
183

Scalable algorithms for adaptive statistical
designs

Robert Oehmke∗, Janis Hardwick and
Quentin F. Stout
University of Michigan, Ann Arbor, MI 48109, USA

We present a scalable, high-performance solution to multi-
dimensional recurrences that arise in adaptive statistical de-
signs. Adaptive designs are an important class of learning
algorithms for a stochastic environment, and we focus on
the problem of optimally assigning patients to treatments in
clinical trials. While adaptive designs have significant eth-
ical and cost advantages, they are rarely utilized because of
the complexity of optimizing and analyzing them. Computa-
tional challenges include massive memory requirements, few
calculations per memory access, and multiply-nested loops
with dynamic indices. We analyze the effects of various par-
allelization options, and while standard approaches do not
work well, with effort an efficient, highly scalable program
can be developed. This allows us to solve problems thousands
of times more complex than those solved previously, which
helps make adaptive designs practical. Further, our work ap-
plies to many other problems involving neighbor recurrences,
such as generalized string matching.

Keywords: Dynamic programming, computational learning
theory, bandit models, message-passing, dynamic domain de-
composition, memory-intensive computing, load balancing,
sequential analysis, performance analysis, experimental al-
gorithms

1. Introduction

Standard statistical designs define all sampling deci-
sions in advance. In particular, in a clinical trial, the
number of patients that will receive each treatment is
decided before the trial begins. In contrast, adaptive
designs use accruing information to adjust the decisions
dynamically. For example, if in the midst of a trial it has
been observed that one treatment is performing better
than the others, then more patients may be assigned to

∗Corresponding author. E-mail: oehmke@engin.umich.edu.

the apparently better treatment. Thus adaptive designs
can provide significant ethical benefits, and in indus-
trial settings can have significant cost and time advan-
tages [6]. However, adaptive designs are rarely used,
largely because they are far more difficult to analyze.
Analytical solutions are impossible in all but the most
trivial cases, and computational approaches are often
considered infeasible.

We are developing new algorithms, and optimized
implementations, to solve adaptive design problems.
Here we primarily report on one case, optimizing
an n-stage trial with three treatment options having
Bernoulli outcomes. This problem is translated into a
6-dimensional dynamic program for which we devel-
oped a highly scalable solution, allowing us to create
designs of useful size.

This dynamic programming problem is a neighbor
recurrence where the value at a given location is de-
termined by the values at a stencil of other locations
that are “near” in the parameter space. Neighbor re-
currences are quite common, such as the Fibonacci se-
quence F (n) = F (n − 1) + F (n − 2) or in the use
of dynamic programming to solve optimization prob-
lems such as the alignment of gene or protein struc-
tures in bioinformatics. They also occur in backwards
induction and path induction [7].

Unfortunately, the computational complexity of such
recurrences grows exponentially in the dimension. This
“curse of dimensionality” often makes exact solutions
infeasible, and thus approximations are used and the
solution quality is reduced. Since there is considerable
interest in solving such computationally formidable re-
currences, parallel computing is a natural approach.
It is generally, but mistakenly, felt that the regularity
of neighbor recurrences implies that parallelization is
straightforward. While high efficiency can be attained,
it requires considerable effort. Major difficulties in-
clude:

– Time and space grow rapidly with the input size,
so intensive efforts are needed to obtain a useful
increase in problem size.

Scientific Programming 8 (2000) 183–193
ISSN 1058-9244 / $8.00  2000, IEEE. Reprinted with permission from Proceedings of IEEE Supercomputing 2000, 4–10 November 2000,
Dallas, Texas, USA.

184 R. Oehmke et al. / Scalable algorithms for adaptive statistical designs

– The time/space ratio is low, making RAM the lim-
iting factor.

– There are few calculations per memory access.
– The nested loops have dynamic index dependen-

cies.

Performance is further exacerbated by the interaction of
these aspects. Table 9 shows, for example, the dramatic
limitations imposed by space constraints and imperfect
load balance caused by the loop structure.

Section 1.1 details the primary example problem,
and Section 1.2 discusses prior work. Section 2 shows
a natural serial implementation and space reductions.
Section 3 discusses an initial, natural, distributed mem-
ory parallelization and its inadequacies. Section 4 de-
velops a scalable parallelization, with timing analyses
in Section 4.2 and a discussion of a performance degra-
dation in Section 4.3. Section 5 develops and analyzes
shared memory parallelization. Section 6 discusses
the distributed memory parallelization of a related but
more difficult problem involving delayed responses,
and highlights new complications that arise. Section 7
provides a final discussion.

The distributed memory results were obtained us-
ing MPI on an IBM SP2, where each processor is an
160 MHz POWER2 Super Chip (P2SC) processor with
1 GB of RAM and 1 GB additional virtual memory.
The shared memory results were obtained on a 16 pro-
cessor SGI Origin with 12 GB RAM, where each pro-
cessor is a 250 MHz MIPS R10000. Throughout, all
times are elapsed wall-clock time measured in seconds.
Rerunning the same problem showed very little tim-
ing variation, so we merely report average time (see,
however, Section 4.3).

1.1. Multi-arm allocation

Sequentially allocating patients to treatment options
so as to optimize their outcomes in a clinical trial can
be modeled as a Bayesian bandit problem [2]. Such
models are important in stochastic optimization as well
as in decision and learning theory. In a k-arm bandit
problem one can sample from any of k independent
arms (populations) at each stage of the experiment.
(Here, “arm” = “treatment option”.) Associated with
each arm is a prior distribution on the unknown outcome
or “reward” function. After sampling from an arm
(e.g., allocating a patient to a treatment) one observes
the outcome and updates the information (prior) for
that arm. The goal is to determine how best to utilize
accruing information to optimize the total outcome for

the experiment. In this case, the outcome functions are
independent Bernoulli random variables, resulting in
“success” or “failure”, and the goal is to maximize the
number of successes.

At each stage, m = 0, . . . , n − 1 of an experiment
of length n, an arm is selected and the response is ob-
served. At stage m, let (si, fi) represent the number
of successes and failures from arm i. Then the state
(s1, f1, . . . , sk, fk), is a vector of sufficient statistics.
Optimal solutions can be obtained via dynamic pro-
gramming, but the time and space have the formidable
growth rate of Θ(n2k/(2k − 1)!). We concentrate on
the 3-arm version, which has Θ(n6) complexity.

Figure 1 illustrates a simple 2-arm bandit design,
where each arm has a uniform prior on its rate of suc-
cess, for n = 4. Non-adaptive designs would only av-
erage 2 successes, while by adapting the optimal design
achieves 2.27. The advantages of adaptation become
more pronounced the longer the trial is and the more
arms there are. For example, with n = 100 and uni-
form priors on each arm, non-adaptive allocation will
average 50 successes no matter how many arms there
are. However, the optimal 2-arm bandit will average
65 successes, and the 3-arm bandit averages 72.

1.2. Previous work

The 3-arm problem had never previously been solved
exactly because it was considered infeasible. Indicat-
ing frustration with the far easier 2-arm bandit problem,
researchers have commented: “In theory the optimal
strategies can always be found by dynamic program-
ming but the computation required is prohibitive” [20],
and “the space and time requirements for this compu-
tation grow at a rate proportional to n4 making it im-
practical to compute the decision even for moderate
values of say n � 50” [9]. Previously, the largest exact
2-arm bandit solution utilized a Cray 2 supercomputer
to solve n = 200 [3]. Here, we solve a problem 2,000,
times harder, namely the 3-arm bandit with n = 200.

There appears to be no previous work on the parallel
solution of bandit problems, but there has been consid-
erable work on the parallel solution of similar recur-
rences. Most of this concentrates on theoretical algo-
rithms where the number of processors scales far faster
than the input size [8,14,15,12,16], or special purpose
systems are created [17,10]. Others [11,19] look at dy-
namic programming difficulties when the subproblems
are not as well understood.

R. Oehmke et al. / Scalable algorithms for adaptive statistical designs 185

1/5
4/5

2/5
3/5

1/3
2/3

1/2
1/2

1/4
3/4

1/2
1/2

1/2
1/2

2/3
1/3

1

2

1

1

1

1

1

1

1

2

2

2

2

2

2

3/4

1/4

1/2

1/2

2/3

1/3

1/3

2/3

2/3

1/3

1/2

1/2

1/2

1/2

1/54

1/203

1/203

1/302

1/183

1/362

1/242

1/241

1/83

1/242

1/242

1/241

1/242

1/241

1/181

1/90

Node: arm sampled; Right cols: successes achieved and prob. reaching that outcome.
Upward line: success; Downward line: failure; Line label: prob. of outcome.

Fig. 1. A 2-arm bandit, with n = 4 and uniform priors on each arm.

Algorithmic 1. Serial algorithm for determining opti-
mal adaptive 3-arm allocation.
{ŝi, f̂i: one success, failure on arm i}
{si, fi: number of successes, failures arm i}
{m: number of observations so far}
{n: total number of observations}
{|σ|: number of observations at state σ}
{V : the function being optimized, where V (0) is the

answer}
{pi(si, fi): prob of success on arm i, if si successes

and fi failures have been observed}
for all terminal states]states σ with |σ| = n do {i.e.

for all terminal states}
V (σ) = number of successes in σ
for m = n − 1 downto 0 do {compute for all states

of size m}
for s3 = 0 to m do

for f3 = 0 to m − s3 do
for s2 = 0 to m − s3 − f3 do

for f2 = 0 to m − s3 − f3 − s2 do
for s1 = 0 to m − s3 − f3 − s2 − f2 do

f1 = m − s3 − f3 − s2 − f2 − s1
σ = 〈s1, f1, s2, f2, s3, f3〉
V (σ) = max{(p1(s1, f1) · V (σ + ŝ1)+

(1 − p1(s1, f1)) · V (σ + f̂1)),
(p2(s2, f2) · V (σ + ŝ2)+
(1 − p2(s2, f2)) · V (σ + f̂2)),
(p3(s3, f3) · V (σ + ŝ3)+
(1 − p3(s3, f3)) · V (σ + f̂3))}

2. Serial implementation

The goal of a bandit problem with dichotomous re-
sponses is to determine, at each state, which arm should
be selected so as to maximize the expected number of
successes over the course of the experiment. To solve
this via standard dynamic programming (Algorithm 1),
first the values of each terminal state (those with n ob-
servations) are computed. Then, the optimal solution
is found for all states with m observations based on the

186 R. Oehmke et al. / Scalable algorithms for adaptive statistical designs

optimal solutions for all states with m+1 observations,
for m = n − 1 down to 0.

The neighbor recurrence at the heart of this algorithm
is in the center of the loops. For our purposes, the spe-
cific function used to combine values is less important
than the indices of the values being referenced, since
they determine the memory accesses and communica-
tion required. Note that we have a stencil of dependen-
cies, whereby the value at state σ depends only on the
neighbor values at σ+ ŝ1, σ+ f̂1, σ+ ŝ2, σ+ f̂2, σ+ ŝ3,
and σ + f̂3, where ŝi and f̂i denote a single additional
success or failure, respectively, on arm i. With mi-
nor changes to this equation (and no change in the de-
pendencies), the same program can also perform back-
ward induction to evaluate the expected number of suc-
cesses for an arbitrary 3-arm design, which allows one
to evaluate suboptimal designs which may have other
desirable characteristics. Further, trivial changes allow
evaluation of far more general objective functions.

Note that the recurrences involve extensive memory
accesses, with little computation per access. There

are

(
n + 6

6

)
= Θ(n6) states, and the time and space

complexities are also Θ(n6).

2.1. Space optimizations

The first space reduction results from the observation
that values of V for a given m depend only on the values
for m+1, so only the states corresponding to these two
stages need to be kept simultaneously. This reduces
the working space to Θ(n5), and by properly arranging
the order of the calculations, the space can be reduced
to only that required for one stage’s worth of states,
i.e., we gain another factor of 2. This corresponds to
the collapsed column in Table 1. In this table, max n
shows the maximum problem solvable by a 1 GB RAM
machine with a time limit of 18 hours, limitation shows
which limit was reached, and prog len is the size of the
version in lines of source code. Note that the collapsed
version allows us to solve problems substantially larger,
and also results in a slight speedup.

The next space reduction results from the fact that,
due to the constraint s3+f3+s2+f2+s1+f1 � n,
only a corner (approximately 1/5! = 1/120 of the total)
of the 5-dimensionalV array is used. To take advantage
of this, the 5-dimensional V array is mapped into a lin-
ear array. Unfortunately, this mapping also requires all
array references to be translated from the original five
indices into their position in the linear array. From a
software engineering viewpoint, the best way to imple-

Table 1
Serial versions, time (sec.) to solve problem of size n.

n first collapsed naive comp best

10 0.009 0.004 0.082 0.004
20 0.18 0.1 3.2 0.092
30 1.4 35 0.71
40 4.1 186 3.9
50 15 689 13
60 2024 35
70 5047 86
80 11242 185
90 22756 362

100 42900 659
110 1225
120 1922
130 34961

max n 27 54 100 135
limitation memory memory time time
prog len 193 193 282 419

Max n: Maximum problem solvable with 1 GB and time � 64,400
sec. (18 hr.)

ment this translation is to use a function which takes as
input the five indices and yields their position in the ar-
ray. Unfortunately, this is extremely costly as the trans-
lation function is a complicated 5th degree polynomial
which must be evaluated for every array access. This
version, the naive comp in Table 1, can solve larger
problems, but is significantly slower than the collapsed
version. For the best version, we broke the translation
function into a series of offset functions, where each
offset function corresponds to a given nested loop level.
An offset function only needs to be recalculated before
its corresponding loop is entered, and the more expen-
sive offset functions correspond to the outermost loops.
This method dramatically reduces the translation cost
down to a usable level, but greatly increases program
complexity, as is shown by the increase in prog len.

The simplified Algorithm 1 ignores the fact that in
order to utilize the design, one needs to record the arm
selected at each state. This is typical with dynamic pro-
gramming. Unfortunately these values cannot be over-
written and the storage required is Θ(n6). Fortunately,
this too involves only values in one corner, allowing a
reduction by a factor of 1/6! = 1/720. These values are
stored on disk and do not reduce the amount of memory
available for calculation. Using run-length encoding
would reduce this to Θ(n5), but so far this has not been
necessary.

3. Initial parallel algorithm

To parallelize the recurrence, we first address load
balancing. In the initial parallelization the natural ap-

R. Oehmke et al. / Scalable algorithms for adaptive statistical designs 187

proach of dividing the work among the processors was
taken. The outermost m loop behaves very much like
time and cannot be parallelized, so instead one par-
allelizes the second outermost loop, s3. At stage
m, processor Pj is assigned the task of computing all
values where s3 was in the range start s3(j,m)
. . .end s3(j,m).

Determining the range of s3 values assigned to
each processor is nontrivial, because the number of
states corresponding to a given value of s3 grows as
(m − s3)4. Thus, simply assigning all processors an
equal number ofs3 values would result in massive load
imbalance and poor scaling. We evaluated two solu-
tions to this problem. Optimals3 partitioning is itself a
small dynamic programming problem which takes time
and space Θ(mp). However, it was easy to develop a
fast Θ(m) greedy heuristic which was nearly optimal,
and it is this heuristic which was used in the program.

3.1. Communication

The communication needed can be divided into
array redistribution and external neighbor acquisi-
tion. Array redistribution occurs because, as the
calculation proceeds, the number of states shrinks.
To maintain load-balance, the s3 range owned
by a processor changes over time. At stage m,
processor Pj needs the states with s3 values in
the range start s3(j,m). . .start s3(j,m+1)-1
from Pj−1. Redistribution includes the cost of moving
the states currently on the processor to create space for
these new states.

External neighbor acquisition occurs because the
calculations for a state may depend on its neigh-
bors in other processors. To calculate states with
s3=end s3(j,m) during stage m, Pj needs to ob-
tain a copy of the states with s3=end s3(j,m)+1
from Pj+1. Note that external neighbor acquisition
negates round-robin or self-scheduling approaches to
load-balancing the s3 loops, as this would result in a
dramatic increase in the communication requirements.
This does not necessarily hold for shared memory sys-
tems, however, as can be seen from the OpenMP ver-
sion in Section 5. Shared memory computers are able
to utilize these approaches because their much faster
communication systems reduce the latency down to a
managable level.

Algorithm 2. Scalable parallel algorithm.
{Pj : processor j}
{start σ(j,m), end σ(j,m): range of σ values

assigned to Pj for this m value, with
start σ(j+1,m)=end σ(j,m)+1 }

{For all processors Pj simultaneously, do}
for σ = start σ(j, n) to end σ(j, n) do {i.e. for all

terminal states}
V (σ) = number of failures in σ
for m = n − 1 downto 0 do {compute for all states

of size m}
for σ = start σ(j, m) to end σ(j, m) do

determine s1, f1, s2, f2, s3, f3 from σ
compute V as before

{Array redistribution}
Send needed V values to other processors
Receive V values from other processors
{External data acquisition}
Send needed V values to other processors
Receive V values from other processors

4. Scalable parallel algorithm

The initial load-balancing approach is simple to im-
plement and debug because it makes minimal changes
to the serial version. Unfortunately, it has imperfect
load and working space balancing, which severely lim-
its scalability (see Table 2) and the size of problem
solvable (see Table 9).

For a more scalable version (Algorithm 2), instead
of partitioning the states using the coarse granularity of
the s3 values, we partition them as finely as possible.
However, this leads to numerous difficulties. The first
is that a processor’s V array can now start or end at ar-
bitrary values of s3, f3, s2, f2, s1, and f1,
so one can no longer use a simple set of nested loops
to iterate between the start and end value. Our first
attempt to solve this problem had nested if-statements
within the innermost loop, where the execution rarely
went deep within the nest. While logically efficient,
this turned out to be quite slow because it was too com-
plex for the compiler to optimize. A solution that the
compiler was able to cope with was to use a set of
nested loops with if-statements in front of each loop so
that it starts and stops appropriately. This solution was
almost as fast as the original serial nested loops.

Another difficulty was that the offset calculations are
not uniformly distributed along the range of the V array,
and this leads to a noticeable load imbalance. Storing
the results of the offset equations in arrays significantly
decreases the cost of each offset calculation and re-
duces the load imbalance to a more acceptable level.
However, there is still some slight load imbalance that
could be addressed by including the cost of these array
lookups in the load balancing.

188 R. Oehmke et al. / Scalable algorithms for adaptive statistical designs

4.1. Communication

The move to perfect division of the V array also
caused complications in the communication portion of
the program. The main complication was that data
needed for either external or redistribution aspects was
no longer necessarily located on adjacent processors.
This resulted in a considerable increase in the complex-
ity of the communication portions of the program.

Our initial version of the communication functions
used a natural strategy when space is a concern: each
processor sent the data it needed to send, shifted its
remaining internal data, and then received the data sent
to it. Blocking sends were used to insure that there was
space to receive the messages. Unfortunately, this seri-
alized the communication, because the only processor
initially ready to receive was the one holding the end of
the array, i.e., the only processor which does not redis-
tribute to any other processor. The next processor able
to receive was the second from the end, because it sent
only to the end processor, and so on. The performance
of this version was unacceptable. The next version
removed the interaction and performed adequately but
synchronization costs became more of a problem. To
remove these, we switched to non-blocking communi-
cation wherever possible. This made communication
fairly efficient, however there may still be room for
some slight additional improvements.

In general there is a serious conflict between exten-
sive user space requirements and minimizing commu-
nication delays. The communication buffers needed to
overlap communication and calculation, and to overlap
incomplete sends and receives, can be large.

4.2. Scalable timing results

Table 2 shows the efficiency, e(p), of the initial and
scalable parallel versions as the number of processors p
increases. Table 3 shows the effect on timing and scal-
ing of each of the major changes detailed in Section 4,
contrasting 1 processor and 8 processor versions, where
t(p) is the time. Note that the improvements reduced
the serial time, and increased the parallel efficiency
relative to the reduced serial time.

Table 4 contains the percentage of the total running
time taken by different parts of the scalable program
as the number of processors increases. Calc is the per-
centage of time taken by the dynamic programming
calculations, file is the cost of writing the decisions
to disk, and misc is the part of the time not attributed
elsewhere. Under array redist, we show the cost of

Table 2
Scaling results, n = 100

p efficiency e(p)

initial scalable

1 1.00 1.00
2 0.96 0.96
4 0.93 0.94
8 0.81 0.91

16 0.64 0.86
32 0.48 0.81

Table 3
Stepwise improvements in scalable version, n = 100, 1 and 8
processors

version t(1) t(8) e(8)

first scalable 1044 178 0.734
improved loops 775 143 0.678
offsets in array 766 134 0.715
scalable comm 762 106 0.903
non-blocking comm 760 104 0.913

Table 4
Percentage distribution of time within scalable version, n = 100

array redist external
p calc file misc comm shift comm

1 98 1.9 0.1 0.0 0.0 0.0
2 94 1.6 0.9 1.9 1.2 0.4
4 88 1.6 0.1 4.5 2.0 3.8
8 84 1.4 0.2 6.5 2.0 5.9

16 73 1.2 0.7 11.0 2.1 12.0
32 57 1.1 0.0 16.1 1.7 24.1

Table 5
Timing results, n = 200, scalable version

p t(p)

16 10463
32 1965

shifting data among the processors to maintain load-
balance, where comm is the cost of calculating the re-
distribution and communicating the data between the
processors, and shift is the cost of moving the data on
the processor. Below external comm is the cost of get-
ting neighbor states from other processors, including
the cost of determining which processor has the data
and where to put it on the current processor, and the
cost of communicating the data.

Table 5 presents the running times of the scalable
program for n = 200 for 16 and 32 processors. Note
that the speedup is more than a factor of two. This
occured because on 16 processors the program must
make extensive use of disk-based virtual memory. A
similar effect can be seen in Table 1 as n increases
from 120 to 130. This illustrates an often overlooked
advantage of parallel computers, a bonus increase in

R. Oehmke et al. / Scalable algorithms for adaptive statistical designs 189

Table 6
Comparison of scalable program efficiencies from old to new system,
n = 100

p 1 2 4 8 16 32

old t(p) 760 396 203 104 55 30
e(p) 1.00 0.96 0.94 0.91 0.86 0.81

new t(p) 854 448 237 131 73 42
e(p) 1.00 0.95 0.90 0.81 0.72 0.63

speed simply because dividing a problem among more
processors allows it to run in RAM instead of in virtual
memory. However, this can be successful only if the
parallelization load-balances the memory and compu-
tation requirements.

4.3. System performance degradation

While generating the timing analyses for this paper
we collected data on the SP2 at two different times ap-
proximately a year apart. Much to our consternation
we discovered that the most recent data showed the
program to be running much slower and scaling poorly.
For an example of this change see Table 6 where we
present the change in time and efficiency in the scalable
version from last year to this year. Note that this slow-
down occurred with exactly the same code, in fact with
the same binaries, used the previous year. The slow-
down occured for multiple versions of our programs,
and we even have some evidence of it occuring in dif-
ferent applications, although finding other users with
precise timing data from the previous year has proved
to be quite difficult.

Questioning the SP2 systems staff revealed that dur-
ing the year the operating system had been upgraded.
Further investigation revealed that the new operating
system allowed off-processor access to the local disk
on each node. We believe it is this change which re-
sulted in our performance degradation. Allowing off-
processor jobs to access the local disk causes contention
for the disk, for the high performace switch used in
interprocessor communication, and for the CPU, all of
which can degrade performance for a program running
on the node. Further, the more processors being used,
the more likely it is that at least one of them is having
its disk accessed. If any user node is delayed then the
internode communication dependencies quickly insure
that all of the nodes are delayed, which degrades scala-
bility. Since our dynamic programming problems have
a low calculation to communication ratio, they are quite
sensitive to these effects.

This problem illustrates an interesting dilemma of
many computing centers. Allowing users to remotely

access local disks increases throughput and is more
convienient for the users as a whole, although it hurts
the individual user trying to extract maximum run-time
performace. The question of whether to optimize for
throughput or individual performace is a complex one
without easy answers, and our results show that deci-
sions may have more extensive impact than expected.

5. Shared memory implementations

To measure the performance of the 3-arm bandit code
on a shared memory machine we implemented four
seperate versions.

The first version, which we call MPI, uses the shared
memory implementation of the MPI libraries. Aside
from a few changes due to differences in the versions of
Fortran on the two machines, this version is identical to
the scalable version of the code previously described.

The next version, OpenMP, uses OpenMP directives
to implement a shared memory version of the code.
This version is very similar to that in Algorithm 1,
except for the addition of a second copy of the V ar-
ray. This second copy is necessary because while us-
ing a shared memory implemention the same V array is
shared among all the processors, which may be acting
on different sections of it at arbitrary times. This means
there is no longer a guarantee that every calculation that
uses a state will be finished before the state is overwrit-
ten, and thus we need to have a second array to hold the
current stage’s inputs while the current stage’s outputs
are being stored. After a stage is completed its output
array is copied into the input array for the next stage.

To convert the code, OpenMP parallel-do directives
were used around the outmost, s3, loop of the dynamic
programming setup, and the s3 loop in the dynamic
programming. Both of these loops use OpenMP dy-
namic scheduling, which means that each processor
grabs a user defined chunk size number of iterations,
performs them, and then when completed grabs another
set. This process continues until all the iterations of the
loop have been completed. To compute the chunk size
for each stage, we first determine the average amount
of work per processor at that stage. The chunk size
is then 1 less than the mininum number of iterations
whose combined work is greater than the average work.
Note that this will not necessarily be the number of it-
erations divided by the number of processors since the
work in each iteration varies dramatically. This type
of dynamic scheduling approach is not feasable for the
distributed memory version of our code because of the

190 R. Oehmke et al. / Scalable algorithms for adaptive statistical designs

increase in complexity that would result from tracking
the location of the states and synchronizing access to
them.

The third version of shared memory code, Auto, was
generated by using the SGI Fortran autoparallelizer on
the serial version of our code. Unfortunately, due to
the dependencies inside the V array described above,
the autoparallelizer was only able to parallelize the in-
nermost, s1, loop of the dynamic programming setup.

The final version of shared memory code,Auto+Copy,
again used the autoparallelizer, but this time on the
double V array code described above for OpenMP. The
reduction in dependencies allowed it to do slightly bet-
ter. It parallelized the innermost, s1, loops of both the
setup and the main body of the dynamic programming.

Table 7 shows the results of our measurements on
these four versions. As can be seen, the hand paral-
lelized versions perform far better than those done au-
tomatically. In fact, Auto, has almost no discernable
increase in speed as the number of processors increases.
Auto+Copy does slightly better, but is still far inferior
to the others. The winner clearly is OpenMP, which
was to be expected as it has far less overhead than MPI.
Note, however, that OpenMP’s scalability will degrade
as the number of processors increases because it cannot
allocate less than one s3 loop per processor. (Because
we have only 16 nodes on our SGI Origin, we could not
provide numbers for more processsors). Implementing
a fully scalable code using OpenMP would be diffi-
cult, and in the end would probably result in something
similar to the MPI version.

6. Delayed response problem

We have also applied our scalable parallelization
approach to a more complex problem involving 2
Bernoulli arms, where now there is no assumption that
the responses are obtained immediately. Thus new pa-
tients may need to be assigned to treatment even though
we have not observed the outcomes of all prior assign-
ments. This delayed response situation is a significant
practical problem, and is often cited as a difficulty when
trying to apply adaptive designs [1,18]. Moreover,
like the 3-arm problem, the delayed response problem
had never been fully optimized, neither analytically nor
computationally, because it was considered intractible.

There are many different models of the delay, ap-
propriate for varying circumstances. Here we assume
that the response times for each arm are exponen-
tially distributed, and that patients arrive according to

a Poisson process. In this setting, the natural states
are of the form (s1, f1, u1, s2, f2, u2), where ui is the
number of patients assigned to treatment i with un-
known outcome. As before, we have the condition that
s1+f1+u1+s2+f2+u2 � n, which allows compres-
sion, and we have exactly the same number of states
as in the 3-arm problem of size n. However, a criti-
cal difference is that the recurrence for V (σ) depends
upon V (σ + û1), V (σ + ŝ1 − û1), V (σ + f̂1 − û1),
V (σ + û2), V (σ + ŝ2 − û2), and V (σ + f̂2 − û2).
That is, either a patient is assigned a treatment and the
outcome is initially unknown, or we have just observed
the outcome of a treatment. See [5] for the detailed
form of the recurrence and its derivation.

Figure 2 shows the effect of delay on the number
of successes for a simple problem involving uniform
priors on the success rates of each arm, with n = 100.
If no responses were obtained before all patients were
allocated then the expected number of successes would
be 50, which could be obtained by equal allocation of
patients to each arm. If all responses were immediate
and the optimal 2-arm bandit design was used then the
expected number of successes would increase to 64.92.
Under delayed response we would expect fewer suc-
cesses, but the optimal number obtainable was previ-
ously unknown. In the figure, B represents the opti-
mal design for the known delay parameters, and R rep-
resents the most commonly suggested adaptive design
for this situation, known as randomized play the win-
ner (RPW) [21]. Note that the optimal design is sig-
nificantly better than RPW, and that it tolerates delays
quite well.

While the recurrences for the delayed response
model again have a stencil of neighbor dependencies,
they are more complicated. To go through the calcu-
lations systematically, one needs the appropriate no-
tion of “stage”, corresponding to m in the 3-arm pro-
gram. In general, the stage of a state σ should be the
maximum path length to the state from the initial state
0. Previously, all paths to σ from 0 took the same
number of steps, which was the sum of the entries.
Here again all paths have the same length, but it is
2(s1 +f1 +s2 +f2)+u1 +u2, i.e., the components do
not contribute uniformly. Because all the paths from
σ from 0 are the same length, states at stage k (i.e., at
distance k) depend only on states at stage k + 1, which
allows one to store only 2 stages at a time. Further, as
in the original problem, by carefully analyzing the de-
pendencies and going through the loops in the correct
order, this can be reduced down to 1 stage.

R. Oehmke et al. / Scalable algorithms for adaptive statistical designs 191

Table 7
Efficiency of shared memory implementations, n = 100

MPI OpenMP Auto Auto+Copy
p t(p) e(p) t(p) e(p) t(p) e(p) t(p) e(p)

1 439 1.00 406 1.00 471 1.00 454 1.00
2 290 0.76 209 0.97 473 0.49 419 0.54
4 155 0.70 113 0.90 465 0.25 404 0.28
8 90 0.61 72 0.70 473 0.13 403 0.14

16 73 0.38 59 0.43 470 0.06 397 0.07

-5 -4 -3 -2 -1 0 1 2 3 4 5

log(Expected Delay)

50

54

58

62

66

E
(S

uc
ce

ss
fu

l R
es

po
ns

es
)

B B B B B B
B

B

B

B
B

R R R R R R R

R

R

R R

Optimal

RPW

n = 100

Fig. 2. Expected successes vs. delay, expected patient arrival rate = 100, uniform priors.

However, there are now 2n stages for the outermost
loop, as opposed to the n used previously. This has
the negative effect of doubling the number of rounds of
communication, which significantly reduces the paral-
lel efficiency. It does have a positive effect, however,
of slightly reducing the memory requirements since the
same number of states are spread over more stages.

The nonuniform roles of the indices make the ar-
ray compression calculations somewhat more complex,
and make it harder to determine the indices of the states
depended on. An additional complication comes from
the fact that previously, any combination of nonneg-
ative entries having a sum of m was a valid state at
stage m � n. Now, however, there can be a valid stage
m � 2n, and a combination of nonnegativeentries hav-
ing that weighted sum, but the combination does not
correspond to a state. For example, if n = 100, then
(0, 0, 75, 0, 0, 75) is not a valid state, even though it is at
stage 150. The reason is that it violates the constraint
that s1 + f1 + u1 + s2 + f2 + u2 � n. Previously
this constraint was automatically satisfied, but this is no
longer true. This situation complicates the compressed
indexing and access processes.

Table 8 contains the timing and scaling analysis of
the program, which incorporates all of the features of
the most scalable 3-arm program. This was run on the
new version of the system, so one would expect the
performance to be degraded some. However, the drop
in efficiency is rather significant, caused by the com-
plex indexing and extra rounds of communication. We
assume that another important factor is that the pro-
gram was only recently developed, and with additional
tuning its performance should improve some.

7. Conclusions

There is considerable interest in using adaptive de-
signs in various experiments because they can save lives
(human or animal), time, cost, or other resources. For
example, for a representative delayed response prob-
lem with n = 100, uniform priors, and response delay
rates 10 times patient arrival rates, simple equal alloca-
tion averages 50 successes. The most commonly sug-
gested adaptive technique, randomized play the winner
(RPW), achieves only a 14.7% improvement, while the

192 R. Oehmke et al. / Scalable algorithms for adaptive statistical designs

Table 8
Analysis of delay program on new system, n=100

array redist external
p e(p) calc misc comm shift comm

1 1.00 95.8 0.0 0.0 4.2 0.0
2 0.93 89.5 0.0 3.7 3.8 3.0
4 0.79 75.7 0.0 12.4 3.6 8.3
8 0.67 61.9 0.1 18.4 2.8 16.8

16 0.41 41.5 0.2 28.2 2.0 28.1
32 0.27 25.8 0.2 31.8 1.2 41.0

newly obtained optimal solution achieves a 28.4% im-
provement (see Fig. 2). In fact, the optimal solution
is nearly as good as the optimal solution for the case
where there are no delays. Note that this is also the first
exact evaluation of RPW in this setting, using a trivial
modification of the optimization program to perform
backwards induction.

However, the complexity of adaptive designs has
proven to be a major hurdle impeding their use. Our
goal is to reduce computational concerns to the point
where they are not a key issue in the selection of ap-
propriate designs. This paper has concentrated on the
parallel computational aspects of this work, while other
papers analyze the statistical and application impact [4–
6].

Unfortunately, the recurrences involved have at-
tributes that make it difficult to achieve high perfor-
mance and scalability. Space tends to be the limiting
factor, and trying to ameliorate this causes overhead
and a significant increase in program complexity. As
noted in Section 4, increases in program complexity can
cause severe performance problems when the compiler
is unable to optimize the inner-most loops, and hence
one must select alternatives with the compiler’s limita-
tions in mind. Space constraints, and low calculation to
communication ratios, also complicate the ability to re-
duce communication latencies. However, by working
diligently, it is possible to achieve significant speedups
and scalable parallelizations, although this comes at a
cost of increased program length and more complex
program maintanence. Of course, as was shown in Sec-
tion 4.3, even highly scalable programs can have their
performance degraded in unhelpful environments.

In Table 9 we illustrate the effects of memory limi-
tations on the 3-arm problem, assuming 1 GB per pro-
cessor. Uncompressed refers to a parallel program us-
ing load-balancing as in the initial parallel version, but
without compressing to a 1-dimensional array. Note
how the scalable version needs fewer processors to
solve large problems, and that it can solve arbitrarily
large problems, while the other versions cannot go be-

Table 9
Min. processors (p) needed to solve problem of size n, using 1 GB
per processor

n uncompressed initial scalable

100 100 1 1
200 ∞ 21 16
300 ∞ ∞ 173

Max problem solvable: uncompressed: 105; initial: 231; scalable:
∞.

yond a fixed problem size no matter how many pro-
cessors are available. This is due to the imperfect load
balancing in the earlier versions which were unable to
allocate less than a single s3 loop per processor.

Besides being able to compare alternative paral-
lelizations, we can also compare to the work of others.
Using only 16 processors of an IBM SP2 we solved
the 3-arm, n = 200 problem. This is approximately
500,000 times harder than the problem called “imprac-
tical” in [9], and 2,000 times harder than that solved
in [3] on a Cray 2. Our system is only about 22× a sin-
gle processor Cray 2, and hence the primary advantage
is our serial and parallel optimizations.

Note that our work applies much more broadly
than adaptive designs for clinical and preclinical trials,
though this in itself is an important application. The
bandit model is widely used in areas such as operations
research, artificial intelligence, and game theory. Fur-
ther, our work generally applies to neighbor recurrences
using stencils. This common class of recurrences in-
cludes many dynamic programming problems such as
the generalized string matching used in some data min-
ing and bioinformatics applications, and includes other
evaluation techniques such as backward induction and
path induction.

Acknowledgements

This research was partially supported by NSF grants
DMS-9504980 and DMS-0072910. Parallel comput-
ing support was provided by the University of Michi-
gan’s Center for Parallel Computing.

References

[1] P. Armitage, The search for optimality in clinical trials, Int.
Statist. Rev. 53 (1985), 1–13.

[2] D.A. Berry and B. Fristedt, Bandit Problems: Sequential Al-
location of Experiments, Chapman and Hall, 1985.

[3] D.A. Berry and S.G. Eick, Adaptive assignment versus bal-
anced randomization in clinical trials – a decision-analysis,
Stat. in Medicine 14 (1995), 231–246.

R. Oehmke et al. / Scalable algorithms for adaptive statistical designs 193

[4] J. Hardwick, R. Oehmke and Q.F. Stout, A program for se-
quential allocation of three Bernoulli populations, Comp. Stat.
and Data Analysis 31 (1999), 397–416.

[5] J. Hardwick, R. Oehmke and Q.F. Stout, Optimal adaptive
designs for delayed response models: exponential case, in:
MODA6: Model Oriented Data Analysis, W. Mueller and P.
Hackl, eds, 2001, to appear.

[6] J. Hardwick and Q.F. Stout, Flexible algorithms for creating
and analyzing adaptive sampling procedures, New Develop-
ments and Applications in Experimental Design, IMS Lec.
Notes–Mono. Series 34 (1998), 91–105.

[7] J. Hardwick and Q.F. Stout, Using path induction to evaluate
sequential allocation procedures, SIAM J. Scientific Comput-
ing 21 (1999), 67–87.

[8] O.H. Ibarra, H. Wang and T. Jiang, On efficient parallel algo-
rithms for solving set recurrence equations, J. Algorithms 14
(1993), 244–257.

[9] R. Kulkarni and V. Kulkarni, Optimal Bayes procedures for
selecting the better of two Bernoulli populations, J. Stat. Plan-
ning and Inference 15 (1987), 311–330.

[10] A. Lew and A. Jr. Halverson, Dynamic programming, deci-
sion tables, and the Hawaii parallel computer, Computers and
Mathematics with Applications 27 (1993), 121–127.

[11] G. Lewandowski, A. Condon and E. Bach, Asynchronous
analysis of parallel dynamic programming algorithms, IEEE
Trans. Parallel and Distributed Systems 7 (1996), 425–438.

[12] B. Lokuta and M. Tchuente, Dynamic programming on two
dimensional systolic arrays, Information Processing Letters
29 (1988), 97–104.

[13] K. Malinowski and J. Sadecki, Dynamic programming: a
parallel implementation, Parallel Processing Techniques for
Simulation, 1986, pp. 161–170.

[14] S. Ranka and S. Sahni, String editing on a SIMD hyper-
cube multicomputer, J. Parallel and Distributed Computing 9
(1990), 411–418.

[15] W. Rytter, On efficient parallel computations for some dy-
namic programming problems, Theoretical Computer Science
59 (1988), 297–307.

[16] D. Tang, An efficient parallel dynamic programming algo-
rithm, Computers and Mathematics with Applications 30
(1995), 65–74.

[17] R. Sastry and N. Ranganathan, A systolic array for approx-
imate string matching, Proc. IEEE Int’l Conf. on Computer
Design, 1993, pp. 402–405.

[18] R. Simon, Adaptive treatment assignment methods and clinical
trials, Biometrics 33 (1977), 743–744.

[19] S.A. Strate, R.L. Wainwright, E. Deaton, K.M. George, H.
Bergel and G. Hedrick, Load balancing techniques for dy-
namic programming algorithms on hypercube multicomput-
ers, Applied Computing: States of the Art and Practice, 1993,
pp. 562–569.

[20] Y.-G. Wang, Sequential allocation in clinical trials, Comm. in
Statistics: Theory and Methods 20 (1991), 791–805.

[21] L.J. Wei and S. Durham, The randomized play the winner rule
in medical trials, J. Amer. Stat. Assoc. 73 (1978), 840–843.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

