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We present an optimized parallelization scheme for molecu-
lar dynamics simulations of large biomolecular systems, im-
plemented in the production-quality molecular dynamics pro-
gram NAMD. With an object-based hybrid force and spa-
tial decomposition scheme, and an aggressive measurement-
based predictive load balancing framework, we have attained
speeds and speedups that are much higher than any reported
in literature so far.

The paper first summarizes the broad methodology we are
pursuing, and the basic parallelization scheme we used. It
then describes the optimizations that were instrumental in
increasing performance, and presents performance results on
benchmark simulations.

1. Introduction

Understanding the structure and function of bio-
molecules such as proteins and DNA is crucial to
our ability to understand the mechanisms of diseases,
drugs, and normal life processes. With the experimen-
tal determination of structures for an increasing set of
proteins it has become possible to employ molecular
dynamics (MD) simulations in such studies. Recent
success in sequencing the entire human genome has
given a significant incentive to increased use of MD,
and the announcement by IBM of a project aimed at
creating a million processor computer for MD simu-
lations underscores the importance of this area. With
these advances, significant breakthroughs can be ex-
pected during the next decade, leading to better treat-
ment of diseases, for example. One necessary factor for

this to occur is the ability to carry out MD simulations
in a scalable fashion on a large number of processors.

In classical molecular dynamics, a biomolecular sys-
tem (proteins, lipids, and/or nucleic acids, often sur-
rounded by water) is modeled as a collection of atoms
connected by bonds, and interacting via electrostatic
and van der Waal’s forces. Due to high frequency bond
vibrations, the Newtonian equations of motion must be
integrated in time-steps of (typically) one femtosecond
while many phenomena of interest occur on time scales
of nanoseconds or longer.

Although the total amount of computation required
is large, it is divided into a very large number of time
steps. The size of the molecular system to be modeled
is typically only a few tens of thousands of atoms.
Thus, each time step, which constitutes the basic unit
available for parallelization, is relatively small: a few
seconds to tens of seconds on sequential computers.
These factors couple with the irregular and dynamic
nature of the computation to generate one of the most
difficult problems to parallelize in a scalable manner.

To be sure, some popular mainstream MD programs
have already been parallelized, with good speedups
over tens of processors, and useful, but lower speedups
for up to 256 processors. Scaling them beyond this
number has proved to be difficult. We describe a theo-
retically and practically scalable parallelization scheme
for cutoff-based MD, and an aggressive parallel imple-
mentation based on data driven objects, automatic load
balancing via object re-mapping, and specific perfor-
mance optimizations. These have been embodied in
NAMD,1 a production-quality MD program used in a
variety of biomolecular simulations published in scien-
tific journals.

NAMD has attained, on a benchmark 206,617 atom
protein-lipid-water assembly, a speedup of 1252 on
2048 processors, in comparison with speedups of 140
and 170 reported for other programs recently [5], and

1NAMD is available athttp://www.ks.uiuc.edu/Re-
search/namd/.
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our own previous result of 180 on 256 processors. The
actual speed of the program, which is written in C++,
is comparable or better than other production-quality
programs written in Fortran, on one processor.2 We
have identified a few more aggressive strategies that
will allow us to increase the speedup even beyond the
current high, as well as demonstrate speedups on larger
(and faster) machine configurations.

Occasionally, computer science literature treats the
MD problem as an N-body problem. Several excellent
algorithms, and parallel implementations, are available
for the N-body problem. However, the full MD prob-
lem involves forces due to bonds, which complicate the
parallelization significantly. Further, use of a cut-off
radius and Newton’s third law are essential for efficient
computation, which further complicate efficient paral-
lelization. Lastly, the relatively small number of atoms
involved makes it a harder problem to parallelize com-
pared with multi-million particle N-body simulations
used in astrophysics codes.

Note that even when full, long-range electrostatic
interactions are included in a simulation, these forces
may be calculated via an efficient combination of glob-
al grid-based and cutoff atom-based components. The
results in this paper are directly applicable to the atom-
based components of such methods. The remaining
grid-based calculations consume a small fraction of the
total computation time, particularly when combined
with multiple timestepping methods, but their contri-
bution to scalability must still be addressed. The par-
allelization of these methods is the subject of ongoing
research by ourselves and others [14–16].

The next section describes a general methodology
that we are developing for effective parallelization of
dynamic and irregular computations, and how it is sup-
ported by the Charm++ parallel programming system.
Section 3 briefly explains the basic parallel structure
and algorithm used in NAMD, along with the load bal-
ancing strategy used by NAMD. Section 4 then de-
scribes several specific performance optimizations, and
shows the performance attained on parallel machines.
Some of the lessons learned are discussed in the con-
cluding section.

2NAMD was found to be 25% faster than CHARMM (a popular
modeling package written in FORTRAN) on a standard CHARMM
benchmark (carboxy myoglobin in water) run independently by Surjit
B. Dixit and Christophe Chipot, University Henry Poincare-Nancy
I, France, on 1 CPU of the SGI Origin 2000 at the Center Charles
Hermite, INRIA-Lorraine, Villers les Nancy, France.

2. Parallelizing dynamic computations

An increasing number of parallel applications are
irregular and dynamic in their structure. “Irregular”
structure implies that different components of the ap-
plication are not uniform: a simple iteration over an ar-
ray is an example of regular structure, whereas a com-
putation distributed over an oct-tree, or a finite element
unstructured grid are relatively irregular. In physical
simulations, complex geometries and/or uneven distri-
bution of physical entities causes such irregularities.
“Dynamic” problem structure results when the compo-
nents of a program change their behavior over time.
Such changes tend to affect performance negatively.
Especially on a large number of processors, these two
factors combine to pose a substantial hurdle to effec-
tive parallelization. Not only does the performance of
such applications tend to be poor, the amount of effort
required in developing them is also inordinate. The
broad approach we have been pursuing for effective
parallelization of such computations is based on the
principle of persistence, described below.

2.1. Multi-partition decomposition and the principle
of persistence

A broad approach for effective parallelization of such
applications that we are developing can be summarized
as follows: the application programmer decomposes
the problem into a large number of “chunks”. The
number of chunks is chosen independently of the num-
ber of processors, and is typically much larger than the
number of processors. (We call this “multi-partition
decomposition” for brevity). From the programmer’s
point of view, all the communication is between the
chunks, and not the processors. The runtime system is
then free to map and re-map these chunks, implemented
as data-driven objects, across processors. The system
may do so in response to internal or external [3] load
imbalances, or due to requirements of a time shared
parallel system. This approach tries to automate what
“runtime systems” can do best (e.g. work schedul-
ing and load balancing), while leaving those tasks best
done by humans (deciding what to do in parallel), to
the programmer.

In scientific and engineering computations, a run-
time system has one more factor that helps its task:
such computations tend to be iterative in nature, and so
the computation times and the communication patterns
exhibited by its objects (chunks) tend to persist over
time. We call this “the principle of persistence”, on par
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with “the principle of locality” exhibited by sequential
programs. The apparent contradiction of this principle
with our objective of aiming at dynamic applications
is resolved when we note that dynamic CSE applica-
tions tend to either change their pattern abruptly but in-
frequently (as in adaptive refinement) or continuously
but slowly. The relatively rare case of continuous and
large changes can still be handled by our paradigm, us-
ing more dynamic and localized remapping strategies.
However, for the common case, a runtime system can
employ a measurement-based approach: it can mea-
sure the object computation and communication pat-
terns over a period of time, and base its object remap-
ping decisions on these measurements. We have shown
that such measurement-based load balancing leads to
accurate load predictions, and coupled with good ob-
ject remapping strategies, to high-performancefor such
applications [2,4].

This approach shifts a substantial burden of parallel
programming to the runtime system. The Charm++
and Converse parallel programming system provides
the components that support this approach, and are
described next.

2.2. Runtime support for dynamic computation

NAMD is implemented using the Converse [10] run-
time system, and the major components of NAMD are
written in Charm++ [9], a parallel version of C++.
Converse supplies several important capabilities for
parallel applications. It provides machine-independent
interfaces to all popular parallel computers as well as
workstation clusters. Converse is an interoperable run-
time system, allowing programs to be composed of
modules written using a variety of different parallel
languages and libraries. NAMD takes advantage of
this by including components written in Charm++,
MPI, PVM, and a low-overhead send-receive mes-
sage library. Finally, Converse implements a data-
driven execution model, allowing parallel languages
such as Charm++ to support the dynamic behavior of
our chunk-based applications.

The dynamic components of NAMD are implement-
ed in the Charm++ parallel language. Charm++ ap-
plications are composed of collections of C++ objects,
which communicate by remotely invoking methods on
other objects. When multiple chunks are mapped to
each processor, some form of local scheduling is nec-
essary. On each processor, there is a collection of ob-
jects waiting for data. Method invocations (messages)
are sent from object to object. All method invocations

for objects on a processor are maintained in a priori-
tized scheduler queue. The scheduler repeatedly picks
the next available message, and invokes the indicated
method on the indicated object with the message pa-
rameters. In addition to supporting multi-partition de-
composition, such data-driven execution also adaptive-
ly overlaps communication and computation.

Applications based on a multi-partition decomposi-
tion also call for a sophisticated load-balancing sys-
tem. We have developed such a load balancing frame-
work for Charm++ programs. The framework auto-
matically instruments all Charm++ objects, collects
their timing and communication data at runtime (in a
“database”), and provides a standard interface to dif-
ferent load balancingstrategies (the job of a strategy is
to decide on a new mapping of objects to processors).
The framework is general enough to apply beyond the
Charm++ context, and it has been implemented in the
Converse runtime layer, requiring only a small amount
of language-specific code to support additional parallel
languages. As a result, several other languages on top
of Converse (including threaded MPI) can also use the
load balancing functionality. The strategies themselves
are independent of the framework and can be plugged
in and out easily. Also, it is possible to write strategies
that are somewhat specialized to individual application
domains, when necessary.

Some of the strategies supported are centralized
whereas others are distributed. All strategies interface
to the database built by the framework on each pro-
cessor separately. A centralized strategy may use a
system-provided library to gather the object communi-
cation graph on one processor. The strategy process-
es this graph to make decisions about which processor
each object should be mapped to subsequently. The
framework then communicates this map to individual
processors, where object managers belonging to lan-
guage runtime systems (such as Charm++) migrate
their objects as indicated by the map. A distributed
strategy does not collect all information in one place;
instead it may choose to communicate with neighbor-
ing processors, to exchange information and then to ex-
change objects. There is clearly a higher overhead for
centralized strategies. However, in many applications,
including molecular dynamics, the load balance does
not change significantly for a long period of time. In
such applications, it is possible to spend a considerable
amount of time in a centralized strategy to come up
with a good new mapping.
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3. A scalable parallel algorithm for molecular
dynamics

Many existing implementations of parallel molecu-
lar dynamics use atom replication or atom decomposi-
tion techniques [1,17]. Although these techniques al-
low relatively easy porting of existing sequential codes,
they can be shown to be theoretically non-scalable: as
the number of processors increases, the communication
to computation ratio also increases, even if the problem
size is arbitrarily increased. More sophisticated strate-
gies, which are variants of force decomposition ([6,12])
are also non-scalable in this sense, although in practice
they may lead to reasonable speedups on medium-size
computers (up to 128 processors). Spatial decomposi-
tion schemes (used in [11,13]), where atoms are dis-
tributed into cubes depending on the spatial locations,
and migrated among the cubes as needed, are shown to
be theoretically scalable. For a more detailed analysis
of scalability, see [8].

The variant of spatial decomposition we propose us-
es cubes whose dimensions are slightly larger than the
cutoff radius. Thus, atoms in one cube need to interact
only with their neighboring cubes; there are 26 such
neighboring cubes. However, a problem with this spa-
tial decomposition is that the number of cubes is limit-
ed by the simulation space. Even on a relatively large
molecular system, such as the ApoA-I system used as a
benchmark in this paper (with 92,442 atoms), we only
have 245 (7 × 7 × 5) cubes. Further, as density of the
system varies across space, one may encounter strong
load imbalances.

NAMD uses a novel combination of force and spatial
decomposition. For each pair of neighboring cubes, we
assign a non-bonded force computation object, which
can be independently mapped to any processor. The
number of such objects is therefore 14 times (26/2+ 1
self-interaction) the number of cubes.

Forces due to covalent bonds within biomolecules
are represented via a sum of 2-body (bond), 3-body (an-
gle), and 4-body (dihedral and improper) terms which
follow the topology of the molecule. In order to mini-
mize communication while avoiding redundant calcu-
lations, a force computation object is created for each
cube and itsupstream neighbors, these being the (at
most) 7 neighboring cubes at equal or greater coordi-
nates along all three axes. Bonded forces among sets
of (2, 3, or 4) atoms are calculated by this object if and
only if the base cube coordinates are equal to the min-
imum of the cube coordinates for all constituent atoms
along each axis.

Non-bonded interactions are excluded or modified
between atoms connected by one, two, or three bonds.
These pairs must be detected as a part of the nor-
mal pairwise force computation because the excluded
forces would be many orders of magnitude larger than
remaining forces. An earlier strategy of only check-
ing for excluded pairs within a small radius was ren-
dered obsolete by an efficient method of conducting
such checks.

3.1. NAMD design details

In the following section, we will summarize the par-
allel decomposition used in NAMD. A more detailed
description can be found in [8].

The cubes described above are represented in NAMD
by objects calledhome patches. Each home patch is
responsible for distributing coordinate data, retrieving
forces, and integrating the equations of motion for all of
the atoms in the cube of space owned by the patch. The
forces used by the patches are computed by a variety of
compute objects. There are several varieties of compute
objects, responsible for computing the different types
of forces (bond, electrostatic, constraint, etc.). Some
compute objects require data from one patch, and only
compute interactions between atoms within that single
patch. Other compute objects are responsible for inter-
actions between atoms distributed among neighboring
patches.

When running in parallel, some compute objects re-
quire data from patches not on the compute object’s
processor. In this case, aproxy patch takes the place
of the home patch on the compute object’s processor.
During each time step, the home patch requests new
forces from local compute objects, and sends its atom
positions to all its proxy patches. Each proxy patch in-
forms the compute objects on the proxy patch’s proces-
sor that new forces must be calculated. When the com-
pute objects provide the forces to the proxy, the proxy
returns the data to the home patch, which combines all
incoming forces before integrating.

Some compute objects are placed on particular pro-
cessors at the start of the simulation, but others may
move during load balancing. Ideally, all compute ob-
jects would be able to be moved around at any time.
However, where calculations must be performed for
atoms in several patches, it is more convenient to as-
sume that some compute objects will not move at all
during the course of the simulation. In general, the bulk
of the computational load is represented by the non-
bonded (electrostatic and van der Waal’s) interactions,
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and certain types of bonds. These objects are designed
to be able to migrate during the simulation to optimize
parallel efficiency. The non-migratableobjects, includ-
ing computations for bonds spanning multiple patches,
represent only a small fraction of the work, so good
load balance can be achieved without making them mi-
gratable.

3.2. Load balancing in NAMD

NAMD uses a measurement-based load balancer,
employing the Charm++ load balancing framework,
to achieve unsurpassed parallel performance for molec-
ular dynamics. Load balancing occurs in three stages.
When a simulation begins, patches are distributed ac-
cording to a recursive coordinate bisection scheme, so
that each processor receives a number of neighboring
patches. When there are more processors than patch-
es, this method reduces to a simple round-robin dis-
tribution, so that some processors have one patch, and
the rest have none. All compute objects are then dis-
tributed to a processor owning at least one home patch,
taking advantage of the upstream patch distribution to
insure that each patch has at most seven proxies. Clear-
ly this is not an efficient load distribution for large
machines, since processors with no patches will also
receive no compute objects, leaving many processors
with no work at all. However, this procedure does
achieve the goals of distributing the integration work
reasonably well, and distributing the compute objects
in such a way to avoid excessive communication. Thus
this static load balancing step prepares the computation
for a subsequent measurement based remapping.

The dynamic load balancer uses the load measure-
ment capabilities of Converse to refine the initial distri-
bution. The framework measures the execution time of
each compute object (the object loads), and records oth-
er (non-migratable) patch work as “background load”.
After the simulation runs for several timesteps (typical-
ly several seconds to several minutes), the program sus-
pends the simulation to trigger the initial load balanc-
ing. NAMD retrieves the object times and background
load from the framework, collects the load information
on one processor, and redistributes the migratable com-
pute objects. The new object distribution is determined
using the following algorithm.

– Select the biggest (longest-executing) compute ob-
ject.

– Select a destination processor for the compute ob-
ject such that:

∗ Adding this compute object will notoverload the
processor much (an overload threshold permits
some overload).

∗ The compute object will utilize as many home
patches as possible.

∗ The assignment will create as few new proxy
patches as possible.

∗ Among multiple processors selected by the
above criteria, select the least loaded processor
as the destination processor.

– Assign the compute object to the selected proces-
sor

∗ Add the compute object load to the processor’s
total load

∗ Record the creation of new proxies, so that fu-
ture compute objects may also use the proxy.

– Repeat until all compute objects are assigned.

Immediately after assigning the compute objects
with this strategy, a refinement algorithm further re-
duces the load imbalance, by tolerating the creation of
additional proxy patches. The refinement algorithm
is almost identical to the initial procedure, except that
the overload threshold is smaller, only compute objects
from overloaded processors are considered for migra-
tion, and only underloaded processors are considered
as destinations for migrating computes.

After determining which compute objects will mi-
grate, the load balancer moves the objects, constructs
new proxies as necessary, and resumes the simulation.
However, the new communication patterns resulting
from relocation of so many objects produce actual ob-
ject times which differ from the times used in the initial
load balancing. Therefore, after measuring a few more
simulation steps, another load balancing cycle begins.
This time, only the refinement procedure is used, result-
ing in only a few additional object migrations. After
this second load balancing, the processor loads remain
balanced, except for the slow large-scale movements of
atoms in the simulation. Periodically thereafter, the re-
finement procedure is repeated to account for the slow
changes of the simulation.

4. Optimizing performance

In the six years we have been developing NAMD, we
have been optimizing its parallel performance for the
types of machines that our users had access to at that
particular time. In 1994, users were most interested in
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8 to 16 processor workstation clusters. By 1998, many
of our users had easy access to several dozen processors
on machines such as the T3E and Origin 2000. We dis-
covered that additional optimizations were necessary
to run well on 64 processors. Now, users are gaining
access to machines with hundreds and thousands of
processors, and to use them efficiently, another round
of optimization has proved necessary. A side benefit
of each round of optimization is that it improves the
performance on smaller machines as well.

4.1. Program instrumentation

Three levels of instrumentation were used to diag-
nose and optimize the performance of NAMD. The
simplest information to collect is the time per iteration
for various size parallel machines. This information is
useful for detecting that a parallel performance prob-
lem exists, and for quantifying the benefits of particular
program modifications. However, raw timestep times
provide little information to assist in locating the causes
of poor performance.

The second level of instrumentation uses thesum-
mary profile information produced by the Charm++
run-time system. Two types of trace information are
stored in the summary profile. The first is the proces-
sor utilization for every processor throughout the pro-
gram run. The second is the execution time consumed
by everyentry method in the parallel program. Since
Charm++ is a message-driven system, execution of a
particular operation (entry method) is triggered by the
receipt of a particular message. The runtime gener-
ates summary profiles by accumulating the total time
consumed by that method (including any functions or
methods it calls, but not methods it invokes with mes-
sages) across invocations. This is similar to traditional
profiling, but with two main advantages. Traditional
profiling generally times execution at the function-call
level, producing large amounts of profiling data associ-
ated with thousands of different functions (“thousands”
may seem unrealistically large, but a modern object-
oriented program indeed has such a large number of
functions. NAMD, in particular, consists of several
thousand functions). Summary profiles are smaller,
since there are typically only dozens to a few hundred
entry methods to keep track of. Also, in traditional pro-
filing, since times are recorded for each function call,
timing itself may produce noticeable perturbations in

program execution.3 Since summary times are associ-
ated with messages, timing overhead is not significant
compared to message overhead.

Parallel execution traces, generated by theProjec-
tions component of Charm++, provide the most com-
plete performance information. Projections data pro-
vides the most comprehensive information about pro-
gram performance: for example, the trace information
includes such data as: methodA on processor 5 sent
a message to methodB on processor 4 at time 5.441
seconds, which started execution at 5.451 seconds, and
finished at 5.478 seconds. This kind of information
is invaluable for diagnosing some varieties of parallel
performance problems such as detecting ways to short-
en long critical paths. However, traces of this nature
can be large, so often full-size runs can not be instru-
mented in this way. Shorter runs with tens of timesteps
are used in when full traces are desired. The inter-
ference from instrumentation is not much higher with
full traces, though, because the trace data is stored in
memory buffers till the end of the program, and output
only at the end. Thus, the file I/O time is not incurred
during the critical timesteps being instrumented.

4.2. Performance enhancements

In this section, we present several examples of opti-
mizations carried out to improve the performance to the
level achieved. As a a significant portion of the techni-
cal effort represented by this paper was spent on such
optimizations, it is useful to discuss a representative
sample of such optimizations.

The molecule we have primarily used for testing is
the ApoA-I system. This full model of a high density
lipoprotein particle is composed of 92,224 atoms, and
the simulation used a 12 Å electrostatic cutoff radius.
The simulation parameters for this simulation result in
245 cubes (a7 × 7 × 5 array). The 12 Å cutoff was
selected as being typical of the cutoffs used in actual
simulations when full-range electrostatics are not used.
Results for two other molecules are also presented,
demonstrating that the optimizations are not specialized
to a particular benchmark.

3Profiling using statistical sampling is less likely to produce per-
formance degradation, but may result in inaccuracy, and does nothing
to reduce the size of the trace data.
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4.2.1. Grainsize control
The non-bonded computation can make up eighty

percent or more of the total computation of a simu-
lation. The initial implementation of NAMD called
for 14 non-bonded compute objects per cube (13 with
neighbors, and one to calculate the interactions with-
in the cube). For ApoA-I, this resulted in 3430 non-
bonded compute objects. Also, the computational load
represented by these compute objects would vary wide-
ly, since a compute calculating the forces between two
cubes meeting at a corner would have fewer pairs of
atoms that actually interact than a compute calculating
the interactions within a single cube. For efficient load
balancing, we need many objects per processor, but on
1024 processors, this partitioning results in fewer than
four non-bonded compute objects. Therefore, we mod-
ified the generation of compute objects to potentially
create several compute objects to calculate the within-
cube non-bonded atom pairs. The number of compute
objects created is determined by the number of atoms
initially assigned to the cube, so that the load balancer
has more objects to distribute, and so that those objects
have more uniform computational loads.

Each timestep of the ApoA-I benchmark took about
57 seconds on one processor of the ASCI-Red. To
achieve perfect speedup on, say, 2000 processors
(which is impossible due to inherent communication
and parallelization costs), we would need each proces-
sor to finish its part in 28 ms. A prerequisite, there-
fore, is that no single task (i.e. object method invoca-
tion) should run longer than 28 ms. To check this, we
used the trace information generated by the Projections
performance visualization tool. The critical method
(task) is the one that computes non-bonded forces be-
tween neighboring patches. The data obtained using
Projections on the spread of granularity of this method
is shown in Fig. 1. Each bar represents the number of
instances of tasks with the grainsize indicated by its x-
coordinate. (Thus there were about 880 tasks of grain-
size 9 ms, or more precisely, of grainsize between 8 and
10 ms, during an average timestep.) The largest grain-
size was around 42 ms, which is clearly undesirable.
(This can be thought of as a corollary of Amdahl’s law:
In an object-based program, the best speedup is limited
to Tsequential

Tlargest−object
.) A bimodal distribution of grainsizes

is clearly visible in the plot. This suggested a partic-
ular type of computational objects were culprits. The
objects that calculate interactions between two cubes
that interface at a face (as opposed to a corner or edge)
have many more interactions to compute, because more
atoms from one cube are included within the cutoff ra-

dius of an atom of the other cube. We therefore imple-
mented a strategy that splits such objects into multiple
components (the number of pieces depends on the num-
ber of atoms in each interacting cube). This led to the
distribution of grainsizes shown in Fig. 2. This allowed
the program to scale to a larger number of processors,
and made the task of load balancer easier by providing
smaller pieces of work.

4.2.2. Increased parallelism
Since the non-bonded work was now being paral-

lelized effectively, other parts of the computation start-
ed to become problems. The next part of the computa-
tion requiring improvement was the parallelization of
the bond computations. Although there are three types
of bonds (2, 3, and 4-atom bonds) in NAMD, they have
considerable similarity in the computations performed.
Also, since they were a small part of the total compu-
tation, we simplified their implementation by making
them non-migratable work, and by placing them so as
to minimize communication. However, after distribut-
ing the non-bonded work across 1024 processors, the
bond computation could no longer be ignored. Our
solution for this problem rested on two facts. First, we
considered the arrangements of bond with respect to
the cubes. Although some bonds cross the boundaries
between cubes, most are contained completely within
a single cube. Therefore, we created two bond ob-
jects for each bond type associated with a cube. One
computed the bond forces for atoms entirely within the
cube; the other computed inter-cube bonds. Since this
object still requires data from multiple cubes, its ex-
ecution is delayed, but now it has much less work to
do, so it shortens the computation on the critical path.
The second change was to recognize that the intra-cube
bond objects now communicate in exactly the same
way as non-bonded self compute objects. Therefore,
they could be made migratable, using the mechanisms
already in place for non-bonded compute objects, and
load balanced more efficiently.

4.2.3. Optimized multicast
To understand how the performance could be fur-

ther improved, during the tuning stage, we kept a
performance audit using summary data provided by
Charm++ tracing routines. Table 4.2.3 shows a snap-
shot of the audit at an intermediate stage, when the
time per step for a 1024 processor run of ApoA-I was
around 86 ms. The audit compares ideal and actual
1024 processor data, where the ideal performance is
computed by assuming that the single processor per-
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Fig. 1. The grainsize of compute objects before splitting.
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Fig. 2. The grainsize of compute objects after splitting.

formance could scale perfectly. The 30 ms difference
in total time was distributed across several columns:
clearly load imbalance was a major factor (measured as
the difference between maximum and average loads on
processors). The communication overhead was signifi-

cant, but relatively small. The extra work one had to do
only in a parallel setting accounted for about 7.97 ms
of the difference. In addition, the work done in the
bonded force calculation and the integration methods
increased somewhat (0.5 ms and 1.5 ms respectively) in
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Table 1
Performance audit for the ApoA-I simulation on 1024 processors of ASCI-Red. The Ideal times are
calculated from the single processor times, assuming perfect scaling

Time (milliseconds)
Total Non-bonded Bonds Integration Overhead Imbalance Idle Receives

Ideal 57.04 52.44 3.16 1.44 0 0 0 0
Actual 86 49.77 3.9 3.05 7.97 10.45 9.25 1.61

the 1024 processor run. This led us to further improve
the components that could be improved. For example,
we noted that the integration component doubled. This
observation lead to the following optimization.

The normal timestep of molecular dynamics algo-
rithm alternates between force computation and inte-
gration. Integration is carried out only by the patches.
As patch-size is decided by the cutoff radius, there are
a fixed number of them available. For example, in the
case of ApoA-I, there were 245 patches. So, on ma-
chines with more than 245 processors, the remaining
processors tend to be idle during integration. Figure 3,
obtained via Projections, shows this effect clearly, with
time-lines for a few processors, in an “Upshot”-style
diagram. Each rectangle on a processor’s line repre-
sent an asynchronous method execution (or task). We
noted that if the red (darkest) sections (representing in-
tegration) can be shortened, the gaps representing idle
time on other processors (beyond processor 244) can
be shortened. Further analysis via Projections showed
that more than half of the time in this method was spent
in sending 20–30 identical messages. The allocation
and packing of messages was consuming most of the
time. A simple utility was then added to the Charm++
runtime (as it is useful for other programs as well) that
carries out the multicast by using only one user level
packing and allocation. This shortened the duration of
this critical entry method by half, as shown in Fig. 4.
The reduced gaps on processors that do not carry out
integration are also clearly seen.4

Referring back to Table 4.2.3 it is clear that further
improvement can be attained using better load balancer
strategies and by reducing the overhead of processing
coordinate and force messages (which is most of the
7.97 second component).

4.3. Results

The following tables present NAMD performance
results for three different simulations, and three differ-
ent parallel platforms. Most of our performance stud-

4Note that the x-axis scale on the latter graph is shorter.

Table 2
Program performance for the ApoA-I simulation (92,224 atoms) on
the ASCI-Red

Processors Time (s/step) Speedup GFLOPS

1 57.1 1 0.0480
4 14.7 3.9 0.186
8 7.31 7.8 0.375

32 1.9 30.1 1.44
64 0.964 59.2 2.84

128 0.493 116 5.56
256 0.259 221 10.6
512 0.152 376 18.0
768 0.102 560 26.9

1024 0.0822 695 33.3
1536 0.0645 885 42.5
2048 0.0573 997 47.8

ies were conducted on the Sandia National Laborato-
ries ASCI-Red computer, containing 9,536 333 MHz
Pentium II Xeon processors, using the-proc 1 co-
processor mode. Additional performance results are
also presented for the Pittsburgh SupercomputerCenter
Cray T3E-900 and the NCSA SGI Origin 2000, with
250 MHz processors. The GFLOPS rating for each run
was determined by using the instruction counters of the
Origin 2000 to determine the number of floating-point
operations per simulation step for a single-processor
run. That number was divided by the time per step
for each parallel run to calculate the GFLOPS for the
run. This procedure provides a conservative rating,
since it ignores extra floating-point instructions due to
parallelization.

In addition to the ApoA-I simulation previously de-
scribed, results for two other simulations are also pre-
sented. The BC1 simulation is a very large simulation,
composed of 206,617 atoms in 378 patches. The bR
simulation is a small simulation of 3,762 atoms in 36
patches. Both of these simulations also use a 12 Å cut-
off. During the optimizationprocess, most experiments
were run on the Sandia ASCI-Red computer.

Table 2 shows the performance of the program on
the Sandia ASCI Red computer. Early in our perfor-
mance study on this machine, our step times on 1024
processors was 120 ms, for a speedup of 475. Our op-
timization efforts led to a per step time of about 82 ms,
leading to a speedup of 695 for this benchmark on 1024
processors. Table 3 demonstrates the performance of
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Fig. 3. A Projections timeline view of two timesteps before optimizing the multicast.

Table 3
Program performance for the BC1 simulation (206,617 atoms) on
the ASCI-Red. Performance is scaled relative to the speedup on two
processors= 2.0, since the simulation uses too much memory to run
on 1 processor

Processors Time (s/step) Speedup GFLOPS

2 74.2 2 0.0933
4 37.8 3.9 0.183
8 19.3 7.7 0.359

32 4.91 30.3 1.41
64 2.49 59.6 2.78

128 1.26 118 5.49
256 0.653 227 10.6
512 0.352 422 19.7
768 0.246 603 28.1

1024 0.192 773 36.1
1536 0.141 1052 49.1
2048 0.119 1252 58.4

NAMD on the larger BC1 simulation. As expected, the
larger problem makes better use of large numbers of
processors. This simulation achieves a speedup of 1252
on 2048 processors (58.4 GFLOPS). Table 4 demon-
strates the performance of NAMD on the much smaller
bR simulation. Even on a system this small, NAMD is

Table 4
Program performance for the bR simulation (3,762 atoms) on the
ASCI-Red

Processors Time (s/step) Speedup
1 1.47 1
2 0.759 1.94
4 0.384 3.83
8 0.196 7.50

32 0.071 20.7
64 0.0358 41.1

128 0.0299 49.2
256 0.0300 49.0

able to use up to 64 processors efficiently.
Table 5 shows the performance of NAMD on the

Pittsburgh Supercomputer Center Cray T3E-900. Per-
processor performance and scalability are both better
than that achieved by the ASCI-Red, but the maximum
program performance is limited by the number of avail-
able processors. Table 6 shows the performance of
NAMD on the NCSA Origin 2000 (250 MHz proces-
sors).

We note again that the uni-processor speed of our
program is on par with or better than other molecular
dynamics programs. So, the impressive speedups were
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Fig. 4. A Projections timeline view of two timesteps after optimizing the multicast.

Table 5
Program performance for the ApoA-I simulation on the PSC T3E-
900. Scaling is relative to 4 processors= 4.0, since the problem is
too large to run on fewer processors

Processors Time (s/step) Speedup GFLOPS

4 10.7 4.0 0.256
8 5.28 8.1 0.519

16 2.64 16.2 1.04
32 1.35 31.7 2.03
64 0.688 62.2 3.98

128 0.356 120 7.69
256 0.185 231 14.8

not attained by using a “bad sequential algorithm”. Of
course, the nature of MD computations precludes it
from approaching the peak FLOP rating on a single
processor as some other numerical kernels can. So,
comparison with other efficient MD programs (often
written in Fortran) appears to be a fair method. Even
with that caveat, 110 MFLOPS on a single Origin 2000
processor (for example) can be claimed to be a good
performance for a complete application.

5. Conclusion

We have demonstrated unprecedented performance
and speedups on the molecular dynamics application.
The lessons learned from this exercise can be summa-
rized as follows:

1. Multi-partition decomposition, supported by
data-driven execution and automatic measure-
ment based load balancing is a promising method-
ology for dealing with complex parallel applica-
tions.

2. Within this approach, it is essential to follow the
rule of dividing work into small pieces, as small
as possible as long as they amortize the over-
head. A few places where this rule was not fol-
lowed turned out to be obstacles when attempting
to scale beyond the number of processors used
in earlier implementations. In general, with to-
day’s technology constants, it is desirable to aim
at a grain-size (i.e. computation per message) of
around 5 ms on the average. (10–50 times the
message-passing overhead.)
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Table 6
Program performance for the ApoA-I simulation on the NCSA Origin
2000

Processors Time (s/step) Speedup GFLOPS

1 24.4 1 0.112
2 12.5 1.95 0.219
4 6.30 3.89 0.435
8 3.18 7.68 0.862

16 1.60 15.2 1.71
32 0.860 28.4 3.19
64 0.411 59.4 6.67
80 0.349 70.0 7.86

3. Sophisticated load balancing strategies are nec-
essary, that can attempt to increase load bal-
ance while keeping communication overhead low.
Further progress on improving scalability will
require strategies that consider the dependency
chains, and load-balance within distinct phases of
a single time step.

4. Low-overhead instrumentation, coupled with
source language-level feedback and visualization
can be used effectively to identify performance
bottlenecks quickly, and to fix them.

5. A flexible and modular parallel program design
allows for experimentation with alternate strate-
gies.

The basic load balancing technology developed is
being applied to other dynamic problems, including
rocket simulation, crack-propagation, and simulation
of physical processes. We expect the methodology
to lead to effective parallelization of new classes of
parallel applications in science and engineering.
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