructed using the chi-square fit method and stored
in the benchmark kernel library.

3.3.3. Estimating computation times
Obtaining computation times for a program essen-

tially involves 3 phases as shown in Fig. 5.

1. The input program is instrumented and executed
once on a von Neumann architecture. The profile
data is used to annotate the program with execu-
tion frequencies and branching probabilities.

2. For every statement, a kernel pattern matching
in combination with a performance evaluation al-
gorithm is invoked. Primitive operations, prim-
itive statements and intrinsic functions are sim-
ply detected by their syntax tree node represen-
tation. The computation times for every state-
ment are then weighted by their execution fre-
quencies or branching probabilities (in case of
conditional statements) which yields the overall
execution time for a statement. Every statement
is annotated with the estimated computation time
as obtained from this phase.

3. Estimated computation times for larger code re-
gions (e.g. loops, procedures, and programs)
are obtained by summing up the corresponding
computation times of all statements in this re-
gion. Larger code patterns (e.g. matrix mul-
tiplication) may require more advanced pattern
matching techniques such as those mentioned
in [12]. The current implementation of our pat-
tern matcher handles all kernels in the benchmark
kernel library except code patterns. The output
of phase 3 is the program annotated with compu-
tation times for all code regions.

In the following, we define the computation time
for a single statement, loop nest, procedure and entire
program.

Definition 3.7. Computation time for a program
statement. Let S denote the set of statements of a
program and F(S) the set of procedures referenced
within a statement S ∈ S, then the accumulated time
ct S(S) for this statement is defined as

ct S(S) = freq(S) ∗


ct Ssimple(S)

+
∑

q∈F(S)

ctE(q) ∗ card(q, S)∑
S′∈calls(q)

freq(S′) ∗ card(q, S′)




T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 85

where ct Ssimple(S) denotes the computation time re-
quired by the single instantiation of S excluding the
computation time required by any procedures refer-
enced in that statement. The set of statements refer-
encing procedure q in program is given by calls(q).
ctE(q) denotes the overall computation time of a pro-
cedure q, freq(S) the execution frequency of the state-
ment S, and card(q, S) the number of references to
procedure q in S.

Definition 3.8. Computation time for a loop nest.
Let L denote a loop at the nesting level i, SL the set
of all statements (excluding nested loop statements and
their bodies) appearing in the body of L. Further, let
LL denote the set of all do loops at the nesting level
i+1 occurring in the body of L. Then the computation
time for L denoted by ct L(L) is defined as

ct L(L) =
∑

s∈SL

ct S(s) +
∑
l∈LL

ct L(l).

Definition 3.9. Computation time for a procedure or
a program. Let E be a procedure or an entire program
and LE the set of loop nests with nesting level 0 in
E. Further, let SE denote the set of statements in E
outside of loops. Then the accumulated computation
time ct E(E), implied by all statements S ∈ SE and
loop nests L ∈ LE , is defined as

ct E(E) =
∑

s∈SE

ct S(s) +
∑

l∈LE

ct L(l).

3.4. Number of cache misses

It is well known [19,24,33,36,47] that inefficient
memory access patterns and data mapping into the
memory hierarchy (data locality problem) of a single
processor cause major program performance degrada-
tion. P 3T+ estimates the number of accessed cache
lines which correlates with the number of cache misses.
This parameter is derived for loops, procedures, and
entire programs.

The main idea of our estimation approach for cache
misses is that array references are grouped into array
access classes such that all arrays in a specific class
exploit reuse of array elements in the same set of array
dimensions. The definition of array access classes is
based on a specific number of innermost loops of a not
necessarily perfectly nested loop L. Two array refer-
ences are in the same array access class for a loop nest
if they actually access some common memory location
in the same array dimensions and reuse occurs in L.

The common accesses occur on either the same or a
different iteration of L.

In the following we define the number of cache
misses for a loop nest, procedure, and entire program.

Definition 3.10. Number of cache misses for a loop
nest. Let P define the set of processors executing the
loop nest L and F(L) the set of procedures referenced
withinL. Furthermore, let cmLp(L)define the number
of cache misses induced by a single instantiation of L
with respect to a processor p ∈ P , excluding the cache
misses implied by procedure calls within L. Then the
overall number of cache misses induced by L with
respect to all processors in P is defined as

cm L(L) = freq(L) ∗


 1
|P |

∑
p∈P

cm Lp(L)

+
∑

q∈F(L)

cmE(q) ∗ card(q, L)∑
S∈calls(q)

freq(S) ∗ card(q, S)




where calls(q) denotes the set of statements calling
procedure q in the program, cmE(q) denotes the accu-
mulated number of cache misses implied by procedure
q (see Definition 3.11), freq(S) and freq(L) denote
the execution frequency of statement S and loop nest
L respectively, and card(q, S) is the number of calls to
procedure q in S.

The first sum in Definition 3.10 describes the mean
value of cache misses implied by a single instantia-
tion of L across all processors in P executing L. The
second sum is explained as follows: in order to take
procedure calls into account, the parameter outcome
for a single procedure call instantiation is supposed to
be independent of the call site. This means that the
parameter outcome at a particular call site is the same
as the parameter outcome of the procedure over all call
sites, which is a common assumption made for per-
formance estimators. The estimated number of cache
misses for every specific loop is weighted by its execu-
tion count (freq) in order to reflect its impact on the
overall program performance.

All call graphs are supposed to be acyclic. Note
that Definition 3.10 is also applicable to a sequential
program iff |P | = 1.

Extending the cache cost function to a procedure or
a program is straight forward:

86 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

Defintion 3.11. Number of cache misses for a proce-
dure or a program. Let E be a procedure or an entire
program, and LE and SE , respectively, denote the set
of loop nests and statements with procedure calls at
nesting level 0 in E. Furthermore, let F(S) denote the
set of procedures referenced within a statement S ∈ S.
Then the number of cache misses induced by all loop
nests L ∈ LE and statements S ∈ SE is defined as
follows:

cm E(E) =
∑

l∈LE

cm L(l)

+
∑

S∈SE

∑
q∈F(S)

cmE(q) ∗ card(q, S)∑
S′∈calls(q)

freq(S′) ∗ card(q, S′)

where calls(q), freq(S) and card(q, S) are defined as
in Definition 3.10.

The first sum in Definition 3.11 corresponds to the
loops contained in E. The second sum models proce-
dure calls outside of loops in E. It is assumed that the
same cache behavior is implied by every instantiation
of L. A more accurate modeling of cmE requires sep-
arate values regarding freq(L) for every instantiation
of L at the price of a considerably larger computational
effort.

More details about our cache modeling approach can
be found in [17].

4. Experiments

P 3T+ has been implemented and is currently used
to support development of parallel and distributed pro-
grams. P 3T+ is primarily used to guide the selec-
tion of profitable data distributions and program trans-
formations under VFC. Note that the programmer can
specify data data distributions (e.g. through HPF di-
rectives) and select transformations under VFC. The
compiler automatically compiles HPF directives and
applies transformations to the program.

In order to demonstrate the usefulness of P 3T+ we
present three different experiments on two different tar-
get machines. First, Cholesky factorization – a code
for factoring a n x n symmetric positive-definite matrix
into the product of a lower triangular matrix and its
transpose – is used to examine the accuracy of P 3T+’s
computation time, work distribution and cache misses
parameters on a Meiko CS-2 and a NEC Cenju-4 mul-
tiprocessor system. The performance outcome of vari-
ous code versions and data distributions is compared by

using P 3T+ and second, an application about pricing
of derivate products which is an important field in fi-
nance theory, is evaluated. Among others, we examine
the accuracy of P 3T+ for predicting execution times
of important parallel reduction operations. Third, we
apply P 3T+ to WIEN97 which is a code for quantum
mechanical calculations of solids. We compare pre-
dicted against measured performance parameters for
number of transfers, amount of data transferred, trans-
fer times, and work distribution for changing problem
and machine sizes.

4.1. Cholesky factorization

Cholesky factorization [9] factors a n x n, symmetric,
positive-definite matrix into the product of a lower tri-
angular matrix L and its transpose, i.e., A = LLT (or
A = UTU , where U is upper triangular). It is assumed
that the lower triangular portion of A is stored in the
lower triangle of a two-dimensional array and that the
computed elements of L overwrite the given elements
of A. Cholesky factorization is a key kernel used by
the material science code (see Section 4.3) which has a
significant impact on the performance of this code.

The following code excerpt shows the main portion
of a Cholesky factorization:

. . .
DOUBLE PRECISION :: A(N,N)
!HPF$ PROCESSORS ::
PR(NUMBER OF PROCESSORS())
!HPF$ DISTRIBUTE (CYCLIC,*) ONTO PR :: A

. . .
A = 2*N
DO 10 I=1,N

A(I,I) = SQRT(A(I,I))
A(I+1:N,I)=A(I+1:N,I)/A(I,I)
DO 20 K=I+1,N

DO 20 J=I+1,N
IF (K .GE. J) THEN

A(K,J)=A(K,J)-A(K,I)*A(J,I)
ENDIF

20 CONTINUE
10 CONTINUE

. . .

We have used P 3T+ to predict several performance
parameters of Cholesky factorization. Figure 6 shows
the predicted and measured computation times of the
Cholesky factorization code on a single processor of the
Meiko CS-2 distributed memory multiprocessor sys-

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 87

tem. Note that the computation time parameter refers to
the sequential computation time overhead. In the worst
case predicted computation times are off the measured
values by 10%.

Figure 7 shows estimated and measured work distri-
bution values for two different parallel versions of the
Cholesky factorization (BLOCK and CYCLIC distri-
bution [27] of the first dimension of array A) that has
been executed on 16 processors. For BLOCK distri-
bution, the predicted work distribution values are off
the measured results in the worst case by 0.6%. The
Cholesky factorization based on CYCLIC distribution
can yield estimation errors of up to 35% for very small
problem sizes (N) due to inaccurate division opera-
tions in our symbolic sum algorithm. However, for in-
creasing problem sizes, the estimation error is almost
negligible (less than 1%).

Figure 8 displays the estimated cache misses as ob-
tained by P 3T+ for various problem and machine
sizes, and loop nestings of the Cholesky factorization.
We tested two different loop nestings: first, K-loop is
the outer and J-loop the inner loop. Second, J-loop is
the outer and K-loop the inner loop. In the first case,
three array references are traversed in the first dimen-
sion by the K-loop which results in a better cache behav-
ior than the second case due to the column-major stor-
age layout of Fortran. Increasing the number of proces-
sors also increases the available cache memory which
in turn improves the overall cache performance. P 3T+
clearly detects these effects as shown by Fig. 8. It is
very difficult to measure the number of cache misses
without hardware support. For this reason, we mea-
sured the corresponding execution times (see Fig. 9)
for each code version of Fig. 8. The performance rank-
ing are identical for each different code version both
in terms of predicted cache behavior as well as mea-
sured execution times. Although the code versions dis-
play only a rather small difference in execution times,
we believe that it is the cache behavior that causes the
differences which is correctly modeled by P 3T+.

4.2. Pricing of financial derivatives

In this experiment we apply P 3T+ to an application
about pricing of derivate products which is an important
field in finance theory. A derivative (or derivative secu-
rity) is a financial instrument whose value depends on
other, so called underlying securities [28]. Examples
are stock options and variable coupon bonds, the latter
paying interest rate dependent coupons. The pricing
problem can be stated as follows: what is the price to-

day of an instrument which will pay some cash flows in
the future, depending on the development of an under-
lying security, e.g. stock prices or interest rates? For
simple cases analytical formulas are available, but for a
range of products, whose cash flows depend on a value
of a financial variable in the past – so called path de-
pendent products – Monte Carlo simulation techniques
have to be applied [39,35]. By utilizing massively par-
allel architectures very efficient implementations can
be achieved [49].

The parallel pricing system has been encoded as an
HPF program [13] by the group of Prof. Dockner,
Department of Business Administration, University of
Vienna. This program comprises approximately 1000
lines of code. This program has been executed on the
NEC Cenju-4 [38] distributed memory multiprocessor
system:

. . .
!HPF$ PROCESSORS ::
PR(NUMBER OF PROCESSORS())
!HPF$ DISTRIBUTE (BLOCK) ONTO PR ::
VALUE

. . .
TYPE(BOND) :: B ! the bond to be priced
REAL(DBLE) :: VALUE(1:N) ! all path results
REAL(DBLE) :: PRICE

!HPF$ INDEPENDENT, REDUCTION(PRICE),
ON HOME(VALUE(I))
DO I = 1, N

VALUE(I) = DISCOUNT(0,CASH FLOW(B,
1,N),FACTORS AT(RANDOM PATH(0,0,N)))
PRICE = PRICE + VALUE(I)

! reduction over PRICE
END DO
PRICE = PRICE/N ! mean value
. . .

Array VALUE has been block-wise distributed onto
the maximum number of processors – by using the HPF
intrinsic function NUMBER OF PROCESSORS() –
that are available on a given architecture. The HPF DO-
Independentdirective specifies that each iteration of the
main simulation loop can be executed simultaneously.
Every iteration of the simulation loop is executed by the
processor that owns array element VALUE(I) based on
the owner-computes paradigm [3]. The summation of
the path results over variable PRICE has been realized
by an HPF reduction directive which is compiled to an
efficient machine specific function.

88 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

0 100 200 300 400 500 600

N

0

10

20

30

40

50

se
cs

measured
predicted

Fig. 6. Measured versus predicted computation times of the Cholesky
factorization for various problem sizes (N) on the Meiko CS-2.

0 200 400 600 800 1000

N

0

0.01

0.02

0.03

0.04

0.05

0.06

w
or

k
di

st
ri

bu
tio

n

measured (block distribution)
predicted (block distribution)
measured (cyclic distribution)
predicted (cyclic distribution)

Fig. 7. Measured versus predicted work distribution of the Cholesky
factorization on 16 processors for various problem sizes (N) and data
distributions (BLOCK and CYCLIC).

We first used P 3T+ to predict the work distribu-
tion of this code based on BLOCK distribution for 16
processors. Figure 10 shows the estimated and mea-
sured work distribution for various problem sizes N . It
clearly shows that we achieve a best-case work distri-
bution (WD = 0.0). The estimates are identical with
measurements.

Furthermore, we used P 3T+ to predict the execu-
tion time behavior of the SUM reduction operation of
this code. Figures 11 and 12, respectively, show the
measured and predicted execution times for the reduc-
tion operation for various problem (size of reduction
data) and machine sizes on a NEC Cenju-4. Note that
although our computation time parameter is restricted
to local computations excluding communication, for
this experiment, we employed the same technique (pre-
measured kernel codes) to predict the execution time of

0 500 1000

N

0

5e+08

1e+09

1.5e+09

2e+09

es
tim

at
ed

 c
ac

he
 m

is
se

s
(b

yt
es

)

2 processors, K-J loop nest
2 processors, J-K loop nest
4 processors, K-J loop nest
4 processors, J-K loop nest

Fig. 8. Predicted number of cache misses of the Cholesky factoriza-
tion for various machine and problem sizes, and loop nestings on a
NEC Cenju-4.

0 100 200 300 400 500 600

N

0

2000

4000

6000

8000

m
ea

su
re

d
ex

ec
ut

io
n

tim
e

(s
ec

)

2 processors, K-J loop nest
2 processors, J-K loop nest
4 processors, K-J loop nest
4 processors, J-K loop nest

Fig. 9. Measured execution times for the Cholesky factorization for
various machine and problem sizes, and loop nestings on a NEC
Cenju-4.

an an explicitly parallel reduction operation. The given
reduction operation (SUM) is defined over a scalar
(double precision variable PRICE). However, our im-
plementation is more general and covers reductions for
both scalars as well as replicated arrays. Figure 13
displays the estimation error rate (all predictions are
within 12% of the real results) which is given by the
following formula:

|measured value − predicted value|
measured value

. (5)

4.3. Quantum mechanical calculations of solids

In our final experiment we applied P 3T+ to
WIEN97 [4] which is a system for the calculation of
the electronic structure of solids that is being used by

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 89

0 1000 2000 3000 4000 5000 6000

N

0

0.2

0.4

0.6

0.8

1

w
or

k
di

st
ri

bu
tio

n

measured
predicted

Fig. 10. Estimated versus predicted work distribution of the pricing
code on 16 processors for various problem sizes N .

m
ea

su
re

d
ex

ec
ut

io
n

tim
es

 (
m

s)

number of processors

N

Fig. 11. Measured execution times of a summation reduction oper-
ation based on replicated data for varying number of processors and
reduction data size (N) on the NEC Cenju-4.

several 100 institutions world-wide. P 3T+ has been
employed to predict the performance behavior of HNS
that comprises 500 lines of code and is a core rou-
tine of WIEN97. HNS defines a symmetric (hermitian)
matrix (the Hamiltonian). Radial and angular depen-
dent contributions are pre-computed and condensed in
a number of vectors which are then applied in a series
of rank-2 updates to the symmetric (hermitian) Hamil-
ton matrix. HNS has 17 one-, 14 two-, 5 three-, and 6
four-dimensional arrays. The computational complex-
ity of HNS is of the order O(N 2). All floating point
operations are done in double (eight bytes) precision.

The following code shows the main loop nests of the
HNS code based on HPF/Fortran 90 array operations:

. . .

number of processors

N

pr
ed

ic
te

d
ex

ec
ut

io
n

tim
es

 (
m

s)

Fig. 12. Predicted execution times of a summation reduction opera-
tion based on replicated data for varying number of processors and
reduction data size (N) on the NEC Cenju-4.

es
tim

at
io

n
er

ro
r

N
number of processors

Fig. 13. Estimation error rate of a summation reduction operation
based on replicated data for varying number of processors and reduc-
tion data size (N) on the NEC Cenju-4.

!HPF$ PROCESSORS ::
PR(NUMBER OF PROCESSORS())
!HPF$ DISTRIBUTE(*,CYCLIC) ONTO PR :: H
. . .
DO 60 I = 1, N

H(I,1:I) = H(I,1:I) + A1R(1,1:I)*A2R(1,I)
H(I,1:I) = H(I,1:I) - A1I(1,1:I)*A2I(1,I)
H(I,1:I) = H(I,1:I) + B1R(1,1:I)*B2R(1,I)
H(I,1:I) = H(I,1:I) - B1I(1,1:I)*B2I(1,I)

60 CONTINUE
. . .
DO 260 I = N+1, N+NLO

H(I,1:I) = H(I,1:I) + A1R(1,1:I)*A2R(1,I)

90 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

H(I,1:I) = H(I,1:I) - A1I(1,1:I)*A2I(1,I)
H(I,1:I) = H(I,1:I) + B1R(1,1:I)*B2R(1,I)
H(I,1:I) = H(I,1:I) - B1I(1,1:I)*B2I(1,I)
H(I,1:I) = H(I,1:I) + C1R(1,1:I)*C2R(1,I)
H(I,1:I) = H(I,1:I) - C1I(1,1:I)*C2I(1,I)

260 CONTINUE
. . .

The array operations are executed in parallel based
on the owner-computes-paradigm and the HPF distri-
bution directives [27]. Arrays are mapped onto the
maximum number of processors (HPF intrinsic func-
tion NUMBER OF PROCESSORS) that are available
on a given architecture.

Figures 14 displays the time needed to compute all
P 3T+ performance parameters for a specific problem
size and for varying machine sizes on a Sun Ultra 10
workstation. The timings do not include the profile
rune of the original sequential HNS program to deter-
mine execution frequencies and branching probabili-
ties. Note that the time needed to compute any perfor-
mance parameter is invariant with respect to the prob-
lem size of a given program.

Figures 15–17 show the predicted and measured val-
ues for the P 3T+ parameters: number of transfers,
amount of data transferred, and transfer times. The ex-
periments have been conducted for various number of
processors and problem sizes on a NEC Cenju-4 ma-
chine. Note that for small problem and machine sizes
the estimation errors are almost negligible whereas for
larger problem and machine sizes (more than 8 proces-
sors) the estimation errors can be more severe. P 3T+
replaces (only in its performance model not in the ac-
tual code) I in H(I,1:I) by N/2 (determined by the

0 32 64 96 128

number of processors

50

75

100

125

150

175

200

ex
ec

ut
io

n
tim

e
(s

ec
s)

Fig. 14. Execution times to obtain all P3T+ performance parame-
ters for HNS with varying machine sizes.

133 265 497

N

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

N
T

2 processors, predicted
2 processors, measured
4 processors, predicted
4 processors, measured
8 processors, predicted
8 processors, measured

Fig. 15. Measured versus predicted number of transfers of HNS for
various problem (N) and machines sizes on a NEC Cenju-4.

133 265 497

N

0

5e+09

1e+10

1.5e+10

2e+10

2.5e+10

3e+10

T
D

 (
by

te
s)

2 processors, predicted
2 processors, measured
4 processors, predicted
4 processors, measured
8 processors, predicted
8 processors, measured

Fig. 16. Measured versus predicted amount of data transferred (in
bytes) of HNS for various problem (N) and machines sizes on a NEC
Cenju-4.

enclosing loop bound and array access pattern) in the
HNS code. This assumption results in a decrease of the
predicted number of transfers for larger machine sizes.
In reality more processors are involved in the commu-
nication which causes higher number of transfers. The
predicted amount of data transferred is very close to the
measured values (see Fig. 16). As transfer times are
influenced by both number of transfers and amount of
data transferred, we observe a slightly better estimation
accuracy than for number of transfers.

Figure 18 and 19, respectively, show the estimated
and measured work distribution behavior of HNS based
on BLOCK and CYCLIC distribution of H in the sec-
ond dimension. It can be clearly seen that CYCLIC
distribution outperforms BLOCK distribution due to
the triangular loop iteration space of the HNS loop
nests. The estimation errors for CYCLIC distribu-
tion are mostly due inaccurate division operations in
our symbolic sum algorithm. All experiments for the

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 91

133 265 497

N

0

1000

2000

3000

4000

T
T

 (
se

cs
)

2 processors, predicted
2 processors, measured
4 processors, predicted
4 processors, measured
8 processors, predicted
8 processors, measured

Fig. 17. Measured versus predicted transfer time (secs) of HNS for
various problem (N) and machines sizes on a NEC Cenju-4.

133 265 497

N

0

0.1

0.2

0.3

0.4

0.5

0.6

W
D

2 processors, predicted
2 processors, measured
4 processors, predicted
4 processors, measured
8 processors, predicted
8 processors, measured

Fig. 18. Measured versus predicted work distribution values of HNS
for BLOCK distribution and various problem (N) and machine sizes.

HNS code have been conducted for problem sizes up
to N = 497 which reaches the memory capacity of the
target architecture.

5. Conclusions

In this paper, we have described P 3T+, a perfor-
mance prediction tool for parallel and distributed pro-
grams. P 3T+ is closely integrated with a parallelizing
compiler (VFC) and thus supports the programmer dur-
ing development of parallel programs under this com-
piler. Traditionally, the quality of performance predic-
tion has been hampered by modeling either programs
or architectures with good accuracy but not both of
them. Moreover, very few performance estimators ac-
tually consider code transformations and optimizations
applied by a compiler.

133 265 497

N

0

0.002

0.004

0.006

0.008

0.01

0.012

W
D

2 processors, predicted
2 processors, measured
4 processors, predicted
4 processors, measured
8 processors, predicted
8 processors, measured

Fig. 19. Measured versus predicted work distribution values of HNS
for CYCLIC distribution and various problem (N) and machine sizes.

In contrast to most other performance estimators
P 3T+ models programs, code transformations, and
parallel and distributed architectures. The transforma-
tions and optimizations are selected by the programmer
and automatically performed by VFC. At any stage in
the parallelization effort P 3T+ can be invoked to ex-
amine the performance of a given code version in the
parallelization search space of code versions generated
by VFC. P 3T+ computes a variety of performance pa-
rameters including work distribution, number of trans-
fers, amount of data transferred, transfer times, compu-
tation times, and number of cache misses. P 3T+ sup-
ports the programmer in finding efficient code transfor-
mations and optimizations by comparing different code
versions with respect to the outcome of the performance
parameters.

Several novel technologies are employed to compute
these parameters: loop iteration spaces, array access
patterns, and data distributions are modeled by employ-
ing highly effective symbolic analysis. Communica-
tion is estimated by simulating the behavior of a com-
munication library used by the underlying compiler.
Computation times are predicted through pre-measured
kernels on every target architecture of interest. We
carefully model most critical architecture specific fac-
tors such as cache lines sizes, number of cache lines
available, startup times, message transfer time per byte.
P 3T+ has been implemented and is currently evalu-
ated by several application developers. Experimental
results with realistic kernel codes taken from real-world
applications demonstrate the accuracy and usefulness
of P 3T+.

Various open issue will be followed by future work.
We want to extend P 3T+ by extensive symbolic anal-
ysis to handle programs with unknowns, irregular ap-

92 T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs

plications, and linear and non-linear symbolic expres-
sions. Performance information should be provided as
functions over program unknowns for all performance
parameters. Moreover, symbolic evaluation should
be employed to aggressively collect constraints about
program unknowns throughout a program. We also
plan to extend P 3T+ covering object-oriented multi-
threaded programs which exploit both data and task
parallelism. Finally, we examine approaches to de-
scribe parallel programs at a higher level than specific
programming languages which should alleviate porta-
bility and reusability of P 3T+ for various other trans-
formation and development systems.

References

[1] E.L.A. Espinosa and T. Margalef, Automatic Performance
Evaluation of Parallel Programs, IEEE Proc. of the 6th Eu-
romicro Workshop on Parallel and Distributed Processing,
IEEE Computer Society Press, January 1998.

[2] S. Benkner, HPF+: High Performance Fortran for advanced
industrial applications. Lecture Notes in Computer Science,
1401, 1998.

[3] S. Benkner, VFC: The Vienna Fortran Compiler, Journal of
Scientific Programming 7(1) (December 1998), 67–81.

[4] P. Blaha, K. Schwarz and J. Luitz, WIEN97, Full-potential,
linearized augmented plane wave package for calculating crys-
tal properties, Institute of Technical Electrochemistry, Vienna
University of Technology, Vienna, Austria, ISBN 3-9501031-
0-4, 1999.

[5] J. Bleymüller, G. Gehlert and H. Gülicher, Statistik für
Wirtschaftswissenschaftler, Verlag Vahlen, München, 1985,
WiSt Studienkurs.

[6] J. Brehm, M. Madhukar, E. Smirni and L. Dowdy, PerPreT –
A performance prediction tool for massively parallel systems,
Lecture Notes in Computer Science, 977, 1995.

[7] B. Carlson, T. Wagner, L. Dowdy and P. Worley, Speedup
properties of phases in the execution profile of distributed
parallel programs, in: Computer Performance Evaluation ’92:
Modeling Techniques and Tools, R. Pooley and J. Hillston,
eds., 1992, pp. 83–95.

[8] B. Carpenter, Adlib: A Distributed Array Library to Support
HPF Translation, Proc. of the 5th Workshop on Compilers for
Parallel Computers, Malaga, Spain, June 1995.

[9] J. Choi, J.J. Dongarra, S. Ostrouchov, A.P. Petitet, D.W.
Walker and R.C. Whaley, The design and implementation of
the ScaLAPACK LU, QR and Cholesky factorization routines,
Report ORNL/TM-12470, Oak Ridge National Laboratory,
Oak Ridge, TN, 1994. LAPACK Working Note 80.

[10] M. Clement and M. Quinn, Symbolic Performance Predic-
tion of Scalable Parallel Programs, Proc. of 9th International
Parallel Processing Symposium, St. Barbara, CA, April 1995.

[11] M.J. Clement and M.J. Quinn, Dynamic performance predic-
tion for scalable parallel computing, Technical Report 95-80-
04, Oregon State University.

[12] B. DiMartino, Algorithmic Concept Recognition Support for
Automatic Parallelization: A Case Study for Loop Optimiza-
tion and Parallelization, Journal of Information Science and
Engineering, Special Issue on Compiler Techniques for High-
Performance Computing, to appear in March 1998.

[13] E. Dockner and H. Moritsch, Pricing Constant Maturity
Floaters with Embeeded Options Using Monte Carlo Simu-
lation, Technical Report AuR 99-04, AURORA Technical
Reports, University of Vienna, January 1999.

[14] D. Eager, J. Zahorjan and E. Lazowska, Speedup versus Effi-
ciency in Parallel Systems, IEEE Transactions on Computers
38(3) (March 1989), 408–423.

[15] M. Faerman, A. Su, R. Wolski and F. Berman, Adaptive perfor-
mance prediction for distributed data-intensive applications,
Technical Report CS1999-0619, University of California, San
Diego, Computer Science and Engineering, May 18, 1999.

[16] T. Fahringer, Estimating and Optimizing Performance for
Parallel Programs, IEEE Computer 28(11) (November 1995),
47–56.

[17] T. Fahringer, Automatic Performance Prediction of Parallel
Programs, Kluwer Academic Publishers, Boston, USA, ISBN
0-7923-9708-8, March 1996.

[18] T. Fahringer, Compile-Time Estimation of Communication
Costs for Data Parallel Programs, Journal of Parallel and
Distributed Computing, Academic Press 39(1) (Nov. 1996),
46–65.

[19] T. Fahringer, Estimating cache performance for sequential
and data parallel programs, Proc. of the International Con-
ference and Exhibition on High-Performance Computing and
Networking (HPCN’97), Vienna, Austria, Lecture Notes in
Computer Science, Springer Verlag, 1997, pp. 840–850.

[20] T. Fahringer, Efficient Symbolic Analysis for Parallelizing
Compilers and Performance Estimators, Journal of Super-
computing, Kluwer Academic Publishers 12(3) (May 1998),
227–252.

[21] T. Fahringer, P. Blaha, A. Hössinger, J. Luitz, E. Mehofer,
H. Moritsch and B. Scholz, Development and Performance
Analysis of Real-World Applications for Distributed and Par-
allel Architecture, AURORA Technical Report TR1999-16,
http://www.vcpc.univie.ac.at/aurora/publications/, University
of Vienna, August 1999.

[22] T. Fahringer and H. Zima, A Static Parameter based Perfor-
mance Prediction Tool for Parallel Programs, Proc. of the 7th
ACM International Conference on Supercomputing, Tokyo,
Japan, ACM Press, July 1993. best paper award.

[23] W. Fang, E.W. Felten and M. Martonosi, Contention and
queueing in an experimental multicomputer: Analytical
and simulation-based results, Technical Report TR-508-96,
Princeton University, Computer Science Department, Jan.
1996.

[24] J. Ferrante, V. Sarkar and W. Trash, On estimating and enhanc-
ing cache effectiveness, Proc. of the 4th Workshop on Lan-
guages and Compilers for Parallel Computing, Santa Clara,
CA, Aug 1991.

[25] D. Ferrari, Computer Systems Performance Evaluation, Pren-
tice Hall, 1978.

[26] M.P.I. Forum, Document for a Standard Message Passing
Interface, draft edition, Nov. 1993.

[27] High Performance FORTRAN Language Specification, Tech-
nical Report, Version 2.0.δ, Rice University, Houston, TX,
October 1996.

[28] J.C. Hull, Options, Futures, and Other Derivatives, Prentice
Hall, April 1997.

[29] J. Brehm et al., A Multiprocessor Communication Benchmark,
Users Guide and Reference Manual, Public Report of the
ESPRIT III Benchmarking Project, 1994.

[30] R. Jain, The Art of Computer Systems Performance Analysis,
Wiley Professional Computing, 1991.

T. Fahringer and A. Požgaj / P3T+: A performance estimator for distributed and parallel programs 93

[31] W.M. Jr., T.J. LeBlanc and A. Poulos, Waiting Time Analysis
and Performance Visualization in Carnival, ACM SIGMET-
RICS Symp. on Parallel and Distributed Tools, May 1996,
pp. 1–10.

[32] W.K. Kaplow and B.K. Szymanski, Program optimization
based on compile-time cache performance prediction, Parallel
Processing Letters 6(1) (Mar. 1996), 173–184.

[33] K. Kennedy and K. McKinley, Optimizing for Parallelism and
Data Locality, International Conference on Supercomputing
1992, Washington D.C., July 1992, pp. 323–334.

[34] M. Kumar, Measuring parallelism in computation intensive
scientific/engineering applications, IEEE Transactions on
Computers 37(9) (1988), 1088–1098.

[35] C.S.L. Clelow, Implementing derivative Models, John Wiley
& Sons, 1998.

[36] M. Lam, E. Rothberg and M. Wolf, The Cache Performance
and Optimizations of Blocked Algorithms, In Proceedings
of the 4th International Conference on Architectural Support
for Programming Languages and Operating Systems, Santa
Clara, CA, April 1991.

[37] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin,
K. Karavanic, K. Kunchithapadam and T. Newhall, The Para-
dyn Parallel Performance Measurement Tool, IEEE Computer
28(11) (November 1995), 37–46.

[38] T. Nakata, Y. Kanoh, K. Tatsukawa, S. Yanagida, N. Nishi and
H. Takayama, Architecture and the Software Environment of
Parallel Computer Cenju-4, NEC Research and Development
Journal 39 (October 1998), 385–390.

[39] P.G.P. Boyle and M. Broadie, Monte carlo methods for security
pricing, Journal of Economic Dynamics and Control (1997),
1267–1321.

[40] A. van Gemund’s PAMELA project webpage, http://dutepp0.

et.tudelft.nl/˜gemund/Pamela/pamela.html.
[41] K.-H. Park, Dynamic Processor Partitioning for Multipro-

grammed Multiprocessor Systems, PhD thesis, Vanderbilt
University, Nashville, TN, Aug 1990.

[42] K. Sevcik, Characterization of parallelism in applications and
their use in scheduling, Performance Evaluation Review 17(1)
(1989), 171–180.

[43] C. Siddhartha, Compiling data-parallel programs for efficient
execution on shared-memory multiprocessors, PhD thesis,
Carnegie Mellon University, School of Computer Science,
Pittsburgh, PA, October 1991.

[44] A. van Gemund, Performance Modeling of Parallel Systems,
Delft University Press, 1996.

[45] S. Venugopal and V.K. Naik, SHAPE: a parallelization tool for
sparse matrix computations, Research report rc 17899, IBM
Research Division, T.J. Watson Research Center, Yorktwon
Heights, NY 10598, July 1992.

[46] F. Wolf and B. Mohr, EARL – A Programmable and Extensible
Toolkit for Analyzing Event Traces of Message Passing Pro-
grams, Proc. of 7th International Conference, HPCN Europe
1999, Amsterdam, The Netherlands, April 1999, pp. 503–512.

[47] M. Wolf and M. Lam, A data locality optimizing algorithm,
In Proceedings of the SIGPLAN 91 Conference on Program
Language Design and Implementation, Toronto, Canada, June
1991.

[48] R. Wolski, N. Spring and J. Hayes, The Network Weather Ser-
vice: A Distributed Resource Performance Forecasting Ser-
vice for Metacomputing, Journal of Future Generation Com-
puting Systems 15(5–6) (1999).

[49] S. Zenios, Parallel Monte Carlo simulation of mortgage-
backed securities, Cambridge University Press, 1993.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

