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Abstract. Cloud computing, with its promise of virtually infinite resources, seems to suit well in solving resource greedy sci-
entific computing problems. To study the effects of moving parallel scientific applications onto the cloud, we deployed several
benchmark applications like matrix–vector operations and NAS parallel benchmarks, and DOUG (Domain decomposition On
Unstructured Grids) on the cloud. DOUG is an open source software package for parallel iterative solution of very large sparse
systems of linear equations. The detailed analysis of DOUG on the cloud showed that parallel applications benefit a lot and
scale reasonable on the cloud. We could also observe the limitations of the cloud and its comparison with cluster in terms of
performance. However, for efficiently running the scientific applications on the cloud infrastructure, the applications must be
reduced to frameworks that can successfully exploit the cloud resources, like the MapReduce framework. Several iterative and
embarrassingly parallel algorithms are reduced to the MapReduce model and their performance is measured and analyzed. The
analysis showed that Hadoop MapReduce has significant problems with iterative methods, while it suits well for embarrassingly
parallel algorithms. Scientific computing often uses iterative methods to solve large problems. Thus, for scientific computing on
the cloud, this paper raises the necessity for better frameworks or optimizations for MapReduce.
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1. Introduction

Scientific computing is a field of study that applies
computer science to solve typical scientific problems.
Scientific computing is usually associated with large
scale computer modeling and simulation and often
requires large amount of computer resources. Cloud
computing [3] suits well in solving these scientific
computing problems, with its promise of provision-
ing virtually infinite resources. Cloud computing is
a style of computing in which, typically, resources
scalable on demand are provided “as a service (aaS)”
over the Internet to users who need not have knowl-
edge of, expertise in, or control over the cloud infras-
tructure that supports them. The provisioning of the
cloud services can be at the Infrastructural level (IaaS),
Platform level (PaaS) or at the Software level (SaaS).
A cloud computing platform dynamically provisions,
configures, reconfigures and de-provisions servers as
requested. This ensures elasticity of the systems de-
ployed in the cloud. Elasticity of any framework can
be defined as its ability to adjust according to the vary-
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ing loads of requests or requirements it has to sup-
port. Cloud computing mainly forwards utility com-
puting model, where consumers pay based on their
usage. Servers in the cloud can be physical or virtual
machines.

To analyze the cost of science on the clouds, Sci-
entific Computing Cloud [36] (SciCloud) project has
been initiated at the University of Tartu. The goal of
the project is to study the scope of establishing private
clouds at universities, so that the initial experimental
costs can be reduced and one can efficiently use the al-
ready existing university cluster resources. While there
are several public clouds on the market, Google Apps
like Google Mail, Docs, Sites, etc., Google App Engine
and Amazon EC2 (Amazon Elastic Compute Cloud)
are probably most known and widely used. However,
to establish a private cloud, several free implementa-
tions of the cloud infrastructure like Eucalyptus [26],
OpenNebula [27], etc. have been studied, that allow
creating private clouds compatible with Amazon EC2.
Using the Eucalyptus technology, scientific comput-
ing cloud (SciCloud) has been established on our high-
performance computing (HPC) clusters.

Initially several customized cloud images are cre-
ated, that supported some of our research applications
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in mobile web services and parallel computing do-
mains. This setup helped us in achieving elasticity
and load balancing for these applications. Later ex-
periments targeted at deploying DOUG (Domain de-
composition On Unstructured Grids) application to the
cloud. DOUG is an open source software package for
parallel iterative solution of very large sparse systems
of linear equations with up to several millions of un-
knowns. While running these parallel applications on
the SciCloud, it was realized that the transmission de-
lays in the cloud environment to be the major prob-
lem for adapting HPC problems on the cloud. To prove
this and to observe how scientific computing applica-
tions scale on the clouds, we experimentally measured
performance latencies for several scientific computing
tasks running on clusters and cloud nodes.

During this analysis it was also realized that, to be
able to run the scientific computing applications on
the cloud infrastructure, it is better that the applica-
tions be reduced to frameworks that can successfully
exploit the cloud resources. For clarity: private clouds
and public clouds are most often established on com-
modity hardware, which are prone to fail at regular in-
tervals. So the applications deployed on them should
be aware of the caveat or built with frameworks that
can adapt to these failures. In the SciCloud project we
are mainly studying at adapting some of the scientific
computing problems to the MapReduce [11] frame-
work. MapReduce implementations achieve this fault
tolerance by replicating both data and computation.
The study observed that MapReduce and some of its
well-known implementations like Hadoop suit well for
embarrassingly parallel algorithms while posing sev-
eral problems for the iterative algorithms. This paper
explains the study in detail and is organized as follows.

Section 2 briefly introduces the SciCloud project
and the applications benefiting from it. Section 3 dis-
cusses the concepts of deploying scientific comput-
ing applications to the cloud. Section 4 discusses the
DOUG system and the details of exporting DOUG to
the SciCloud along with detailed analysis. Section 5
explains the study of adapting scientific computing ap-
plications to the MapReduce framework along with
several algorithms and their analysis. Section 6 de-
scribes the related work and Section 7 concludes the
paper and describes the future research directions in
the context of the SciCloud project.

2. SciCloud

The main goal of the scientific computing cloud
(SciCloud) project [36] is to study the scope of es-

tablishing private clouds at universities. With these
clouds, students and researchers can efficiently use the
already existing resources of university computer net-
works, in solving computationally intensive scientific,
mathematical and academic problems. Traditionally,
such computationally intensive problems were targeted
by batch-oriented models of the GRID computing do-
main. The current project tries to achieve this with
more interactive and service oriented models of the
cloud computing that fits a larger class of applications.
It mainly targets the development of a framework, in-
cluding models and methods for establishment, proper
selection, state management (managing running state
and data), auto scaling and interoperability of the pri-
vate clouds. Once such clouds are feasible, they can
be used to provide better platforms for collaboration
among interested groups of universities and in test-
ing internal pilots, innovations and social networks.
SciCloud also focuses at finding new distributed com-
puting algorithms and tries to reduce some of the sci-
entific computing problems to MapReduce algorithm.
The SciCloud project thus shall ultimately benefit the
cluster, cloud and grid community.

While there are several public clouds on the market,
Google Apps (examples include Google Mail, Docs,
Sites, Calendar, etc.), Google App Engine [18] (pro-
vides elastic platform for Java and Python applications
with some limitations) and Amazon EC2 [2] are prob-
ably most known and widely used. Elastic Java Virtual
Machine on Google App Engine allows developers to
concentrate on creating functionality rather than bother
about maintenance and system setup. Such sandbox-
ing, however, places some restrictions on the allowed
functionality. Amazon EC2 on the other hand allows
full control over virtual machine, starting from the op-
erating system. It is possible to select a suitable oper-
ating system, and platform (32 and 64 bit) from many
available Amazon Machine Images (AMI) and several
possible virtual machines (VM), which differ in CPU
power, memory and disk space. This functionality al-
lows to freely select suitable technologies for any par-
ticular task. In case of EC2, price for the service de-
pends on machine size, its uptime, and used bandwidth
in and out of the cloud.

There are also free implementations of the cloud
infrastructure, e.g., Eucalyptus [15]. Eucalyptus al-
lows creating private clouds compatible with Amazon
EC2. Thus, the cloud computing applications can ini-
tially be developed at the private clouds and can later
be scaled to the public clouds. The setup is of great
help for the research and academic communities, as
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Fig. 1. Architecture of the SciCloud.

Table 1

Cluster and cloud setup used for the experiments

Hardware OS Software

Cluster (kuu) Cluster node: AMD Opteron 2.2 GHz with 2 cores, CentOS 5.4 OpenMPI 1.3.2

4 GB memory, 1 MB cache kernel 2.6.18

Cloud (kuu) On the cluster node: up to 2 cloud instances, Ubuntu 9.04 OpenMPI 1.3

each with 1 core and 1 GB memory kernel 2.6.27

Cluster (katel) Cluster node: Intel Xeon 2.5 GHz with 8 cores, CentOS 5.4 OpenMPI 1.3.2

32 GB memory, 6 MB cache kernel 2.6.18 BLAS (netlib 3.1.1)

Cloud (katel) On the cluster node: up to 8 cloud instances, Ubuntu 9.04 OpenMPI 1.3

each with 1 core and 1 GB memory kernel 2.6.27 BLAS (libblas3gf 1.2)

Cloud[+atlas] (katel) Same as above Ubuntu 9.04 OpenMPI 1.3

kernel 2.6.27 BLAS (libatlas3gf 3.6.0)

Hadoop cloud (katel) On the cluster node: up to 8 cloud instances, Ubuntu 9.04 hadoop 0.20.2+320,

each with 1 core and 1.5 GB memory kernel 2.6.27 Java 1.6.0

the initial expenses of experiments can be reduced by
great extent. With this primary goal we initially have
set up a SciCloud on a cluster consisting of 8 nodes
of SUN FireServer Blade system (Kuu) with 2-core
AMD Opteron Processors, using Eucalyptus technol-
ogy [15]. The architecture of the SciCloud is shown in
Fig. 1 and the details of hardware/software are in Ta-
ble 1. The SciCloud controller exposes and manages
the underlying virtualized resources via Amazon EC2
compatible APIs. The Cluster controller manages the
execution of VMs running on the nodes. The Node
controller takes care of the VM activities, including
the execution, inspection and termination. The Storage
controller provides mechanism for persistent storage
and access control of virtual machine images and user
data. We later extended it to 2 more nodes from our
high-performance computing cluster (Katel) of double
quadcore processor with 32 GB memory per node, and

moved the SciCloud controller there. The cluster has
42 of such nodes in total and all the cores are avail-
able for the SciCloud usage when the need arises. So
SciCloud has 352 cores in total at its disposal. The Kuu
and Katel clusters are physically located at different
places, and are connected by a 100 Mbps Ethernet con-
nection.

While several applications are obvious from such a
private cloud setup, we have used it in solving some
of our research problems in distributed computing and
mobile web services domains [36]. In the mobile web
services domain, we scaled our Mobile Enterprise [37]
to the loads possible in cellular networks. A Mobile
Enterprise can be established in a cellular network by
participating Mobile Hosts, which act as web service
providers from smart phones, and their clients. Mo-
bile Hosts enable seamless integration of user-specific
services to the enterprise, by following web service
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standards [19], also on the radio link and via resource
constrained smart phones. Several applications were
developed and demonstrated with the Mobile Host
in healthcare systems, collaborative m-learning, social
networks and multimedia services domains [37]. We
shifted some of the components and load balancers
of Mobile Enterprise to the SciCloud and proved that
Mobile Web Services Mediation Framework [38] and
components are horizontally scalable. More details of
the analysis are available at [39]. SciCloud also has
several machine images supporting in data mining
and bio-informatics domains. Moreover, SciCloud pro-
vides several supplementary benefits, which are dis-
cussed in the following sections, at appropriate loca-
tions.

3. Scientific computing on the cloud

Once the SciCloud is established, customized ma-
chine images are prepared having support for several
scientific computing tools and simulations like Python
with NumPy and SciPy, and Scilab tool [35]. Ma-
chine images with OpenMPI [16] support are also de-
veloped. Moreover, scripts are developed, which pre-
pare the complete setup for MPI (Message Passing
Interface) applications, starting from instantiating the
specified number of instances of given machine im-
age type, preparing the master node and making the
configuration ready to running the specified MPI pro-
gram till storing the performance metrics of the execu-
tion. The scripts are also intuitive enough to consider
several known problems like some instances not get-
ting started and not getting IP. The scripts start cre-
ating new nodes, if the earlier instances cannot start
or encounter any problems, considering timeouts. The
failure of instance creation can also be due to some
nodes in the cloud failing and thus not being able to
join the cloud. Detailed analysis with several bench-
mark applications like matrix–vector multiplications
and NASA Advanced Supercomputing parallel bench-
marks (NAS PB) [25] are performed using the setup.

We expected that the transmission delays are the ma-
jor problem in running scientific computing applica-
tions on the SciCloud. To come up with true trans-
mission delays, the experiments were performed on a
single cluster. This was achieved by restricting all the
cloud instances to be initiated on a single cluster with
the help of our scripts. We have run CG (Conjugate
Gradient) and EP (Embarrassingly Parallel) problems
from NAS PB. CG is an iterative algorithm for solving

systems of linear equations. The general idea of CG
is to perform an initial inaccurate guess of the solu-
tion and then improve the accuracy of the guess at each
following iteration using different matrix and vector
operations. In EP benchmark, two-dimensional statis-
tics are accumulated from a large number of Gaussian
pseudo-random numbers, which are generated accord-
ing to a particular scheme that is well suited for parallel
computation. This problem is typical of many Monte
Carlo applications [25]. The former is used to evaluate
transmission delays: latency and bandwidth, while the
latter is used for testing processor performance. The
CG times rise significantly with the number of proces-
sors on the cloud (see Fig. 2) starting at 8 instances.
The EP times did not show any slowdown on the cloud
(see Table 2).

All the experiments were conducted several times
(5–10 times) and the mean values were considered
for the fully loaded cluster cases (8, 16 nodes). For
some of the other cases, we had to eliminate outliers
as we had no control over the scheduling mechanism.
Rows 1–2 of Table 2 show the execution times for the
CG problem of Class B from NAS PB on the clus-
ter and SciCloud, under varying number of instances.

Fig. 2. Comparison of NAS PB CG run times in the cluster and
cloud cases. (Colors are visible in the online version of the article;
http://dx. doi.org/10.3233/SPR-2011-0320.)

Table 2

Execution times (s) of CG and EP from NAS PB

Processors 1 2 4 8 16

CG on cluster (katel) 167.5 83 65 55 31

CG on cloud (katel) 161.1 82.4 68.1 74 156.7

EP on cluster (kuu) 143.4 86.1 42.2 20.3

EP on cloud (kuu) 130.5 65.1 33.6 16.9



S.N. Srirama et al. / Scalability of parallel scientific applications on the cloud 95

The configurations of the instances are described in Ta-
ble 1. Rows 3–4 show the execution times for the EP
problem from NAS PB. The numbers show that EP
scales well but CG does not scale on the cloud after
8 instances. To uncover the reasons for such high run
times the experiments were run with MPE Profiler [7]
that shows MPI function calls and hence allows to dis-
tinguish calculations from communication.

The NAS CG problem of Class B runs CG algorithm
multiple times and each algorithm makes 75 iterations.
Each iteration consists of calculation and communica-
tion part, so it is Bulk Synchronous Parallel model. The
respective times of one typical CG iteration for 8 MPI
processes are given in Table 3. The times of calculation
part in one CG iteration are 26 and 24 ms for cluster
and cloud, respectively. The times of communication
are very different: 2.54 and 13 ms. This makes CG time
for 8 processes on the cloud about 50% slower, what
we have observed in Table 2.

With MPE profiler we can observe the communi-
cation pattern of a CG iteration on the cluster and
cloud. The times spent in MPI_Send (darker) and
MPI_Wait (lighter) are shown on Fig. 3. Each pro-
cess sends a fraction of its vector values to 3 other pro-
cesses during sparse matrix–vector multiplication op-
eration in each CG iteration. Distributed dot product
is performed twice, what can be clearly seen from the
iteration for cluster on Fig. 3(a). The communication
delays for the cloud are almost one order longer and
less predictable, which leaves some processes waiting
in MPI_Wait call (see Fig. 3(b)).

Table 3

Calculation and communication times (ms) of one CG iteration

Calculation Communication

Cluster 26 2.54

Cloud 24 13

Similar timestamps for the case of 16 cloud in-
stances are much higher and thus the abnormal behav-
ior of the CG in Fig. 2. We predict the reason for such
high transmission latency in the cloud case is due to the
virtualization technology. Virtualization techniques are
the basis of the cloud computing. Virtualization tech-
nologies partition hardware and thus provide flexible
and scalable computing platforms. SciCloud is built
on top of XEN virtualization technology [4]. More-
over, we also have observed that MPI applications are
very sensitive to the number of VMs per bare-hardware
node. Also the latencies and processing capabilities are
much worse with the cloud core assignment strategies,
such as multiple VMs per core. This leaves a lot of re-
search scope at the virtualization technology to address
these problems.

The analysis had given us a chance to have a clear
look at the comparison of running the scientific and
mathematical problems in a cluster and on the cloud.
However, one should not forget here the actual bene-
fit of the cloud with its promise of infinite resources.
For example, if the problem defined here needs re-
sources beyond one possesses in their clusters, cloud
becomes the only solution. SciCloud being compatible
with Amazon EC2, the load can be seamlessly shifted
to the public cloud nodes when the need arises. More-
over, Amazon EC2 recently has initiated support for
HPC with their Cluster Compute instances [1], which
promise much lesser latency between instances.

Apart from helping in handling dynamic loads of
applications, SciCloud also provides several supple-
mentary benefits. Generally, clouds, especially IaaS
providers, leverage complete access to the instances
that are being initiated. This feature comes in handy
in several situations. For example, from the earlier
analysis, one can realize that to improve the effi-
ciency of cloud application, several optimizations can

(a) (b)

Fig. 3. Communication pattern of a CG iteration with 8 nodes on the cluster and cloud. The time intervals of the iterations are shown under the re-
spective profiling diagrams. (a) Cluster: 2.54 ms; (b) cloud: 13 ms. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0320.)
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Table 4

Level 1 (vvm), 2 (mvm), 3 (mmm) problem sizes

Runs (times) Data size Operation count

vv multiplication 1000 100,000 size vectors 108 multiply

mv multiplication 1000 1000 × 1000 matrix, 1000 size vector 109 multiply-add

mm multiplication 2 1000 × 1000 shape matrices 2 × 109 multiply-add

Table 5

Testing Level 1 (vvm), 2 (mvm), 3 (mmm) BLAS routines

vvm (s) mvm (s) mmm (s)

Cluster (katel) 0.159 2.603 14.319

Cloud (katel) 0.157 2.589 5.007

Cloud[+atlas] (katel) 0.27 2.044 0.995

be adopted locally for libraries like BLAS (Basic Lin-
ear Algebra Subprograms), UMFPACK (Unsymmet-
ric Multifrontal sparse LU factorization Package), etc.
Table 4 shows problem sizes and Table 5 shows the
execution times of NumPy program with an opti-
mization on the cloud instances. Cloud instances had
newer Linux distribution with more recent packages,
which gave the win of approximately 3 times for
matrix–matrix multiplication (mmm), and the pack-
age that links NumPy and a BLAS implementation,
ATLAS (Automatically Tuned Linear Algebra Soft-
ware), which increased the speed by further 5 times.
The other results of the Table 5 are for matrix–vector
multiplication (mvm) and vector–vector multiplication
(vvm).

Having optimized BLAS implementation on a clus-
ter is compulsory, but optimizations of other libraries
on the cluster is a cumbersome process, as they must be
installed on the cluster by the administrator. Whereas
in the cloud case, the procedure is comparatively sim-
ple, and one just has to prepare the proper SciCloud
machine image with the software and optimizations.
During the experiments, one can run as many instances
of his choice or as the application demands, from these
machine images.

4. Parallel scientific applications on the SciCloud

Once the preliminary analysis with applications
on the SciCloud was performed, we tried to use
the setup in more serious scientific computing prob-
lems, in particular DOUG. The experiments outlined
in the previous chapter show that applications with
small calculation–communication ratio, like CG be-
have worse on the cloud than on cluster. In the Fig. 2
it can be observed that CG problem does not scale to
16 cloud instances. Fortunately, pure CG is never used

in real life applications, because it requires too many it-
erations to converge. There are algorithms built on top
of CG, called Preconditioned CG, which have much
better calculation–communication ratio. DOUG is one
such system, and this section presents the analysis of
moving DOUG to the SciCloud.

4.1. DOUG (Domain decomposition On Unstructured
Grids)

DOUG is a software package for parallel solution
of large sparse systems of linear equations typically
arising from discretizations of partial differential equa-
tions to be solved in 2D or 3D regions which may
consist of materials with high variations in physical
properties. DOUG is developed at the University of
Tartu, Estonia and the University of Bath, England
since 1997. It was first implemented in FORTRAN 77
but has been completely rewritten in Fortran 95. To
achieve good parallel performance, DOUG uses auto-
matic load-balancing and parallelization being imple-
mented through MPI and overlapping communication
and calculations through non-blocking communication
whenever it is applicable.

Basically, DOUG uses an iterative Krylov subspace
method to solve linear systems in a form

Ax = b,

where the matrix A is sparse and the dimension of
A is very large. Due to large dimensions of A the
convergence rate is by far too slow. For that reason,
a preconditioner is used. A good preconditioner trans-
forms the original linear system into one with the
same solution, but with the transformed linear sys-
tem the iterative solver needs much smaller number
of iterations [32]. DOUG implements the Precondi-
tioned Conjugate Gradient (PCG), the Stabilized Bi-
Conjugate Gradient (BiCGstab), the minimal residual
(MINRES) and the 2-layered Flexible Preconditioned
Generalized Minimum Residual method (FPGMRES)
with left or right preconditioning.

The general algorithm used for creating the sub-
problems that can be assigned to separate CPUs is
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called domain decomposition. The idea of domain de-
composition is to decompose the problem into n sub-
problems, usually with some overlap, each of which
will be solved on one CPU. In a way, it is similar
to a divide and conquer scheme but with domain de-
composition there is communication on the borders of
the sub-problems (overlaps) involved. Usually, com-
munication is measured to be more costly than CPU
time and therefore the decomposition algorithm tries to
minimize the cross-sections between neighboring sub-
domains.

In domain decomposition, instead of solving the
global system of equations, smaller problems are
solved on each sub-domain, solutions of which are
combined together to form an approximation to the
original problem. The common practice is to use do-
main decomposition as a preconditioning step for
Krylov subspace methods such as the conjugate gra-
dient method or the method of generalized minimum
residual [8]. DOUG employs 2-level preconditioning
in which a coarse matrix is used which approximates
the global matrix on a suitable chosen coarser scale.
This reduces the total work of a preconditioned Krylov
method (like PCG) to almost a constant number of it-
erations independent of the matrix A size.

Recently, the development and research has been fo-
cused around aggregation based domain decomposi-
tion methods. Major progress has been made in de-
termining an upper bound for the condition number
of the preconditioner in case of highly variable coef-
ficients. This allows a better estimate of the error and
thus enables the solver to finish in less iterations. This
approach has been implemented in DOUG and it has
been shown experimentally that it is of superior speed
to comparable methods [33,34].

4.2. DOUG on the SciCloud

To run DOUG on the SciCloud, machine images
with DOUG software have been prepared and the
scripts that helped us in preparing the MPI setup are
extended for the DOUG. Test problem has been gen-
erated from the Poisson’s equation ∇2φ = f on
unit square with Dirichlet boundary conditions. This
equation arises in many situations like the calculation
of heat distribution or the calculation of strains and
stresses in structural mechanics

∂2φ

∂x2 +
∂2φ

∂y2 = f (x, y),

φ(0, y) = φ(x, 0) = φ(x, 1) = φ(1, y) = 0.

The approximate solution for φ(x, y) is found by Finite
Difference method on 2D grid, which approximates
partial derivatives in each point (x′, y′) of the grid by
their differences

∂2φ

∂x2

∣
∣
∣
∣
x′ ,y′

≈
(
φ(x′ − Δx, y′) − 2φ(x′, y′)

+ φ(x′ + Δx, y′)
)
/Δ2

x,

∂2φ

∂y2

∣
∣
∣
∣
x′ ,y′

≈
(
φ(x′, y′ − Δy) − 2φ(x′, y′)

+ φ(x′, y′ + Δy)
)
/Δ2

y.

Applying Finite Differences to a grid point gives one
linear equation, which reflects the Poisson’s equation
for the point. Unknowns of the equation stand for the
approximated values of the original function zi ≈
φ(x′, y′) in the corresponding points. All equations
comprise a system of linear equations with the set of
unknowns zi, 1 � i � N , where N is the size of the
grid except grid boundaries.

The size of the grid considered for the analysis is
1536 × 1536, which gives rise to the system of lin-
ear equations with about 2.5 millions of unknowns.
The matrix of the system contains more than 10 mil-
lion non-zero elements and its data file is 180 MB in
size. DOUG master node first reads data from disk and
distributes it to slave nodes, which together with mas-
ter node use Preconditioned CG algorithm to solve the
system. Running DOUG program with the given data
takes more than 1 GB of memory when running on less
than 3 nodes, so it was not possible to run it on the
cloud with 1 GB of available memory per VM. The
cloud has been tested with 4–16 instances running on
two 8-core nodes in the SciCloud.

As has been mentioned DOUG runs one iterative
solver as its core and a preconditioner is applied at each
iteration. The preconditioner may also require some in-
terprocess communication but usually has much bet-
ter computation–communication ratio than pure CG.
Thus, we expected transmission delays in the cloud to
be less critical for DOUG than it was for CG. The re-
sults are shown on Fig. 4.

The graph shows that the cloud does not introduce
extra communication overhead with 16 instances and
overall performance is better than on cluster, proba-
bly because of the newer software. However, the over-
all scaling is not very good for both cluster and cloud
cases. This may be due to the optimal DOUG require-
ment to have 2 cores per processor. Our future research
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Fig. 4. DOUG run times in the cluster and cloud cases. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0320.)

in this domain will address this issue in detail and we
are interested in repeating the tests with 2 cores per in-
stance.

From this analysis it can be observed that parallel
scientific applications scale reasonable on the cloud.
However, our experience of moving DOUG to the
SciCloud reveals some problems with the cloud. First,
instances in the cloud are run on random nodes in the
network. This may cause problems of establishing con-
nection from one instance to another. We circumvented
the problem with our scripts, which made them initi-
ate on a single cluster or on a single node of a clus-
ter. Public clouds, especially Amazon EC2, also pro-
vide such support for HPC, with their Cluster Compute
instances, which promise much lesser latency between
instances [1]. Second problem is that MPI configura-
tion needs to be created dynamically during run time,
which is done by our scripts. However, for others to
move their MPI applications to the cloud, additional
tools are helpful.

Apart from being able to scale, with the deploying
of DOUG onto the SciCloud, we also get several intan-
gible benefits. For example, our experience with GRID
and ordinary private clusters revealed that installing
DOUG is not a trivial task, as it needs a number of spe-
cific libraries and proper configuration of MPI devel-
opment environment. The administrator of a cluster has
usually no knowledge about these details, while it is
straightforward for the application developers and the
advanced users of the application. The software con-
figuration and administrative tasks have been one of
the major problems with GRID establishment, which
we observed to lessen by using customized images and

flexible models of the cloud computing. Our solution
is to let administrator prepare general machine image
with compilers, MPI environment and common scien-
tific libraries installed and allow others to extend this
image to their needs. The resulting image can again be
used by everyone.

5. Adapting scientific computing problems to the
clouds using MapReduce

From the earlier subsections it can be deduced that
Parallel Scientific Applications benefit a lot from the
cloud computing. However, cloud computing comes
with several typical problems. Most often cloud infras-
tructure is built on commodity computers, which are
prone to fail regularly. So the applications that are run
on cloud computing platforms should be aware of this
fact and the applications should be foolproof. Thus, to
be able to gain maximum efficiency from the cloud in-
frastructure, the scientific computing applications must
be reduced to frameworks that can successfully exploit
the cloud resources. In the SciCloud project we are
mainly studying at adapting some of the scientific com-
puting problems to the MapReduce [11] framework.

5.1. SciCloud Hadoop framework

MapReduce was first developed by Google as a
parallel computing framework to perform distributed
computing on a large number of commodity comput-
ers. Since then it has gained popularity as a cloud com-
puting framework on which to perform automatically
scalable distributed applications. Google MapReduce
implementation is proprietary and this has resulted
in the development of open source counterparts like
Hadoop [20] MapReduce. Hadoop is a Java soft-
ware framework inspired by Google’s MapReduce and
Google File System [17] (GFS). Hadoop project is be-
ing actively developed by Apache and is widely used
both commercially and for research, and as a result has
a large user base and adequate documentation. With
the intent of having a setup for experimenting with
MapReduce based applications, we have set up a dy-
namically configurable SciCloud Hadoop framework.
We used the Hadoop cluster to reduce some of the sci-
entific computing problems like CG to MapReduce al-
gorithms.

MapReduce applications get a list of key–value pairs
as an input and consist of two main methods, Map and
Reduce. Map method processes each key–value pair in
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the input list separately, and outputs one or more key–
value pairs as a result

map(key, value) ⇒ [(key, value)].

Reduce method aggregates the output of the Map
method. It gets a key and a list of all values assigned to
this key as an input, performs user defined aggregation
on it and outputs one or more key–value pairs

reduce(key, [value]) ⇒ [(key, value)].

Users only have to produce these two methods to de-
fine a MapReduce application, the framework takes
care of everything else, including data distribution,
communication, synchronization and fault tolerance.
This makes writing distributed applications with
MapReduce much easier, as the framework allows the
user to concentrate on the algorithm and is able to
handle almost everything else. Parallelization in the
MapReduce framework is achieved by executing mul-
tiple map and reduce tasks concurrently on different
machines in the Hadoop cluster.

5.2. Scientific computing problems reduced to
MapReduce framework

The structure of a MapReduce application is very
strict. It is not trivial to reduce complex algorithms to
MapReduce model and there is no guarantee that the
resulting algorithms are effective. Previous work has
shown that MapReduce is well suited for simple, of-
ten embarrassingly parallel problems. Google shows
in their paper [11] that they use MapReduce for wide
variety of problems like large-scale indexing, graph
computations, machine learning and extracting spe-
cific data from a huge set of indexed web pages. Co-
hen [10] shows that MapReduce can be successfully
used for graph problems, like finding graph compo-
nents, barycentric clustering, enumerating rectangles
and enumerating triangles. MapReduce has also been
tested for scientific problems [6]. It performed well
for simple problems like Marsaglia polar method for
generating random variables and integer sort. How-
ever, MapReduce had significant problems with more
complex algorithms, like CG, fast Fourier transform,
and block tridiagonal linear system solver. Moreover,
most of these problems use iterative methods to solve
them.

To be able to get a more accurate overview of the
problems MapReduce has with iterative algorithms we

decided to reduce several iterative and also, as a com-
parison, several embarrassingly parallel scientific al-
gorithms to the Hadoop MapReduce framework and
compare the results. The algorithms we chose are fol-
lowing:

• Conjugate Gradient;
• k-medoid clustering (PAM);
• Integer factorization;
• Monte Carlo integration.

As already mentioned, CG is an iterative algorithm
for solving systems of linear equations. The general
idea of CG is to perform an initial inaccurate guess
of the solution and then improve the accuracy of the
guess at each following iteration using different matrix
and vector operations. CG is a relatively complex algo-
rithm, it is not possible to directly adapt the whole al-
gorithm to the MapReduce model. Instead, the matrix
and vector operations used by CG at each iteration are
reduced to the MapReduce model. These operations
are matrix–vector multiplication, dot product, two vec-
tor addition and vector and scalar multiplication. As a
result, multiple MapReduce jobs are executed at every
iteration.

Partitioning Around Medoids [22] (PAM) is a iter-
ative k-medoid clustering algorithm. The general idea
of a k-medoid clustering is that each cluster is repre-
sented by it’s most central element, the medoid, and all
comparisons between objects and clusters are reduced
into comparisons between objects and the medoids of
the clusters. To cluster a set of objects into k differ-
ent clusters, the PAM algorithm first chooses k random
objects as the initial medoids. As a second step, for
each object in the dataset, the distances from each of
the k medoids is calculated and the object is assigned
to the cluster with the closest medoid. As a result, the
dataset is divided into k different clusters. At the next
step the PAM algorithm recalculates the medoid posi-
tions for each of the clusters, choosing the most cen-
tral object as the new medoid. This process of dividing
the objects into clusters and recalculating the cluster
medoid positions is repeated, until there is no change
from the previous iteration, meaning the clusters have
become stable.

Similar to CG, PAM makes an initial guess of the so-
lution, in this case the clustering, and at each following
iteration it improves the accuracy of the solution. Also,
as with CG, it is not possible to reduce the whole algo-
rithm to the MapReduce model. However, the content
of a whole iteration can be reduced to the MapReduce
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model. The resulting MapReduce job can be expressed
as:

• Map:

– Find the closest medoid and assign the object
to its cluster.

– Input: (cluster id, object).
– Output: (new cluster id, object).

• Reduce:

– Find which object is the most central and assign
it as a new medoid the cluster.

– Input: (cluster id, (list of all objects in the clus-
ter)).

– Output: (cluster id, new medoid).

Map method recalculates to which cluster each ob-
ject belongs to, and reduce method finds a new cen-
ter for each of the resulting clusters. This MapReduce
job is repeated until medoid positions of the clusters no
longer change.

For the integer factorization we chose the most ba-
sic, the trial division method. This method is not used
in practise because it is relatively slow and there ex-
ist much faster methods like general number field
sieve [28]. But we chose this method purely to il-
lustrate adapting an embarrassingly parallel problem
to MapReduce, as a comparison to the iterative algo-
rithms.

To factor a number using trial division, all possible
factors of the number are checked to see if they divide
the number evenly and thus are its factors. This can be
adopted to the MapReduce model easily, by dividing
all possible factors into multiple subgroups and check-
ing each of the subgroups in a separate map or reduce
task concurrently:

• Map:

– Gets a number to be factored as an input,
finds the square root of the number and divides
the range from 2 to

√
number into n smaller

ranges, and outputs each of them. Dividing the
work between n nodes.

– Input: (key, (function, experiments)).
– Output: (id, (start, end, number)) [one output

for each range, n total].

• Reduce:

– Gets a number and a range, in where to check
for factors, as an input and finds if any of
the numbers in this range divide the number
evenly.

– Input: (id, (start, end, number)).
– Output: (id, factor).

Monte Carlo integration uses the Monte Carlo
method [31] to calculate the integral of a function in a
given area. Monte Carlo methods are a class of algo-
rithms that utilize repeated random sampling for cal-
culating the approximation of certain computational
problems. The error of such approximation is reduced
by increasing the size of the random sampling.

To find the integral of a function in a specific area
we can find the average value of the function in this
area and multiply it with the volume of the area. The
result is the approximation of the integral. Monte Carlo
method is used to find the average function value in the
give area, by generating a number of random inputs for
the function and calculating the average of the result-
ing function outputs. To improve the accuracy of the
result we are using a quasi-random sequence [29] as an
input instead of randomly generated numbers, because
the quasi-random sequence provides more uniformly
distributed samples. Similarly to the integer factoriza-
tion example, this algorithm can be expressed as a sin-
gle MapReduce job, which is outlined as follows:

• Map:

– Gets a function to be integrated and the number
of experiments as an input. Divides the num-
ber of experiments into n (number of nodes)
smaller experiments and outputs each of them.
Dividing the work between n nodes.

– Input: (key, (function, experiments)).
– Output: (key_i, (function, experiments/n)) [one

output for each node, n total].

• Reduce:

– Gets a function to be integrated and the num-
ber of experiments as an input. It then finds the
function value with random argument for each
experiment and sums the values. Reducer out-
puts the calculated sum.

– Input: (key, (function, experiments)).
– Output: (key, sum).

This MapReduce job outputs the sum total of all
function values. The algorithm divides this value with
the number of experiments to get the average value of
the function and multiplies it with the selected area vol-
ume to find the value of the integral.

For the testing setup we created a small 12 node
Hadoop cluster, using the Hadoop cloud image, and
recorded the run times for each of the algorithms in
1, 2, 4, 8 and 12 node Hadoop MapReduce configura-
tions. For each of these configurations we calculated
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Fig. 5. Speedup comparison of the algorithms on the SciCloud.

the parallel speedup for each of the algorithms to mea-
sure how well they scale. Parallel speedup measures
how many times the parallel execution is faster than
running the algorithm on one machine. If it is larger
than 1, it means there is at least some gain from do-
ing the work in parallel. Speedup which is equal to the
number of nodes is considered ideal and means that
the algorithm has a perfect scalability. The calculated
speedup for each of the algorithms is shown on the
Fig. 5.

From the calculated speedup numbers, we can see
that iterative algorithms CG and k-medoid clustering
are not able to achieve the ideal parallel speedup, equal
to the number of nodes, while non-iterative algorithms
integer factorization and Monte Carlo integration are
able to achieve ideal speedup in a 8 node set up. Integer
factorization algorithm was not able to attain the ideal
speedup in the 12 node setup, indicating that the prob-
lem size was not large enough and the time spent on
background tasks still played a large role in the mea-
sured run times when executing the algorithm on 12
nodes.

These experiments show us that Monte Carlo and
other embarrassingly parallel algorithms, which do not
require iterating over a number of MapReduce jobs,
can be very efficient and scalable. But complex iter-
ative algorithms, that require the execution of one or
more MapReduce jobs at every iteration, have serious
problems, as it means that many smaller MapReduce
jobs must be executed in sequence. For each of the
MapReduce job executions, it takes time for the frame-
work to schedule, run and clean them up, adding up
to a significant overhead if the number of iterations is
large. Also, each time a new job is started, the input
data must be read again from the file system. For algo-

rithms like CG and k-medoid clustering, where large
part of the input data does not change between the iter-
ations, this adds a significant extra work at every itera-
tion. This is different form the job execution lag as this
overhead is relative to the size of the input, meaning in-
creasing the problem size also increases the overhead.
These two are the main problems that limit the effi-
ciency and scalability of complex iterative algorithms
adapted to the MapReduce framework.

As a result we have to conclude that current Hadoop
MapReduce framework lacks the support for scien-
tific and complex iterative algorithms in general. This
is a regrettable result for us as scientific comput-
ing very often uses iterative methods to solve scien-
tific problems. Thus, for scientific problems Hadoop
MapReduce must be optimised or extended to support
iterative algorithms, or other cloud computing frame-
works, which do support iterative algorithms, must be
used instead.

The main aspects that we feel currently lack from
the Hadoop MapReduce framework are support for
longer running MapReduce jobs and allowing to cache
input data between MapReduce jobs. Longer running
MapReduce jobs, which are not automatically termi-
nated and can be reused at every iteration, would al-
low to save time by minimizing the job execution la-
tency. Being able to cache input data, which does not
change between different MapReduce job executions,
would allow to save time from reading the same data
again from the file system at every iteration.

6. Related work

While this paper addressed deploying scientific
computing application to the cloud, several other stud-
ies are also focused at similar goals. Deelman et al.
studied the cost of doing science on the cloud with one
parallel computing application, the Montage example.
They mainly focused at knowing the costs for execut-
ing certain types of scientific computing applications
on the Amazon EC2 [12]. Trying to establish private
cloud infrastructures for using in scientific applications
is getting popular with the emergence of open source
cloud software like Eucalyptus, Nimbus etc. Keahey
et al. first established a science cloud testbed based
on the Nimbus CloudKit [23]. Similarly, Wang et al.
in CUMULUS project, focused at building a scientific
cloud. The project merged existing grid infrastructures
with the cloud technologies by building a frontend ser-
vice that unifies OpenNebula and GLOBUS [40]. As
far as public cloud providers, Amazon EC2 has initi-
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ated support recently for HPC and scientific computing
problems with their Cluster Compute instances.

Reducing scientific computing applications to
MapReduce was studied by Bunch et al. [6]. However,
they have not analyzed the reasons for the poor perfor-
mance in detail. Moreover, for iterative problems like
CG no results were published. We focused more at iter-
ative problems and have studied them extensively. Af-
ter studying the utilization of MapReduce for Scientific
Computing and encountering problems with iterative
algorithms, we were interested in finding related works
which have encountered similar problems or propose
solutions for them. One such study is Twister [13]
MapReduce framework. Twister is advertising itself as
an iterative MapReduce framework which allows cre-
ating MapReduce jobs consisting of several iterations
of Map and Reduce tasks. It also distinguishes between
static data that does not change in the course of the
iterations, and normal data which may change during
each iteration. Ekanayake et al. [14] compared Hadoop
MapReduce, Twister and MPI for different data and
computing intensive applications. Their results show
that enchanted MapReduce runtime Twister greatly re-
duces the overhead of iterative MapReduce applica-
tions. We are interested in the Twister developments
and our future research addresses implementing the
algorithms outlined in this paper also in the Twister
MapReduce framework to compare the results.

Bu et al. presented HaLoop [5] as a solution for the
lack of built-in support in MapReduce for iterative al-
gorithms. HaLoop is a modified Hadoop MapReduce
framework designed for iterative algorithms. It ex-
tends Hadoop MapReduce framework by supporting
iterative MapReduce applications, adding various data
caching mechanisms and making the task scheduler
loop-aware. They separate themselves from Twister by
claiming that HaLoop is more suited for iterative algo-
rithms because long running Twister MapReduce tasks
and memory cache make it less suitable for commodity
hardware and Twister is more prone to failures.

Zaharia et al. [41] also found that MapReduce is
not suitable for many applications that need to reuse
a working set of input data across parallel operations.
They propose Spark, a framework that supports iter-
ative applications, yet retains the scalability and fault
tolerance of MapReduce. Spark focuses on caching
the data between different MapReduce-like task ex-
ecutions by introducing resilient distributed datasets
(RDDs) that can be explicitly kept in memory across
the machines in the cluster. They also claim Spark is
more suited for iterative algorithms than Twister be-
cause it does not currently implement fault tolerance.
At the same time, Spark does not support group reduc-

tion operation and only uses one task to collect the re-
sults, which can seriously affect the scalability of al-
gorithms that would benefit from concurrent reduce
tasks, each task processing a different subgroup of the
data [41].

Google solution for the MapReduce model problems
with iterative graph problems is Pregel [24]. Malewicz
et al. introduce Pregel as a scalable and fault-tolerant
platform for iterative graph algorithms. Compared to
previous related work, Pregel is not based on the
MapReduce model but rather on Valiant’s Bulk Syn-
chronous Parallel model [9]. In Pregel the computa-
tions consist of super-steps, where user defined meth-
ods are invoked on each graph vertex, concurrently.
Each vertex has a state and is able to receive messages
sent to it from the other vertexes in the previous super-
step. While the vertex central approach is similar to
the MapReduce map operation which is performed on
each item locally, the ability to preserve the state of
each vertex between the super-steps provides the sup-
port for iterative algorithms.

Phoenix [30] implements MapReduce for shared-
memory systems. Its goal is to support efficient exe-
cution on multiple cores without burdening the pro-
grammer with concurrency management. Because it is
used on shared-memory systems it is less prone to the
problems we encountered with iterative algorithms as
long as the data can fit into the memory. The idea is
interesting, but a shared memory model cannot be con-
sidered a solution for the SciCloud project, as we are
more interested in using existing university resources
and commodity hardware. Hoefler et al. [21] have stud-
ied using MPI to implement the MapReduce paral-
lel computational model. While their results show that
MPI would need additional features to fully support the
MapReduce model, we find their work very appealing.

7. Conclusions and future research directions

Cloud computing, with its promise of virtually infi-
nite resources, seems to suit well in solving resource
greedy scientific computing problems. To study this,
we established a scientific computing cloud (SciCloud)
project and environment, on our internal clusters. The
main goal of the project is to study the scope of estab-
lishing private clouds at the universities. SciCloud is
being used in solving computationally intensive scien-
tific, mathematical, and academic problems. To study
the effects of moving the parallel scientific applications
onto the cloud, we deployed several benchmark ap-
plications like matrix–vector multiplications and NAS
parallel benchmarks, and DOUG on SciCloud. The de-
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tailed analysis of DOUG on the cloud showed that par-
allel applications scale reasonable on the cloud. From
this analysis, it was also observed that the transmis-
sion delays to be the major problem in running scien-
tific computing applications on the cloud. The study
blames the transmission delays to be from the vir-
tualization technology. Moreover, virtualization tech-
nology splits the physical CPU cores to multiple vir-
tual cores that made the performance comparison of
the cluster and cloud a tricky process. However, cloud
computing offers elasticity and several other intangi-
ble benefits, which themselves make deploying paral-
lel scientific computing applications to the cloud ben-
eficial.

Still, for efficiently running the several types of
scientific applications on the cloud infrastructure, the
applications must be reduced to frameworks that can
successfully exploit the cloud resources, like the
MapReduce framework. This work studied adapting
several embarrassingly parallel and iterative scientific
computing problems to Hadoop MapReduce frame-
work. The study observed that Hadoop MapReduce
framework has problems with iterative algorithms,
where one or more MapReduce jobs need to be exe-
cuted at each iteration. For each MapReduce job that
is executed, some of the time is spent on background
tasks, regardless of the input size, which can be viewed
as MapReduce job latency. If the number of itera-
tions is large, then this latency adds up to a signifi-
cant overhead and lowers the efficiency of such algo-
rithms. Moreover, the input to a Hadoop MapReduce
job is stored on the HDFS, where the data is distributed
to the local hard drives of the machines in the Hadoop
cluster. If a Hadoop MapReduce job is executed more
than once, it means that the input has to be read again
from the HDFS every time, regardless of how much of
the input has changed from the previous iterations. For
algorithms like CG and PAM, where most of the input
does not change between the iterations and the number
of iterations is large, this is a serious problem.

For these reasons, the paper concludes that Hadoop
MapReduce framework is more suited for embar-
rassingly parallel algorithms, where the algorithm
can be divided into independent concurrent tasks
and little or no communication is required between
them. Such algorithms can often be reduced into a
single MapReduce job, like the factoring integers.
While there is still job lag when executing a single
MapReduce job, the effect is minimal. Compared to al-
gorithms with multiple MapReduce job iterations, less
time is spent on background tasks and more time is

spent on the actual computations, resulting in a greater
overall efficiency. In the context of SciCloud project
this is not a very attractive result. Scientific comput-
ing often uses iterative methods and our results show
that Hadoop MapReduce has significant problems with
them.

Thus, for scientific computing on the cloud, this pa-
per raises the necessity for better frameworks or opti-
mizations for MapReduce and provides a lot of scope
for future research. As such, the future work will in-
clude research into optimizing Hadoop MapReduce
framework for iterative algorithms, study of other
MapReduce frameworks which have better support for
iterative MapReduce applications, like Twister, Spark
and HaLoop, and adapting the algorithms used in this
paper to each of these frameworks to compare the re-
sults. Our future work will also include implement-
ing other embarrassingly parallel scientific computing
methods on Hadoop MapReduce framework, either di-
rectly or by reducing them to the Monte Carlo method.
Apart from this, we are also interested in deploying
several other scientific computing applications from
different domains like chemistry and bioinformatics.
Research groups from these domains are showing lot
of interest in our SciCloud developments and are eager
in using the SciCloud resources for their research. Our
final goal is to come up with a cloud computing frame-
work that fully supports iterative scientific applications
and to use the framework to build a solution base for
relevant scientific computing problems.
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